首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 93 毫秒
1.
不同水分和施氮量对催吐萝芙木光合特性和生长的影响   总被引:3,自引:0,他引:3  
在西双版纳干季, 田间试验探讨了水分胁迫下施氮量[不施氮、低量施氮(1.25 g·株-1)、高量施氮(3.75 g·株-1)]对两年生催吐萝芙木(Rauvolfia vomitoria Afzel.)生长和光合的影响。结果表明: 水分胁迫显著降低了催吐萝芙木叶片相对含水量(LRWC), 但LRWC仍在85%以上, 属于低度水分胁迫, 其最大净光合速率、气孔导度、比叶面积、茎重比以及株高、基径和生物量的相对生长速率均较无水分胁迫时低。水分胁迫下, 低量施氮可使最大净光合速率、蒸腾速率、根重比升高, 使株高、基径和生物量的相对生长速率增加, 从而明显增加最终根产量; 而高量施氮则会增加幼树对干旱的敏感性, 加重干旱对催吐萝芙木光合和生长的抑制作用。水分与施氮量交互作用对催吐萝芙木叶片相对含水量、最大净光合速率、水分利用效率、比叶面积和根重比的影响显著, 表明施氮量对其影响视水分胁迫状况而不同。因此, 为获得催吐萝芙木最大根产量, 应在干季收获期前少量施用氮肥。  相似文献   

2.
不同水分状况下施氮对夏玉米水分利用效率的影响   总被引:10,自引:3,他引:10  
通过盆栽试验采用五因素五水平通用旋转组合设计(1/2实施)方案,研究了不同水分状况下氮肥的用量和施用时期对夏玉米水分利用效率的影响。结果表明,施氮对夏玉米水分利用效率的影响大于土壤含水量,但子粒产量和生物产量水分利用率(WUE子粒和WUE生物)对施氮时期的要求不尽相同,苗期和灌浆期施氮对WUE子粒的影响较显著,而苗期和拔节期施氮对WUE生物的影响则更显著。从单因素效应看,并非施氮量和土壤含水量越高越好。水氮高效配合的关键期是拔节期,且存在阈值反应,其阈值是N0.2g/kg,土壤含水量为21%。低于阈值水平,水氮交互作用不明显,高于阈值水平,水氮互作效应显著。  相似文献   

3.
种植方式和施氮量对冬油菜产量与水氮利用效率的影响   总被引:2,自引:5,他引:2  
为确定中国西北地区冬油菜适宜的种植方式及其施氮量,该文通过3 a田间试验,在垄沟集雨(ridge film mulching and furrow planting,RFMF)和传统平作(flat planting,FP)2种种植方式下设置6个施氮量:0、60、120、180、240和300 kg/hm~2(以N计,下同),分别记为N0、N60、N120、N180、N240和N300,研究不同种植方式和施氮量对冬油菜产量和水氮利用效率的影响。结果表明,与FP相比,RFMF能显著提高冬油菜收获时的地上部干物质量(aboveground dry matter,ADM)、氮素累积吸收量、籽粒产量、水分利用效率(water use efficiency,WUE)和氮肥偏生产力(nitrogen partial factor productivity,NPFP),并显著降低其耗水量(evapotranspiration,ET)。相同ET下,RFMF方式下冬油菜的籽粒产量和WUE均高于FP。RFMF方式下,在0~240 kg/hm~2施氮范围内,冬油菜的ADM、氮素累积吸收量、籽粒产量和WUE均随施氮量的增加而显著增加,超过240 kg/hm~2,ADM和氮素累积吸收量不再显著变化,而ET显著增加,籽粒产量和WUE显著降低。2种种植方式下,冬油菜的氮肥农学利用率(nitrogen agronomic efficiency,NAE)、生理利用率(nitrogen physiological efficiency,NPE)和吸收利用率(nitrogen recovery efficiency,NRE)均随施氮量的增加,先增后降,且基本在N180处理最大;冬油菜的NPFP随施氮量的增加而降低。RFMF方式下,N240处理冬油菜的NAE、NPE、NRE和NPFP与N180处理无显著差异;且N240处理冬油菜的籽粒产量和净效益最高,3a平均为3 002 kg/hm~2和9 538元/hm~2;FP方式下,N180处理冬油菜的籽粒产量和净效益最高,3 a平均为2 291 kg/hm~2和7 498元/hm~2;2种种植方式的最高产量和净效益相比,RFMF可分别提高31.0%和27.2%。综上,在西北地区RFMF可应用于冬油菜的栽培,且适宜施氮量为240 kg/hm~2。  相似文献   

4.
【目的】氮是限制作物光合作用的重要因子,除含量之外,氮在光合器官各组分间的分配可能也是影响光合作用的重要因素。本研究从叶片尺度探究冬油菜苗期氮素在光合器官中的分配,分析不同氮水平下光合氮素利用特征及其与光合氮利用效率的关系,以揭示氮素营养影响光合氮利用效率的机制。【方法】采用田间试验,设3个施氮水平(0、 180、 360 kg/hm2,分别以N0、 N180、 N360表示),在苗期测定最新完全展开的叶净光合速率(Pn)、 氮含量、 光合氮利用效率(PNUE)以及最大羧化速率(Vc max)、 最大电子传递速率(Jmax)等相关生理、 光合参数,并计算叶片氮素在光合器官(羧化系统、 生物力能学组分和捕光系统)的分配比例。【结果】施氮明显改善冬油菜苗期的生长,显著增加了叶片数、 叶面积和叶片干重,但单位叶面积干重低于不施氮处理。与N0相比,N180和N360处理的冬油菜最新完全展开叶的氮含量和Pn显著升高,其中叶片氮含量分别增加了155.0%、 157.3%,Pn则增加57.6%、 56.1%,N180与N360处理间无显著差异; 而PNUE随施氮水平的提高而降低,与N0相比,N180和N360处理分别下降了35.6%和39.6%。施氮提高了冬油菜苗期叶片的光合能力,N180和N360处理的最大净光合速率(Pn max)、 羧化效率(CE)、 最大羧化速率(Vc max)及最大电子传递速率(Jmax)显著高于N0处理。氮肥用量同样影响氮素在光合器官中的分配,与N0相比,N180和N360处理的氮素在叶片光合器官投入的比例显著降低,降低幅度分别为29.3%、 34.5%; 其分配比例在羧化系统(PC)、 生物力能学组分(PB)及捕光系统(PL)分别降低了24.1%、 23.3%、 34.6%和31.0%、 26.7%、 38.5%。相关分析表明,叶片中羧化和生物力能学组分及光合组分氮的分配比例与PNUE均呈显著正相关关系,而与非光合组分氮分配比例呈显著负相关关系。【结论】随施氮量的升高,油菜苗期光合氮利用效率呈下降趋势。氮素在光合器官(羧化系统、 生物力能学组分和捕光系统)分配的差异是影响冬油菜苗期叶片光合氮利用效率的重要原因。在保证苗期适宜氮素供应的情况下,通过协调氮素在光合器官的分配对进一步提高作物光合氮素利用效率具有重要意义。  相似文献   

5.
施氮对杂交谷子产量与光合特性及水分利用效率的影响   总被引:9,自引:0,他引:9  
【目的】随着杂交谷子高产特性的凸显和栽培技术研究的不断深入,确立高产条件下的合理施肥方案具有重要现实意义。本文设定了不同氮素水平,研究施氮量对谷子生物量、产量、光合特性及水分利用效率(WUE)的影响,以确定杂交谷子高产的合理施氮方案。【方法】以张杂5号谷子为对象,采用田间小区试验,设施氮量0、 100、 200、 300(分3次施)、300(分2次施)、400 kg/hm2 共6个氮素水平(N0~N5处理),通过测定杂交谷子籽粒产量、生物量、农田耗水量和光合特性,分析施氮与杂交谷子产量、光合特性及水分利用效率(WUE)之间的关系。【结果】谷子产量、光合特性及WUE与施氮水平密切相关。不同施氮处理谷子生物量比对照N0处理增加了26.33%~87.21%,处理间差异显著。谷子籽粒产量以N3(300 kg/hm2,分3次施)和 N5(400 kg/hm2)处理较高,分别为8202 kg/hm2和8537 kg/hm2,两处理间差异不显著。各生育阶段谷子的耗水特征变化趋势不同。生育前期耗水变化不明显,拔节-抽穗期谷子农田耗水量以N0处理日均耗水量最大;在生育后期N0处理耗水量最小,N3 耗水量最大。全生育期谷子总耗水量处理间差异较小,以N1(100 kg/hm2)处理总耗水量最大。杂交谷子叶片的净光合速率、蒸腾速率和气孔导度均以N0处理最小,N3处理为最大。籽粒水分利用效率、生物水分利用效率及单叶水分利用效率均以N3处理为最高。本试验条件下,施氮量为400 kg/hm2 时,虽获得了最高产量,但与施用N 300 kg/hm2 差异不显著,且水分利用效率较低,说明高量施氮的增产效果不明显。【结论】氮素的合理使用协调了水氮关系,提高了水分利用效率。同时,施氮还提高了杂交谷子的净光合速率、蒸腾速率和气孔导度。施氮量相同,但施肥时期不同,产量和WUE也差异显著。谷子生育前期大量施肥降低了营养物质向籽粒的转移,产量较低。因此,推荐施氮 300 kg/hm2(分3次施)作为本地区杂交谷子高产高效的合理施氮量。  相似文献   

6.
采用室内营养液培养及聚乙二醇(PEG6000)模拟水分胁迫处理的方法,在3种供氮形态(NH /NOr 比为100/0,50/50和0/100)和2种水分条件(非水分胁迫及水分胁迫)下,研究了水稻苗期一分蘖期的生长及其水分利用效率。结果表明,苗期一分蘖期水稻在非水分胁迫条件下,NH4+/NOf 比为50/50处理(NH 、NOf混合处理)的生物量最大,比单一供NH4+一N和单一供N 一N的处理分别高49.63% 和63.25% 。而在水分胁迫条件下,单一供 NH4+一N的处理生物量最大,比NH4+、NOr混合处理和单一供N昕一N的处理分别高5.76%和484.0% ;单一供NH —N其水分利用效率也最高,比N 、NO; 混合处理和单一供NO;一N的处理分别高11.36% 和81.63% ,而比非水分胁迫条件下的相应处理高12.39%。此外,单一供NH —N较单一供N 一N的处理水稻有较强的抗旱性,主要与其能保持相对较高的叶绿素含量、叶面积、分蘖数和净光合速率有关。  相似文献   

7.
夏玉米水分胁迫效应的试验研究   总被引:10,自引:3,他引:10  
利用光合测定系统对夏玉米灌浆前期叶片水汽交换的参数进行了系统测定,得出叶片净光合速率、蒸腾速率、叶片温度、气孔导度与水分利用效率的关系.结果表明,3种水分处理的净光合速率、蒸腾速率和水分利用效率都有大体一致的日变化过程,但又体现了不同水分处理的差异性.胁迫处理的水分利用效率大于湿润处理和干旱处理.水分利用效率与净光合速率、蒸腾速率的关系有很大的相似性,当净光合速率<20μmol/m2@s时,水分利用效率基本无变化,当20μmol/m2@s<净光合速率<26μmol/m2@s时,水分利用效率增长最快;当蒸腾速率<5mmol/m2@s时,水分利用效率变化不大,在5mmol/m2@s<蒸腾速率<7mmol/m2@s时,水分利用效率增长最快;当净光合速率>26μmol/m2@s和蒸腾速率>75mmol/m2@s时,水分利用效率均呈现下降趋势.水分利用效率对叶片温度有很强的敏感性,在40℃<叶片温度<42℃时,水分利用效率迅速增加.随气孔导度的增大,水分利用效率呈上升趋势,在140mmol/m2@s<气孔导度<200mmol/m2@s时,水分利用效率上升最快,气孔导度再增大时,水分利用效率趋于稳定甚或下降.  相似文献   

8.
采用室内营养液培养及聚乙二醇(PEG6000)模拟水分胁迫处理的方法,在3种供氮形态(NH4+/NO3-比为100/0,50/50和0/100)和2种水分条件(非水分胁迫及水分胁迫)下,研究了水稻苗期—分蘖期的生长及其水分利用效率。结果表明,苗期—分蘖期水稻在非水分胁迫条件下,NH4+/NO3-比为50/50处理(NH4+、NO3-混合处理)的生物量最大,比单一供NH4+-N和单一供NO3--N的处理分别高49.63%和63.25%。而在水分胁迫条件下,单一供NH4+-N的处理生物量最大,比NH4+、NO3-混合处理和单一供NO3--N的处理分别高5.76%和484.0%;单一供NH4+-N其水分利用效率也最高,比NH4+、NO3-混合处理和单一供NO3--N的处理分别高11.36%和81.63%,而比非水分胁迫条件下的相应处理高12.39%。此外,单一供NH4+-N较单一供NO3--N的处理水稻有较强的抗旱性,主要与其能保持相对较高的叶绿素含量、叶面积、分蘖数和净光合速率有关。  相似文献   

9.
水分胁迫下氮、钾对不同基因型夏玉米氮代谢的影响   总被引:3,自引:0,他引:3  
采用盆栽试验研究了水分胁迫和适量供水条件下,氮、钾对2种基因型夏玉米陕单9号(抗旱品种)和陕单911(不抗旱品种)各生育期体内硝酸还原酶活性、脯氨酸、甜菜碱和可溶性蛋白质积累的影响,旨在从氮代谢方面揭示这些因子的抗旱机理。试验结果表明,水分胁迫下,硝酸还原酶活性显著降低,不抗旱品种降低更甚;脯氨酸、甜菜碱和可溶性蛋白质有不同程度累积,抗旱品种含量和变幅大于不抗旱品种。2品种苗期对水分胁迫响应较弱,脯氨酸、甜菜碱和可溶性蛋白质含量低;拔节和抽雄期响应强烈,这些化合物含量增高,其中甜菜碱含量达到高峰时间比脯氨酸晚。水分胁迫下,施用氮肥能显著提高硝酸还原酶活性及脯氨酸、甜菜碱和可溶性蛋白质含量,改善氮代谢。不抗旱品种2种氮肥用量的效果有显著差异;抗旱品种在低氮用量时效果显著,低、高氮肥用量间无显著区别。适量供水下,氮肥作用明显下降,表明氮肥不仅在于供应养分,而且还能通过改善氮代谢而增强作物的抗旱性能。钾肥对受水分胁迫的夏玉米表现出比氮肥更突出的效果,而在适量供水时效果消失,表明在作物受旱条件下,显著改善作物氮代谢是钾增强作物抗旱性的主要机理之一。  相似文献   

10.
【目的】探究不同施氮量对玉米穗期高温胁迫下光合生理及产量的影响,为合理施氮实现玉米抗逆稳产提供理论依据。【方法】2020—2021年开展人工模拟高温田间试验。以耐热型品种郑单958 (Zhengdan 958)和热敏感型品种先玉335 (Xianyu 335)为材料;设置3个施氮量,分别为低氮(N 90 kg/hm2,N90)、中氮(N180 kg/hm2,N180)和高氮(N 270 kg/hm2,N270)。在玉米第11片叶展开期至抽雄期进行高温处理(HT),分别持续12天(2020年)和9天(2021年),以田间自然生长的植株为对照(CK),处理期间高温和对照的日最高温度均值分别为41.9℃、35.9℃(2020年)和40.8℃、37.7℃(2021年),昼夜温差均值分别为19.3℃、13.0℃(2020年)和18.1℃、14.8℃(2021年),调查两个品种穗位叶的光合色素含量、光合参数、叶绿素荧光参数、光合酶活性、籽粒产量及产量构成因素,分析温度、品种和施氮量三者之间的互作效应。【结果】1)高温胁迫提高了两个玉米品种穗位叶的磷酸烯醇式丙酮酸羧化酶(PEPCase)和核酮糖-1...  相似文献   

11.
肥料运筹方式对冬油菜生长及产量的影响   总被引:4,自引:0,他引:4  
以湘杂油763为供试材料,研究了不同肥料运筹方式对冬油菜产量和部分农艺性状的影响。结果表明:氮肥运筹方式对油菜生长的影响较大,以基肥:苗肥:薹肥 = 5:2:3处理的籽粒产量最高,其次是基肥:苗肥:薹肥 = 6:2:2处理,基肥:苗肥:薹肥 = 10:0:0处理的产量最低,其差异达到了显著水平,单株角果数、每角果粒数、绿叶数、茎粗、最大叶长和叶宽、叶片叶绿素含量等指标也有类似的变化趋势,而氮肥运筹方式对千粒重的影响不显著。磷肥和钾肥运筹方式对油菜生长的影响较小,在不同磷钾肥运筹方式下籽粒产量、产量构成因素、茎叶性状均没有显著差异。在本试验所设的8种处理中,以氮肥的基肥:苗肥:薹肥 = 5:2:3、磷肥和钾肥的基肥:苗肥:薹肥 = 10:0:0 处理和氮肥的基肥:苗肥:薹肥 = 5:2:3、磷肥的基肥:苗肥:薹肥 = 6:2:2、钾肥的基肥:苗肥:薹肥 = 10:0:0 处理的籽粒产量并列最高。  相似文献   

12.
不同氮效率油菜品种产量和品质对供氮水平的反应   总被引:2,自引:1,他引:2  
为探明不同氮效率油菜产量和品质对供氮水平的反应动态,揭示油菜氮效率与品质的关系,本文采用砂培试验,研究了两种氮效率油菜品种在06、3、6、12、15 mmol/L 5种不同氮水平下(用N1N5表示)的氮效率、子粒产量和品质的变化。结果表明, 随着供氮水平的提高,油菜子粒产量、油分产量和蛋白质含量增加,氮效率和油分含量下降; 而子粒脂肪酸组成变化较小,所测定的7种脂肪酸中,芥酸和花生烯酸含量随着氮水平的增加略有下降,棕榈酸、硬脂酸、油酸、亚油酸和亚麻酸含量则没有明显的变化; 与氮低效品种相比,氮高效品种的子粒产量、芥酸和花生烯酸含量随供氮水平的变化幅度更大,油分含量下降幅度更小。所有氮水平下,氮高效品种的子粒产量、油分含量和油分产量均高于氮低效品种,亚油酸含量略高于而亚麻酸含量略低于氮低效品种,子粒蛋白质、棕榈酸、硬脂酸、油酸含量两品种没有差异。总之,提高氮水平有利于增加油分产量,氮高效品种的增加幅度大于氮低效品种,但对脂肪酸组成的影响较小。因此,氮高效品种不会因高效吸收利用氮素而降低油分含量或使油菜品质变劣。  相似文献   

13.
江浙油菜主产区冬油菜的区域适宜施氮量研究   总被引:2,自引:0,他引:2  
2008-2009和2009-2010年,在长江下游地区共布置10组冬油菜的氮肥用量田间试验,研究施氮对产量、干重、氮素吸收累积及氮肥利用效率的影响,通过肥效模型确定该区域油菜的适宜施氮量,为农民合理施氮提供依据。结果表明,长江下游地区冬油菜施氮增产效果显著,施氮270 kg hm-2时油菜产量达到最高的2581 kg hm-2,比对照平均增产1265 kg hm-2,增幅为121 %。施氮明显增加了油菜的地上部干重,促进其对氮素的吸收和累积,但过量施氮导致收获指数和氮素收获指数出现降低,并导致氮肥利用效率的显著下降。各试验点油菜的适宜施氮量平均为199 kg hm-2,此施氮量条件下不仅大幅减少氮肥投入,还同时获得较高的区域产量水平和氮肥利用效率。分析认为,当前长江下游地区油菜推荐施氮200 kg hm-2,不同地区和田块可根据实际情况进行微调。  相似文献   

14.
以杂交籼稻"冈优527"和常规粳稻"农垦57"为材料,设置硫酸铵(铵硝配比100∶0)、硝酸铵(铵硝配比50∶50)、硝酸钠(铵硝配比0∶100)3种形态氮肥及结实期4种水分胁迫处理[土壤水势(ψsoil)分别为0 kPa、25 kPa、50 kPa、75 kPa,持续处理14 d],研究其对水稻氮素吸收利用及产量的影响。结果表明:结实期土壤水势在25 kPa时,铵硝比50∶50处理较铵硝比100∶0处理的水稻籽粒产量增加显著,铵态氮比例≥50%时,适当增加硝态氮比例可缓解土壤水分严重不足对产量形成的不利影响。当土壤水势在0~25 kPa范围内适当增加硝态氮肥比例,有利于促进稻株氮素累积,尽管与纯铵态氮处理间未达到显著水平,但与纯硝态氮处理间差异均达到显著水平。土壤水势≤50 kPa时,增加硝态氮产量优势减弱,相反增加铵态氮肥的比例更有利于产量形成。增加铵态氮有利于分蘖盛期前稻株对氮的吸收,但在保证一定铵态氮比例下,适当增加硝态氮有利于加快中、后期对氮素的吸收速度和氮素累积量,为结实期氮素向籽粒转运及提高氮素利用效率提供保证。适度水分胁迫能促进结实期水稻对氮素的吸收,促进结实期干物质累积,提高各器官中营养物质向籽粒运转,进而有利于收获指数的提高。杂交籼稻"冈优527"和常规粳稻"农垦57"对不同形态氮肥与结实期水分胁迫下氮素利用及产量的响应趋势基本一致。  相似文献   

15.
  【目的】  角果皮作为典型的非叶器官,其光合作用不仅是油菜(Brassica napus L.)光合作用的重要补充,更是生育后期产量建成的重要碳源。我们研究了氮、钾营养及氮钾配施对冬油菜角果形态、角果皮光合特性、光合器官氮分配的影响及光合氮利用效率(PNUE)差异机制。  【方法】  采用双因素田间试验,设4个施氮量(N 0、90、180、270 kg/hm2,分别以 N0、N90、N180、N270表示),两个钾用量(K2O 0、120 kg/hm2,分别以K0、K120表示),试验共计8个处理:N0K0、N0K120、N90K0、N90K120、N180K0、N180K120、N270K0、N270K120,每个处理3次重复。在角果期测定角果形态参数、净光合速率(An)、角果皮氮钾养分含量、光合氮利用效率(PNUE)以及最大羧化速率(Vcmax)等相关光合、生理参数,并计算角果皮氮素在光合器官(羧化系统、电子传递系统和捕光系统)的分配比例。  【结果】  与N0K0处理相比,氮钾配施处理单株角果数增加了1.7~3.0倍,角果长和角果面积分别提高了12.1%~30.2%和9.9%~43.8%。在不同氮肥施用量下,施钾后角果皮氮含量平均降低了19.5%;在不同施钾量下,氮肥施用后角果皮钾含量平均降低了20.9%。氮钾配施处理角果皮气孔导度(gs)、叶肉导度(gm)、Vcmax及An较N0K0处理平均提高了11.1%、158.8%、88.2%和115.0%。与N0处理相比,施氮后角果皮光合系统氮库平均增加了51.1%,但羧化系统(Ncb)和电子传递系统(Net)中氮分配比例分别下降了8.4和2.5个百分点,PNUE降低了21.1%;相反,施钾后角果皮光合氮库和分配比例分别较K0处理提高了28.7%和15.6个百分点,其中Ncb和Net氮库分别提高了35.9%和31.4%,PNUE增幅高达65.7%。与N0K0处理相比,尽管氮钾配施对角果皮光合系统氮分配比例的提升作用较小,但光合系统氮库容量增加了90.7%,远高于单施氮肥或钾肥对角果皮光合氮库的提升幅度。PNUE与角果皮钾含量和光合系统中各组分氮分配比例呈极显著正相关关系,而与角果皮氮含量及氮钾比呈显著负相关。  【结论】  氮钾配施一方面提高了角果皮光合面积、协调氮钾营养平衡、降低CO2传输阻力,另一方面增加了角果皮光合氮库、改善了光合系统中氮分配比例,从而提高了角果光合能力、优化了PNUE。因此,在实际生产中氮钾肥要合理配施,最大化个体光合潜能,进而提高群体生产力达到增产增效的目的。  相似文献   

16.
为探明保水剂和氮肥及其配施后对冬小麦不同生育阶段水分利用的作用机理,通过大田试验,以不施保水剂和氮肥为对照,研究了保水剂(60 kg.hm 2)与氮肥[0、225 kg(N).hm 2、450 kg(N).hm 2]单施及其配施后对冬小麦不同生育阶段的土壤水分、干物质积累及水分利用的作用特征。结果表明:保水剂和氮肥的施用均提高了土壤剖面各层次的含水量及冬小麦干物质积累量、产量和水分利用效率。各处理中以单施450kg(N).hm 2氮肥、单施保水剂及保水剂与450 kg(N).hm 2氮肥配施处理土壤含水量较高。不施保水剂时,随施氮量的增加,冬小麦地上部干物质积累量显著提高。施用保水剂时,氮肥用量过高,干物质积累有所降低。拔节—收获期,保水剂与225 kg(N).hm 2氮肥配施处理冬小麦干物质积累量均较高,且到生育后期效果更明显。在播种—拔节期和孕穗—灌浆期,随氮肥用量的增加水分利用效率提高,且保水剂与氮肥配施处理增加幅度更大。而灌浆—收获期,高氮[450 kg(N).hm 2]和保水剂与225 kg(N).hm 2氮肥配施处理的水分利用效率提高幅度最大,分别较对照增加53.8%和57.8%。而最终产量与水分生产效率以60 kg.hm 2保水剂与225 kg(N).hm 2氮肥配施处理最高。说明氮肥用量适宜时,施用保水剂冬小麦产量和水分利用效率的提高幅度更大。  相似文献   

17.
施氮对大豆根系形态和氮素吸收积累的影响   总被引:13,自引:3,他引:13  
采用框栽试验方法研究了不同施氮水平对大豆根系形态和氮素吸收积累的影响,结果表明:不同施氮水平对大豆植株生物量、氮素吸收积累量及根系形态有显著影响,随施氮量增加,植株干重、氮素积累量、单株产量等均呈先增加后降低趋势,其中以N100[100 kg(N)·hm-2]处理效果最佳,总体表现为N100>N200>N50>N25>N0.无N(NO)和适量偏低的氮(N25、N50)增加了大豆的根冠比,但过多的氮(N200)反而降低了大豆的根冠比,说明低氮胁迫促进了大豆根系的生长.大豆根长、根表面积和根体积随施氮量的增加表现为先降后增而后又降低的规律,不施氮(N0)情况下,根长、根表面积和根体积均高于低氮处理(N25、N50),之后随施氮量增加而增加,当超过一定施氮量(N200)时又呈降低趋势.不同生育时期植株生物量、氮素积累、根长、根表面积和根体积等表现为花期>苗期>鼓粒期.因此施用一定量氮肥对大豆植株生物量、氮素积累以及根系形态等产生显著影响,进而影响大豆氮素转运量和转运效率,最终影响大豆籽粒产量和品质.  相似文献   

18.
Nitrate‐N uptake from soil depends on root growth and uptake activity. However, under field conditions N‐uptake activity is difficult to estimate from soil‐N depletion due to different loss pathways. We modified the current mesh‐bag method to estimate nitrate‐N‐uptake activity and root growth of two oilseed‐rape cultivars differing in N‐uptake efficiency. N‐efficient cultivar (cv.) ‘Apex' and N‐inefficient cv. ‘Capitol' were grown in a field experiment on a silty clayey gleyic fluvisol near Göttingen, northern Germany, and fertilized with 0 (N0) and 227 (N227) kg N ha–1. In February 2002, PVC tubes with a diameter of 50 mm were installed between plant rows at 0–0.3 and 0–0.6 m soil depth with an angle of 45°. At the beginning of shooting, beginning of flowering, and at seed filling, the PVC tubes were substituted by PVC tubes (compartments) of the same diameter, but with an open window at the upper side either at a soil depth of 0–0.3 or 0.3–0.6 m allowing roots to grow into the tubes. Anion‐exchange resin at the bottom of the compartment allowed estimation of nitrate leaching. The compartments were then filled with root‐free soil which was amended with or without 90 mg N (kg soil)–1. The newly developed roots and nitrate‐N depletion were estimated in the compartments after the installing period (21 d at shooting stage and 16 d both at flowering and grain‐filling stages). Nitrate‐N depletion was estimated from the difference between NO ‐N contents of compartments containing roots and control compartments (windows closed with a membrane) containing no roots. The amount of nitrate leached from the compartments was quantified from the resin and has been taken into consideration in the calculation of the N depletion. The amount of N depleted from the compartments significantly correlated with root‐length density. Suboptimal N application to the crop reduced total biomass and seed‐yield formation substantially (24% and 38% for ‘Apex’ and ‘Capitol’, respectively). At the shooting stage, there were no differences in root production and N depletion from the compartments by the two cultivars between N0 and N227. But at flowering and seed‐filling stages, higher root production and accordingly higher N depletion was observed at N0 compared to N227. Towards later growth stages, the newly developed roots were characterized by a reduction of root diameter and a shift towards the deeper soil layer (0.3–0.6m). At low but not at high N supply, the N‐efficient cv. ‘Apex’ exhibited higher root growth and accordingly depleted nitrate‐N more effectively than the N‐inefficient cv. ‘Capitol’, especially during the reproductive growth phase. The calculated nitrate‐N‐uptake rate per unit root length was maximal at flowering (for the low N supply) but showed no difference between the two cultivars. This indicated that the higher N‐uptake efficiency of cv. ‘Apex’ was due to higher root growth rather than higher uptake per unit of root length.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号