首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 62 毫秒
1.
LAI是作物长势监测的一个重要指标,实时、无损和准确地估测冬小麦LAI具有重要的实践意义。通过对冬小麦进行不同的灌溉处理试验,研究LAI与冠层光谱反射率的关系,计算350~2 450 nm不同波段组合的原始光谱指数和导数光谱指数,筛选最优波段组合光谱指数,并建立LAI的监测模型。结果表明,冬小麦LAI与冠层光谱反射率和不同波段组合光谱指数相关性较好;冬小麦LAI监测的最优光谱指数为DVI(435,447),以此为自变量建立的指数模型y=10.669e~(-701.9x)表现最优,模型最稳定。  相似文献   

2.
基于高光谱的冬小麦叶面积指数估算方法   总被引:3,自引:0,他引:3       下载免费PDF全文
夏天  吴文斌  周清波  周勇  于雷 《中国农业科学》2012,45(10):2085-2092
【目的】冬小麦叶面积指数是评价其长势和预测产量的重要农学参数,高光谱技术监测叶面积指数的方法能够实现快速无损的监测管理。本文旨在将田间监测和高光谱遥感相结合,探索研究中国南方江汉平原地区冬小麦的最佳波段、光谱参数及监测模型。【方法】研究选取江汉平原的湖北省潜江市后湖管理区,利用ASD地物光谱仪和SunScan冠层分析系统在田间对冬小麦的冠层光谱及叶面积指数的变化进行监测,并探讨高光谱植被指数与冬小麦叶面积指数之间的定量关系。通过相关性分析、回归分析等方法构建6种植被指数与冬小麦叶面积指数的反演模型。【结果】冬小麦冠层光谱反射率中近红外波段870 nm,红光波谷670 nm,绿光波峰550 nm,蓝光450 nm波段对叶面积指数变化最为敏感,通过构建植被指数与叶面积指数模型,相关性均较好,决定系数(R2)为0.675-0.757,其中NDVI反演模型的R2最高为0.757。【结论】经模型精度检验,NDVI植被指数反演模型的精度较其它模型好,较适合对研究样区的冬小麦进行叶面积指数反演。  相似文献   

3.
孙晓  谭炳香 《广东农业科学》2012,39(14):189-193
高光谱遥感技术能够快捷、准确、无损坏地估测森林LAI,从而有效地监测森林长势,估测森林生物量,评价森林病虫害等.以黑龙江凉水自然保护区为例,利用高光谱遥感技术和GPS测量技术,结合地面实测LAI数据,采用从CASI图像提取的NDVI、SR 、MSAVI 3种植被指数,与地面实测的LAI建立统计回归模型,然后再从众多的统计模型中根据相关系数,筛选出由CASI反演LAI的最佳植被指数和回归模型.  相似文献   

4.
【目的】通过利用随机森林算法(random forest,RF)反演冬小麦叶面积指数(leaf area index, LAI),及时、准确地监测冬小麦长势状况,为作物田间管理和产量估测等提供科学依据。【方法】本研究依据冬小麦拔节期、挑旗期、开花期及灌浆期地面观测数据,将相关系数分析(correlation coefficient,r)和袋外数据(out-of-bag data,OOB)重要性分析与随机森林算法(random forest,RF)相结合,在优选光谱指数和确定最佳自变量个数的基础上,构建了两种冬小麦LAI反演模型|r|-RF和OOB-RF,并利用独立数据集对两种模型进行验证;然后,将所建LAI反演模型用于无人机高光谱影像,进一步检验所建模型对无人机低空遥感平台的适用性和可靠性。【结果】|r|-RF和OOB-RF反演模型分别采用相关性前5强、重要性前2强的光谱指数作为输入因子时精度最优,验证决定系数(R2)分别为0.805、0.899,均方根误差(RMSE)分别为0.431、0.307,表明这两个模型均能对作物LAI进行精确反演,其中OOB-RF模型的反演效果更好。利用无人机高光谱影像数据结合OOB-RF估算模型反演得到冬小麦LAI与地面实测值的拟合方程的决定系数R2为0.761,RMSE为0.320,数值范围(1.02-6.41)与地面实测(1.29-6.81)亦比较吻合。【结论】本文基于地面数据构建的OOB-RF模型不仅具有较高的反演精度,而且适用性强,可用于无人机高光谱遥感平台提取高精度的冬小麦LAI信息。  相似文献   

5.
【目的】 研究基于PROSAIL模型监测天然草地的动态变化,掌握草地的质量与数量。【方法】 研究使用地物光谱仪连续3年在天山北坡中段的2个山地草原样区采集光谱数据和配套数据,基于PROSAIL模型进行冠层LAI的高光谱反演,重点研究应用不同代价函数、植被种类变化对反演精度的影响。【结果】 多数代价函数反演LAI的决定系数(R2)在0.54~0.55,均方根误差(RMSE)在0.23~0.25,归一化均方根误差(NRMSE)在17~19。在9个来自不同统计类型的代价函数中,常用的RMSE代价函数的反演精度相对不高。将获取的427个样方数据依据种类数分成组,然后用PROSAIL进行LAI反演。种类数越多,RMSE在增大,R2在减少,反演精度越差。但精度的下降幅度不是均匀的,种类数≤2的组和种类数≤3的组之间精度差异最大。【结论】 在利用物理模型反演天然草地的叶面积指数时,不同代价函数获得的反演精度差别比较大;随着植被种类数量的增多,反演的精度是下降的。  相似文献   

6.
[目的]通过将原始光谱数据经过不同的数据变换方式,分析其与枣冠层LAI的相关关系,建立基于高光谱的阿克苏市枣冠层LAI的估测模型,为快速、精确、无损伤、大范围的适时、动态监测植被LAI提供有效途径.[方法]基于原始光谱数据的不同数据变换方式,采用相关性分析和逐步回归分析方法.[结果]不同数据变换后的冠层光谱反射率与枣LAI具有较好的相关性,微分变换后的相关性较原始相关性有所提升.所建模型经过精度评价发现,原始光谱数据经倒数一阶微分变换后估测模型拟合度和预测精度都最高,一阶微分、对数一阶微分、归一化一阶微分次之.[结论]不同数据变换方式后的光谱数据与塔里木盆地枣LAI有显著的相关性,可以用微分、对数微分、归一化微分、倒数微分变换后的数据建立较理想的塔里木盆地枣LAI的估测模型.  相似文献   

7.
叶绿素是绿色植被进行光合作用的主要色素,是影响作物产量的重要因素之一,也是评价作物健康状况的重要生化指标。快速、准确、无损地监测作物叶片叶绿素含量,是实现作物长势和健康程度精准监测的关键。为提高作物叶绿素含量反演的精度,以冬小麦试验小区为基础,测量关中地区冬小麦叶片反射率及其对应的叶绿素含量。运用分数阶微分法计算0~2阶步长为0.1的分数阶光谱,通过灰色关联分析法提取出与叶绿素含量关联度大的特征,作为模型的输入参数。最终提取出0.6阶751、760 nm, 0.7阶744、751 nm, 0.8阶738、747 nm, 0.9阶738、750 nm, 1.0阶731、750 nm共10个与叶绿素含量关联度高的波段作为模型的特征波段。为解决BP神经网络(back propagation network)收敛速度慢、易陷入局部极小值的问题,使用遗传算法(genetic algorithm, GA)优化BP神经网络的权值和阈值,利用优化后的模型进行叶绿素含量的预测。结果表明,运用遗传算法优化BP神经网络模型反演精度较高,r2为0.952,均方根误差(RMSE)为3.64...  相似文献   

8.
冬小麦叶面积矫正系数及叶面积指数的研究   总被引:5,自引:0,他引:5  
以河北省目前生产上应用的四个冬小麦品种为对象,研究了冬小麦春生六叶片的叶面积矫正系数及群体叶面积指数的速测方法。结果表明:(1)r值与密度无关;(2)品种间r值无差异;(3)春生六片叶间r值差异显著,随着叶位升高r值变小,根据r值可将六片叶分为三组,  相似文献   

9.
为探究冠层图像分析技术在冬小麦长势监测中应用,6个施氮水平的田间试验条件下,在冬小麦拔节期采集冠层图像,并同步测定冬小麦叶面积指数和叶片SPAD值.通过图像分析软件计算了冬小麦冠层覆盖度及红、绿、蓝亮度值等10种色彩指数,分析了叶面积指数及叶片SPAD值与色彩指数和冠层覆盖度的相关性,利用逐步回归方法构建了叶面积指数及叶片SPAD值的估算模型.结果表明:冬小麦拔节期叶面积指数与冠层覆盖度及几个色彩指数呈极显著相关;叶片SPAD值与红光标准化值等几个色彩指数呈极显著相关;利用叶面积指数估算模型计算的预测值与实测值的线性回归方程的决定系数为0.771,相对均方根误差为25.181%;利用叶片SPAD值估算模型计算的预测值与实测值的线性回归方程的决定系数为0.644,相对均方根误差为6.734%.相关分析和估算模型验证结果表明,基于冠层图像分析的冬小麦拔节期叶面积指数和叶片SPAD值的监测是可行的.  相似文献   

10.
花生红边特征及其叶面积指数的高光谱估算模型   总被引:2,自引:3,他引:2  
选用大花生品种丰花1号作为试验材料,设置5个氮素水平的小区试验。在不同发育期同步测定花生冠层的光谱反射率及其叶面积指数,利用花生冠层的光谱反射率数据提取红边参数,分析其变化规律及花生叶面积指数与红边参数的相关性。估算结果表明:花生冠层红边一阶微分光谱呈“双峰”现象,红边位置位于707~724 nm之间,在花生生长旺盛期间出现“红边平台”,结荚期以后有明显的“蓝移”现象;叶面积指数与冠层光谱红边参数之间在结荚期-饱果初期显著相关,但开花期相关性不显著,利用结荚期-饱果期的红边参数可以估算花生的叶面积指数,最后建立了结荚期-饱果期和整个生育期的花生叶面积指数的估算模型。  相似文献   

11.
小麦叶层氮含量估测的最佳高光谱参数研究   总被引:9,自引:3,他引:9       下载免费PDF全文
 【目的】作物体内氮素状况是评价长势和预测产量的重要指标。小麦植株氮素营养的快速监测和无损诊断对于精确氮素管理具有重要作用。本文旨在通过对高光谱信息的精细分析和信息提取,探索建立小麦叶片氮含量(LNC,leaf nitrogen content)估算的最佳波段、光谱参数及监测模型。【方法】利用连续4年的系统观测资料,采用精细采样法,详细分析350~2 500 nm波段范围内原始光谱反射率及其一阶导数光谱的任意两两波段组合而成的主要高光谱指数与小麦冠层叶片氮含量的定量关系。【结果】发现小麦叶片氮含量的最佳波段为位于红边的690、691、700和711 nm以及近红外波段的1 350 nm;基于归一化光谱指数NDSI(R1350,R700)和NDSI(FD700,FD690)、比值光谱指数RSI(R700,R1350)和RSI(FD691,FD711)、土壤调节光谱指数SASI(R1350,R700)(L=0.09)和SASI(FD700,FD690)(L=-0.01)构建氮含量监测模型,决定系数(R2)分别为0.851和0.857、0.842和0.893、0.860和0.866。利用独立试验资料对模型检验的结果显示,模型测试的精度(R2)均大于0.758,RRMSE均小于0.266,尤其是高光谱参数RSI(FD691,FD711)和SASI(FD700,FD690)表现最好。【结论】总体上,利用精细采样法确定最佳波段,构建植被指数和氮含量监测模型,可显著提高模型的精确度和可靠性,从而为快速无损诊断小麦叶层的氮素状况提供新的波段选择和技术途径。  相似文献   

12.
    
Waterlogging is becoming an obvious constraint on food production due to the frequent occurrence of extremely high-level rainfall events. Leaf water content(LWC) is an important waterlogging indicator, and hyperspectral remote sensing provides a non-destructive, real-time and reliable method to determine LWC. Thus, based on a pot experiment, winter wheat was subjected to different gradients of waterlogging stress at the jointing stage. Leaf hyperspectral data and LWC were collected every 7 days after waterlogging treatment until the winter wheat was mature. Combined with methods such as vegetation index construction, correlation analysis, regression analysis, BP neural network(BPNN), etc., we found that the effect of waterlogging stress on LWC had the characteristics of hysteresis and all waterlogging stress led to the decrease of LWC. LWC decreased faster under severe stress than under slight stress, but the effect of long-term slight stress was greater than that of short-term severe stress. The sensitive spectral bands of LWC were located in the visible(VIS, 400–780 nm) and short-wave infrared(SWIR, 1 400–2 500 nm) regions. The BPNN Model with the original spectrum at 648 nm, the first derivative spectrum at 500 nm, the red edge position(λr), the new vegetation index RVI(437, 466), NDVI(437, 466) and NDVI′(747, 1 956) as independent variables was the best model for inverting the LWC of waterlogging in winter wheat(modeling set: R~2=0.889, RMSE=0.138; validation set: R~2=0.891, RMSE=0.518). These results have important theoretical significance and practical application value for the precise control of waterlogging stress.  相似文献   

13.
冬小麦生育期间叶片叶绿素含量的消长动态   总被引:3,自引:0,他引:3       下载免费PDF全文
对冬小麦各叶位叶片绿素含量进行的系统测定表明:各叶片的叶绿素含量均随叶片生长而提高,在功能期中维持较高含量并略有下降,开始衰亡后下降加速。冬前叶片叶绿素含量变化呈单峰曲线,并随叶位上升峰值有所降低。春生叶叶绿素含量高于冬前叶。春生低位叶叶绿素含量变化亦为单峰曲线,高位叶则为双峰或多峰曲线。全株平均叶绿素含量随生育期而变化,在挑旗和抽穗期出现两个高峰。文中还就叶绿素含量叶片其他生理指标的相互关系进行了分析。  相似文献   

14.
为进一步提高光谱数据反演小麦籽粒蛋白质含量的精度以及反演模型的可解释性,研究以籽粒蛋白质含量(GPC)-氮素-叶绿素之间的关系为载体,通过叶绿素筛选相关植被指数,采用偏最小二乘回归(PLS)方法建立GPC反演模型。结果表明,开花期是监测籽粒蛋白质含量的最优时期。开花期氮素与对应密度叶绿素的相关性较高。通过筛选出与叶绿素密切相关的植被指数,利用PLS建立籽粒蛋白质含量反演模型,模型决定系数R2为0.77,RMSE为0.95%,用其他年份数据进行模型验证,结果显示RMSE达到1.22%。本研究表明:基于氮素、叶绿素关系建立PLS反演模型能够实现不同年份GPC光谱遥感反演,且模型在年际间表现出较高的精度和稳定性。  相似文献   

15.
【目的】 氮素在作物生长发育、产量及品质形成中不可或缺的营养元素。高效、无损、精准地获取作物氮素盈亏状况,能够监测作物长势,提高氮肥施用水平和利用效率,降低施肥过量导致的农田面源污染。【方法】 文章对2020—2022年3年高光谱数据进行SG平滑、一阶导数预处理。将相关性分析(Correlation analysis,CA)与竞争性自适应重加权采样法(Competitive Adaptive Reweighted Sampling,CARS)相结合(CA-CARS),研究光谱一阶导数与植株氮浓度(Plant nitrogen concentration,PNC)的关系,明确拔节期不同氮素处理下的敏感性波段。最终筛选出最敏感波段构建植被指数,基于此建立冬小麦植株氮浓度一元线性监测模型。以2020年、2022年数据为训练集建模、2021年数据为验证集进行模型精度验证。【结果】 (1)综合3年拔节期不同氮水平下,冬小麦PNC高度敏感波段区位主要有:蓝绿波段(495 nm~503 nm)、红边范围(736 nm~750 nm)及近红外范围(751 nm~753 nm、751 nm~753 nm、761 nm~765 nm、773 nm~779 nm、922 nm、937 nm~938 nm、1 016 nm~1 032 nm、1 083 nm~1 088 nm、1 127 nm、1 142 nm~1 145 nm、1 292 nm~1 300 nm)。(2)CARS筛选出6个特征波段为459 nm、682 nm、721 nm、746 nm、1 049 nm、1 175 nm。(3)利用特征波段组建15个冠层比值氮指数(Canopy Ratio Nitrogen Index,CRNI),CRNI10的模型精度最高、均方根误差最小。其训练集验证集决定系数、均方根误差分别为R2=0.785、R2=0.679、RMSE=0.254和RMSE=0.332。说明该文构建的CRNI在PNC监测上更具泛化性。【结论】 通过CA-CARS结合的方式筛选出的特征参数所构建的PNC反演模型,能有效提升PNC监测模型的精度、迁移性及稳定性。  相似文献   

16.
基于新型植被指数的冬小麦LAI高光谱反演   总被引:7,自引:1,他引:7       下载免费PDF全文
【目的】本研究旨在分析冠层叶片水分含量对作物冠层光谱的影响,构建新型光谱指数来提高作物叶面积指数高光谱反演的精度。【方法】在冬小麦水肥交叉试验的支持下,分析不同筋性品种、施氮量、灌溉量处理下的冬小麦叶面积指数冠层光谱响应特征,并分析标准化差分红边指数(NDRE)、水分敏感指数(WI)与叶面积指数的相关性,据此构建一个新型的植被指数——红边抗水植被指数(red-edge resistance water vegetable index,RRWVI)。选取常用的植被指数作为参照,分析RRWVI对于冬小麦多个关键生育期叶面积指数的诊断能力,随机选取约2/3的实测样本建立基于各种植被指数的叶面积指数高光谱响应模型,未参与建模的样本用于评价模型精度。【结果】研究结果表明,随着生育期的推进,冬小麦的叶面积指数呈先增加后降低的变化趋势,不同的水肥处理对冬小麦叶面积指数具有较大影响。开花期之后冬小麦LAI显著下降,强筋小麦(藁优2018)在整个生育期叶面积指数均高于中筋小麦(济麦22);不同氮水平下冬小麦冠层光谱反射率在近红外波段(720—1 350 nm)随着施氮量的增加而增大,与氮肥梯度完全一致,其中2倍氮肥处理的近红外反射率达到最高;不同生育期下冬小麦冠层光谱反射率变化波形大体一致;各个关键生育期的NDRE和WI均存在较高的相关性,而NDRE与LAI的相关性明显优于WI,新构建的植被指数RRWVI与LAI的相关性均优于NDRE、WI;虽然8个常用的植被指数均与LAI存在显著相关,但RRWVI与LAI相关性达到最大,其拟合曲线的决定系数R2为0.86。【结论】通过分析各种指数所构建的冬小麦叶面积指数高光谱反演模型,新构建的RRWVI取得了比NDRE、NDVI等常用植被指数更为可靠的反演效果,说明本研究新构建的红边抗水植被指数可有效提高冬小麦叶面积指数的精度。  相似文献   

17.
基于多角度高光谱遥感的冬小麦叶片含水率估算模型   总被引:1,自引:0,他引:1  
准确的作物水分监测对于旱情评估具有重要意义。在分析研究区冬小麦多角度光谱特征后,利用不同水分处理下冬小麦实测叶片含水率和实测多角度光谱数据,基于植被光谱指数法,建立不同观测角度下冬小麦光谱植被指数、水分敏感波段光谱指数与叶片含水率之间的数学模型。结果显示,相对方位角与相对天顶角越小时,观测到的光谱指数与叶片含水率的相关关系越优;敏感波段组合构建的光谱指数中,1450nm波段分别与其他波段组合的NDSI、RSI指数与叶片含水率相关性在各观测角度条件下均较好,1 450 nm波段是冬小麦叶片含水率研究的最佳敏感波段;选取常见的4种植被指数(NDVI、EVI、WI和NDII)中WI和NDVI在各观测角度下与叶片含水率的相关性优于其他两种指数,决定系数R2均在0.83以上,P0.01呈极显著相关;综上建立的多角度光谱叶片含水率估算模型,平均相对误差MRE均小于0.154、均方根误差RMSE均小于0.098,拟合效果较好,尤其是光谱指数NDSI1160,1450、NDSI980,1450和植被指数NDVI、WI;基于以上4种指数建立的最优观测角度(0°,30°)模型,其中植被指数WI的估算效果最好,相关系数在各角度均达到5%的相关显著水平,MRE0.03,可作为最优观测角度反演研究的最优植被指数。  相似文献   

18.
【目的】面向现代农业生产和管理的数据需求,基于ACRM 冠层反射率模型,探索适于冬小麦叶面积指数(LAI)和叶片叶绿素含量(LCC)反演的波段选择方案。【方法】文章考虑高光谱数据降维和CR 模型模拟误差,选出覆盖蓝、绿、红与近红外的5 个波段(波段选择方案B1),开展LAI 与LCC 同步反演。然后分别选择LAI 和LCC 的敏感波段,开展对应参数的反演试验。【结果】(1)基于B1,能够在多数田块实现较为准确的LAI 与LCC 同步反演(LAI 反演值与实测值间决定系数(R2)为0.860 4,均方根误差(RMSE)为0.963;LCC 反演的R2 为0.814 1,RMSE 为0.069)。(2)仅利用LAI 或LCC 敏感波段反演结果的R2与RMSE 同时略有升高,但与基于B1 的反演结果相比,无明显差异。【结论】通过该研究与利用相同数据的前期研究对比发现,旨在高光谱数据降维与限制CR 模型模拟误差的波段选择,对LAI 反演精度改进作用较为显著。相较而言,仅选用单一目标参数(LAI 或LCC)的敏感波段,对反演精度改进并不明显。由此,一方面证实了常规反演方法与面向对象反演法不强调选用单一目标参数敏感波段的合理性;另一方面,并不否定多阶段目标决策(MSDT)反演法以及一些相关研究提出的,仅采用单一目标参数敏感波段来开展反演的合理性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号