首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 156 毫秒
1.
近年来,随着高通量单核苷酸芯片和基因分型技术的不断发展,利用全基因组关联分析猪的性状成为可能。全基因组关联分析是一种新兴的遗传分析方法,能有效进行复杂疾病和性状的研究。国内外相关研究人员针对猪性状进行全基因组关联分析,积累了大量的单核苷酸多态性(SNP)标记、候选基因以及数量性状位点,为猪分子育种提供基础。该文主要对全基因组关联分析的基本原理、分析方法以及对猪性状的研究进展进行综述。  相似文献   

2.
<正>近日,从中国农业科学院北京畜牧兽医研究所猪遗传育种科技创新团队传来消息,该团队通过对猪全基因拷贝数变异进行扫描,获得了多个与猪肉品质性状显着相关的基因拷贝数变异。在猪全基因组范围内进行肉质性状关联研究在国际上尚属首例。研究表明,作为基因组覆盖范围最广的变异之一,拷贝数变异对  相似文献   

3.
高通量测序技术是研究物种复杂生物性状遗传机制的基础,随着高通量测序技术的不断优化提升,一些与生物表型性状密切相关的基因组变异被精准地挖掘出来,其中包括单核苷酸多态位点(SNP)、小片段的插入或缺失(Indel)、拷贝数变异(CNV)以及结构变异(SV)为代表的分子标记。与传统遗传标记相比较,分子遗传标记具有多态性高、遍布整个基因组、检测手段简单快捷以及成本低廉的特点。通过检测覆盖全基因组范围内的分子标记,利用基因组水平的遗传信息对个体或群体遗传资源进行评估,能够缩短世代间隔、提高选种的准确性,进而在短期内取得较大的遗传进展。作者从高通量测序技术挖掘分子遗传标记角度入手,综述了三代测序技术发展历程和应用领域以及三代分子遗传标记检测技术在蛋鸡种业创新中的应用,并详细阐述了高通量测序技术与分子遗传标记相结合在蛋鸡群体遗传多样性及进化分类、群体遗传图谱的构建和功能基因定位、数量性状形成的遗传机制解析和质量性状形成的遗传机制解析等4个方面的精准应用,以期为蛋鸡基因组选择进入实质应用阶段提供科学依据和指导。  相似文献   

4.
全基因组关联分析(genome-wide association studies, GWAS)是一种利用大规模群体的DNA样本进行全基因组高密度基因型分型,探究与目标性状相关联的遗传变异的研究方法。GWAS在揭示猪重要经济性状的变异规律和推动基因组选择在猪育种中的实际应用等方面有着重要作用。本综述主要围绕GWAS的基本原理、GWAS的分析方法、GWAS在猪育种方面取得研究进展和其未来展望进行综述,以期为利用GWAS进行猪重要经济性状遗传基础的研究提供参考。  相似文献   

5.
叶雯  孙东晓  韩博 《中国畜牧兽医》2023,(10):4125-4132
全基因组重测序(whole genome resequencing, WGRS)是对已知参考基因组序列的物种进行不同个体间的全基因组水平的测序,具有检测变异类型丰富、高性价比、应用广泛等优点。随着测序成本的降低和畜禽基因组测序工作的完成,全基因组重测序技术已成为畜禽遗传变异研究的重要工具。全基因组重测序技术可获得大量基因变异信息,包括单核苷酸多态性(single nucleotide polymorphism, SNP)、插入缺失(insertion/deletion, InDel)、结构变异(structural variation, SV)和拷贝数变异(copy number variation, CNV)等,丰富了现有的基因组序列,形成的大量数据集为探索畜禽表型性状和遗传改良提供了一个基因组信息库,以促进对畜禽遗传资源的深入研究与利用。作者概述了全基因组重测序技术及其关键影响因素(测序深度、序列比对和变异检测),重点综述了该技术在重要畜禽(牛、羊、猪、鸡)研究领域的应用进展,并对将来侧重于整合分析重测序数据、精准表型记录和多组学信息的研究趋势进行了展望。  相似文献   

6.
拷贝数变异(Copy number variation,CNV)作为基因组结构变异(Structural variation,SV)的重要组成部分,在物种表型变异、疾病易感性评估、物种演化等方面起着重要作用。目前,高通量、高分辨率的全基因组CNV研究已广泛应用到各种家畜中,并成为全基因组关联性分析(Genome-wide association analysis,GWAS)研究复杂性状的重要分子标记。此外,CNV还为群体遗传结构分析提供新的视角。因此,本文从定义、形成机制、分布特点、检测方法、遗传效应和牛Y染色体CNV等方面对牛全基因组CNV研究进行了较为全面的介绍与阐述,提出全基因组CNV研究所面临的一些问题,并对发展前景做了简单展望,以期为今后牛全基因组CNV的研究提供指导信息。  相似文献   

7.
拷贝数变异(Copy number variation,CNV)是基因组结构变异(Structural variation,SV)的重要组成部分,主要指大小从1 kb到数Mb的DNA片段拷贝数改变,表现为亚显微水平的缺失和重复。有人先后应用不同的方法构建了畜禽的全基因组CNV图谱,并发现与色素沉积、表型性状和疾病相关的CNVs。为了更清楚地了解CNV这种结构变异,文章对近几年畜禽的CNV研究进行了较为全面的分析与阐述,结果表明:CNV分布有一定的保守性,其覆盖的序列约占基因组的30%,可用于畜禽基因组结构特征研究。  相似文献   

8.
旨在利用全基因组拷贝数变异区域(copy number variation regions, CNVRs)关联分析以及全基因组数量性状基因座(quantitative trait locus, QTLs)定位联合筛选出影响猪体高性状的候选基因。本研究利用快速检测基因组拷贝数变异软件CNVcaller对本实验室构建的大白×民猪F2代资源群体的重测序数据进行拷贝数变异检测。利用混合线性模型(mixed-linear model, MLM)将性别和胎次作为固定效应对体高性状进行拷贝数变异全基因组关联分析(CNVR-GWAS)。采用软件R/qtl进行QTL分析,并使用置换检验(permutation test, PT)进行检验。将CNVR-GWAS与QTL结果进行联合注释,结合GO富集和KEGG通路分析,对影响猪体高的位点和基因进行挖掘。利用实时荧光定量PCR(qPCR)方法验证候选基因。结果表明,本群体在全基因组范围内共有3 099个CNVRs,其中有两个CNVRs与体高性状在全基因组范围内显著相关,分别位于7号染色体的25 358 001~26 696 400 bp处(CNVR1)和54 087 201~54 090 000 bp处(CNVR2)。在混合线性模型分析的结果中发现,CNVR1拷贝数增加(P0.01)和CNVR2拷贝数缺失(P0.01)对猪的体高性状具有显著影响。基因组显著水平可找到2个显著影响猪体高的QTLs,分别为BH-1和BH-2,其中BH-2对体高性状的影响较大。CNVR1和BH-2重叠区存在1个嗅觉受体基因OR12D3和18个未被注释的基因。qPCR验证OR12D3的拷贝数变异与利用混合线性模型统计推断出的结果一致。初步推测,OR12D3基因的拷贝数变异可能与猪体高性状相关。  相似文献   

9.
旨在利用全基因组拷贝数变异区域(copy number variation regions,CNVRs)关联分析以及全基因组数量性状基因座(quantitative trait locus,QTLs)定位联合筛选出影响猪体高性状的候选基因。本研究利用快速检测基因组拷贝数变异软件CNVcaller对本实验室构建的大白×民猪F2代资源群体的重测序数据进行拷贝数变异检测。利用混合线性模型(mixed-linear model,MLM)将性别和胎次作为固定效应对体高性状进行拷贝数变异全基因组关联分析(CNVR-GWAS)。采用软件R/qtl进行QTL分析,并使用置换检验(permutation test,PT)进行检验。将CNVR-GWAS与QTL结果进行联合注释,结合GO富集和KEGG通路分析,对影响猪体高的位点和基因进行挖掘。利用实时荧光定量PCR(qPCR)方法验证候选基因。结果表明,本群体在全基因组范围内共有3 099个CNVRs,其中有两个CNVRs与体高性状在全基因组范围内显著相关,分别位于7号染色体的25 358 001~26 696 400 bp处(CNVR1)和54 087 201~54 090 000 bp处(CNVR2)。在混合线性模型分析的结果中发现,CNVR1拷贝数增加(P<0.01)和CNVR2拷贝数缺失(P<0.01)对猪的体高性状具有显著影响。基因组显著水平可找到2个显著影响猪体高的QTLs,分别为BH-1和BH-2,其中BH-2对体高性状的影响较大。CNVR1和BH-2重叠区存在1个嗅觉受体基因OR12D3和18个未被注释的基因。qPCR验证OR12D3的拷贝数变异与利用混合线性模型统计推断出的结果一致。初步推测,OR12D3基因的拷贝数变异可能与猪体高性状相关。  相似文献   

10.
基于香猪全基因组重测序数据,在白细胞表面抗原CD53基因中筛选到一个结构变异(structure variant,SV)184,为了探索不同猪品种间此结构变异是否存在多态性变化,本试验选择香猪、大白猪、糯谷猪、柯乐猪、江口萝卜猪和荣昌猪作为试验动物,采用PCR方法对猪群中SV184的分布频率进行比较研究,应用RT-PCR技术,分析CD53基因的原初转录本序列结构,研究SV184对CD53基因的转录是否有直接影响。结果显示,6个猪品种中SV184的分布频率存在明显差异,香猪以VN基因型为主,其他5个猪品种是NN基因型占优势;计算两种等位基因的频率,香猪以缺失的V等位基因为主,其他5个猪品种以正常的N等位基因为主。选择3种基因型个体的血液样本,逆转录后分析CD53基因的原初转录本的序列,从中检测到缺失型和不缺失的两种转录本形式,提示SV184对CD53基因的转录无直接影响。SV184可作为分子标记用于区分香猪和其他猪品种。  相似文献   

11.
12.
识别野生动物群体内潜在影响动物表型变异的相关基因是进化遗传学研究的主要目的,而动物毛色是研究动物被毛表型形成遗传机制的最佳模型之一。应用Illumina公司提供的猪60 k SNP基因芯片对选取的62只不同被毛表型的野猪个体进行基因分型,利用SNP分析结果,通过对照全基因组关联分析(GWAS)识别影响野猪被毛表型差异的相关变异。结果表明,识别了6个与野猪被毛表型相关的基因组变异区域,分别位于SSC1(ALGA0001794,ASGA0006416)、SSC2(ASGA0011559)、SSC6(H3GA0018683)、SSC7(ASGA0035535)和SSC14(ASGA0060641);最显著相关的SNP(ALGA0001794)位于猪1号染色体上(SSC1)的27 899 596-27 899 696 bp区间(P=2.96×10-(-5))。该研究初步鉴定了6个与野猪毛色性状相关的易感位点,为进一步研究野猪不同毛色性状的形成机制提供了基础。  相似文献   

13.
Copy number variation (CNV) is an important source of genetic variability in human or animal genomes and play key roles in phenotypic diversity and disease susceptibility. In the present study, we performed a genome-wide analysis for CNV detection using SNP genotyping data of 857 Large White pigs. A total of 312 CNV regions (CNVRs) were detected with the PennCNV algorithm, which covered 57.76 Mb of the pig genome and correspond to 2.36% of the genome sequence. The length of the CNVRs on autosomes ranged from 1.77 Kb to 1.76 Mb with an average of 185.11 Kb. Of these, 220 completely or partially overlapped with 1,092 annotated genes, which enriched a wide variety of biological processes. Comparisons with previously reported pig CNVR revealed 92 (29.49%) novel CNVRs. Experimentally, 80% of CNVRs selected randomly were validated by quantitative PCR (qPCR). We also performed an association analysis between some of the CNVRs and reproductive traits, with results demonstrating the potential importance of CNVR61 and CNVR283 associated with litter sizes. Notably, the GPER1 gene located in CNVR61 plays a key role in reproduction. Our study is an important complement to the CNV map in the pig genome and provides valuable information for investigating the association between genomic variation and economic traits.  相似文献   

14.
为探究WIF1(Wnt inhibitory factor 1)基因中WIF1-I8-sv889结构变异位点变异与皱皮香猪躯干被毛形成的关系,本试验采用冰冻组织切片观察皱皮香猪皮肤毛囊的组织学形态,采用PCR方法分析WIF1-I8-sv889位点在猪群中的分布频率,并通过在线软件UCSC、RegRNA 2.0对结构变异序列所含的功能元件进行分析。组织学研究显示,与正常香猪和大白猪皮肤相比,皱皮香猪毛囊毛根鞘伸入真皮层,形成棘突,且皱褶凹陷处毛囊聚集,相反皱褶凸起处毛囊较少;皱皮香猪皮肤毛囊中的毛球宽度显著增大(P<0.05),单个毛囊中的毛干数极显著增多(P<0.01)。在WIF1-I8-sv889结构变异断点两端设计特异性引物,扩增片段长1383 bp,与参考基因组比,1383 bp中889 bp为结构变异区间,缺失581 bp,倒置308 bp。群体分布结果显示,猪群中WIF1-I8-sv889位点呈现出丰富的多态性,检测到3种基因型:正常的Ⅱ型、杂合的DI型和缺失的DD型,皱皮香猪中未检测到Ⅱ型;与正常香猪和大白猪相比,皱皮香猪中D等位基因占优势(94.44%);经卡方检验,皱皮香猪D等位基因显著或极显著高于正常香猪和大白猪(P<0.05;P<0.01)。结果提示,WIF1基因中的WIF1-I8-sv889结构变异可能与皱皮香猪毛囊的形态发生有关。  相似文献   

15.
To explore the influence of Gaopo pig myostatin (MSTN) gene polymorphism on meat quanlity traits (moisture,crude fat,crude protein,crude ash, loin muscle area, marbling score, pH value, color of meat,tenderness,drip loss, water loss rate), MSTN gene was chosen as a candidate gene for research meat quality traits in this study. 50 Gaopo pigs at 10 months old were selected,the single nucleotide polymorphism (SNP) of three exons of MSTN gene in Gaopo pig were detected by direct sequencing of PCR amplification products, and the correlation between MSTN gene SNP and meat quality traits was analyzed using SPSS 20.0 software. The results showed that a C/T mutation had been found at 63 bp of MSTN gene exon 3,the site was silent mutation, and did not caused changes of encoding amino acid. Genotype analysis showed only three samples had mutations in the site, CC genotype was the dominant type and allele C was the dominant gene, but there was no TT homozygous genotype. The test of Hardy-Weinberg equilibrium showed the research group obeyed the genetic equilibrium (P>0.05). Population genetic parameter analysis showed the heterozygosity (He) of C63T was lower, and had a low variation in Gaopo pig population. Polymorphism information content (PIC) analysis showed that it was a low polymorphic loci (PIC<0.25), and the site could provide a little genetic imformation. There was no significant difference between the different genotypes and meat quality traits (P>0.05).Given the above, the polymorphism of MSTNgene exon was found in Gaopo pig, with less variation and relatively conservative.It's needed to expand the number of sample for further explore whether the site could be considered as genetic markers for meat quality traits of Gaopo pig or not.  相似文献   

16.
为了探讨肌肉生长抑制素(myostatin,MSTN)基因的多态性对高坡猪肉质性状(水分、粗脂肪、粗蛋白质、粗灰分、眼肌面积、大理石纹、pH、肉色、嫩度、滴水损失、失水率)的影响,试验以MSTN基因作为肉质性状候选基因,以10月龄的50头高坡猪为研究对象,采用PCR扩增产物直接测序的方法对高坡猪MSTN基因3个外显子的单核苷酸多态性(SNP)进行研究,运用SPSS 20.0软件分析MSTN基因SNP与肉质性状的关联性。结果表明,仅在高坡猪MSTN基因第3外显子63 bp处检测到1个C/T突变位点,该突变为同义突变,未引起编码氨基酸的改变。基因型分析发现,仅有3个个体在该位点发生突变,CC基因型为优势基因型,C为优势等位基因,无TT纯合基因型。经χ2适合性检验分析,该SNP在研究群体中处于Hardy-Weinberg平衡状态(P>0.05)。群体遗传参数分析发现,C63T标记位点的杂合度(He)相对较低,表明其在高坡猪群体中的变异较小;就多态信息含量(PIC)而言,该位点属于低度多态(PIC<0.25),说明该遗传标记能够提供少量的遗传信息。将该位点的不同基因型与肉质性状指标进行关联分析表明,所有肉质性状指标在不同基因型间差异均不显著(P>0.05)。综上所述,MSTN基因外显子在高坡猪中存在多态性,但变异较少,相对保守,能否作为高坡猪肉质性状的遗传标记有待于扩大样本数量进一步研究。  相似文献   

17.
The average daily gain (ADG) and body weight (BW) are very important traits for breeding programs and for the meat production industry, which have attracted many researchers to delineate the genetic architecture behind these traits. In the present study, single‐ and multi‐trait genome‐wide association studies (GWAS) were performed between imputed whole‐genome sequence data and the traits of the ADG and BW at different stages in a large‐scale White Duroc × Erhualian F2 population. A bioinformatics annotation analysis was used to assist in the identification of candidate genes that are associated with these traits. Five and seven genome‐wide significant quantitative trait loci (QTLs) were identified by single‐ and multi‐trait GWAS, respectively. Furthermore, more than 40 genome‐wide suggestive loci were detected. On the basis of the whole‐genome sequence association study and the bioinformatics analysis, NDUFAF6, TNS1 and HMGA1 stood out as the strongest candidate genes. The presented single‐ and multi‐trait GWAS analysis using imputed whole‐genome sequence data identified several novel QTLs for pig growth‐related traits. Integrating the GWAS with bioinformatics analysis can facilitate the more accurate identification of candidate genes. Higher imputation accuracy, time‐saving algorithms, improved models and comprehensive databases will accelerate the identification of causal genes or mutations, which will contribute to genomic selection and pig breeding in the future.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号