首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Data consisting of 18 884 weight records collected from 1273 Boran cattle from birth to 24 months of age were used to estimate covariance functions and genetic parameters for growth of Boran cattle using random regression (RR) models under a situation of small herd size and inconsistent recording. The RR model fitted quadratic Legendre polynomials of age at recording for additive genetic and permanent environmental effects. Genetic variance increased from birth, reaching an asymptotic value at 455 days and was maximum at 525 days of age after which it gradually dropped. Permanent environmental variance increased throughout the trajectory. Estimates of temporary environmental variance were heterogeneous across ages. Direct heritability and permanent environmental variance as a proportion of phenotypic variance fluctuated greatly during the early ages but later stabilized at intermediate to later ages; the estimates ranged from 0.11 to 0.33 and from 0.18 to 0.83, respectively. Genetic correlation estimates were positive, ranging from 0.10 to unity. The estimates declined with increasing in lag between the age points. Phenotypic correlation pattern was erratic between early ages, negatively low (-0.02) between the extreme data points and moderate to highly positive (>0.50) between intermediate and later points, with prominent spikes along the diagonal. It is concluded that RR models have potential for modelling growth of Boran cattle, notwithstanding conditions of small herd sizes and inconsistent recording.  相似文献   

2.
The objective of this study was to identify issues in genetic evaluation of beef cattle for growth by a random regression model (RRM). Genetic evaluation data included 2,946,847 records of up to nine sequential weights of 812,393 Nellore cattle measured at ages ranging from birth to 733 d. Models considered were a five-trait multiple-trait model (MTM) and a cubic RRM. The MTM included the effects of contemporary group, age of dam class, additive direct, additive maternal, and maternal permanent environment. Both additive effects were assumed correlated. The RRM included the same effects as MTM, with the addition of permanent and random error effects. The purpose of the random error effect, which was in addition to a residual effect with constant variance, was to model heterogeneous residual variances. All effects in RRM were modeled as cubic Legendre polynomials. Expected progeny differences (EPD) were obtained iteratively using a preconditioned conjugate gradient algorithm. Numerically accurate solutions with RRM were not obtained until the random regressions were orthogonalized. Computing requirements of RRM were reduced by more than 50%, without affecting the accuracy by removing regressions corresponding to very low eigen-values and by replacing the random error effects with weights. Afterward, the correlations between EPD from RRM and from MTM for EPD on selected weights were between 0.84 and 0.89. For sires with at least 50 progeny, these correlations increased to 0.92 to 0.97. Low correlations were caused by differences in parameters. The RRM applied to growth i s prone to numerical problems. Estimates of EPD with RRM may be more accurate than those with MTM only if accurate parameters are applied.  相似文献   

3.
Random regression models were applied to eight conformation traits (i.e. stature, rump angle, thurl width, rear leg set, rear udder width, rear udder height, udder depth, and fore udder attachment) of Holstein cows from the northeastern United States. Covariates for fixed and random regressions included age and age‐squared for six of the traits, and two additional covariates were included for rear udder width and rear udder height. Other effects in the model were herd—year‐classifier and months in milk. Fixed covariates were nested within year of birth of the cow. Variance components were estimated using Bayesian theory and Gibbs sampling procedure. Estimated breeding values from the random regression models were compared to two single trait models. The first model utilized only the first classification record of the cow in first lactation, and the second model utilized all classifications of the cow in a simple repeatability model. Additive genetic merit for conformation traits changed with the age of the animal. Some traits were affected by age more than others. The single trait, single record model and the simple repeatability model were not appropriate in predicting breeding values at mature ages for rear udder width and rear udder height.  相似文献   

4.
1. A total of 11 826 records from 2489 quails, hatched between 2012 and 2013, were used to estimate genetic parameters for BW (body weight) of Japanese quail using random regression models. Weekly BW was measured from hatch until 49 d of age. WOMBAT software (University of New England, Australia) was used for estimating genetic and phenotypic parameters.

2. Nineteen models were evaluated to identify the best orders of Legendre polynomials. A model with Legendre polynomial of order 3 for additive genetic effect, order 3 for permanent environmental effects and order 1 for maternal permanent environmental effects was chosen as the best model.

3. According to the best model, phenotypic and genetic variances were higher at the end of the rearing period. Although direct heritability for BW reduced from 0.18 at hatch to 0.12 at 7 d of age, it gradually increased to 0.42 at 49 d of age. It indicates that BW at older ages is more controlled by genetic components in Japanese quail.

4. Phenotypic and genetic correlations between adjacent periods except hatching weight were more closely correlated than remote periods. The present results suggested that BW at earlier ages, especially at hatch, are different traits compared to BW at older ages. Therefore, BW at earlier ages could not be used as a selection criterion for improving BW at slaughter age.  相似文献   


5.
The objective of this study was to examine the feasibility of using random regression-spline (RR-spline) models for fitting growth traits in a multibreed beef cattle population. To meet the objective, the results from the RR-spline model were compared with the widely used multitrait (MT) model when both were fit to a data set (1.8 million records and 1.1 million animals) provided by the American Gelbvieh Association. The effect of prior information on the EBV of sires was also investigated. In both RR-spline and MT models, the following effects were considered: individual direct and maternal additive genetic effects, contemporary group, age of the animal at measurement, direct and maternal heterosis, and direct and maternal additive genetic mean effect of the breed. Additionally, the RR-spline model included an individual direct permanent environmental effect. When both MT and RR-spline models were applied to a data set containing records for weaning weight (WWT) and yearling weight (YWT) within specified age ranges, the rankings of bulls' direct EBV (as measured via Pearson correlations) provided by both models were comparable, with slightly greater differences in the reranking of bulls observed for YWT evaluations (>or=0.99 for BWT and WWT and >or=0.98 for YWT); also, some bulls dropped from the top 100 list when these lists were compared across methods. For maternal effects, the estimated correlations were slightly smaller, particularly for YWT; again, some drops from the top 100 animals were observed. As in regular MT multibreed genetic evaluations, the heterosis effects and the additive genetic effects of the breed could not be estimated from field data, because there were not enough contemporary groups with the proper composition of purebred and crossbred animals; thus, prior information based on literature values had to be included. The inclusion of prior information had a negligible effect in the overall ranking for bulls with greater than 20 birth weight progeny records; however, the effect of prior information for breeds or groups poorly represented in the data was important. The Pearson correlations for direct and maternal WWT and YWT ranged from 0.95 to 0.98 when comparing evaluations of data sets for which the out-of-range age records were removed or retained. Random regression allows for avoiding the discarding of records that are outside the usual age ranges of measurement; thus, greater accuracies are achieved, and greater genetic progress could be expected.  相似文献   

6.
1. The aim of the present study was to estimate genetic parameters for average egg weight (EW) and egg number (EN) at different ages in Japanese quail using multi-trait random regression (MTRR) models.

2. A total of 8534 records from 900 quail, hatched between 2014 and 2015, were used in the study. Average weekly egg weights and egg numbers were measured from second until sixth week of egg production.

3. Nine random regression models were compared to identify the best order of the Legendre polynomials (LP). The most optimal model was identified by the Bayesian Information Criterion. A model with second order of LP for fixed effects, second order of LP for additive genetic effects and third order of LP for permanent environmental effects (MTRR23) was found to be the best.

4. According to the MTRR23 model, direct heritability for EW increased from 0.26 in the second week to 0.53 in the sixth week of egg production, whereas the ratio of permanent environment to phenotypic variance decreased from 0.48 to 0.1. Direct heritability for EN was low, whereas the ratio of permanent environment to phenotypic variance decreased from 0.57 to 0.15 during the production period.

5. For each trait, estimated genetic correlations among weeks of egg production were high (from 0.85 to 0.98). Genetic correlations between EW and EN were low and negative for the first two weeks, but they were low and positive for the rest of the egg production period.

6. In conclusion, random regression models can be used effectively for analysing egg production traits in Japanese quail. Response to selection for increased egg weight would be higher at older ages because of its higher heritability and such a breeding program would have no negative genetic impact on egg production.  相似文献   


7.
Properties of random regression models using linear splines (RRMS) were evaluated with respect to scale of parameters, numerical properties, changes in variances and strategies to select the number and positions of knots. Parameters in RRMS are similar to those in multiple trait models with traits corresponding to points at knots. RRMS have good numerical properties because of generally superior numerical properties of splines compared with polynomials and sparser system of equations. These models also contain artefacts in terms of depression of variances and predictions in the middle of intervals between the knots, and inflation of predictions close to knots; the artefacts become smaller as correlations corresponding to adjacent knots increase. The artefacts can be greatly reduced by a simple modification to covariables. With the modification, the accuracy of RRMS increases only marginally if the correlations between the adjacent knots are ≥0.6. In practical analyses the knots for each effect in RRMS can be selected so that: (i) they cover the entire trajectory; (ii) changes in variances in intervals between the knots are approximately linear; and (iii) the correlations between the adjacent knots are at least 0.6. RRMS allow for simple and numerically stable implementations of genetic evaluations with artefacts present but transparent and easily controlled.  相似文献   

8.
Genetic correlations between body condition score (BCS) and fertility traits in dairy cattle were estimated using bivariate random regression models. BCS was recorded by the Swiss Holstein Association on 22,075 lactating heifers (primiparous cows) from 856 sires. Fertility data during first lactation were extracted for 40,736 cows. The fertility traits were days to first service (DFS), days between first and last insemination (DFLI), calving interval (CI), number of services per conception (NSPC) and conception rate to first insemination (CRFI). A bivariate model was used to estimate genetic correlations between BCS as a longitudinal trait by random regression components, and daughter's fertility at the sire level as a single lactation measurement. Heritability of BCS was 0.17, and heritabilities for fertility traits were low (0.01-0.08). Genetic correlations between BCS and fertility over the lactation varied from: -0.45 to -0.14 for DFS; -0.75 to 0.03 for DFLI; from -0.59 to -0.02 for CI; from -0.47 to 0.33 for NSPC and from 0.08 to 0.82 for CRFI. These results show (genetic) interactions between fat reserves and reproduction along the lactation trajectory of modern dairy cows, which can be useful in genetic selection as well as in management. Maximum genetic gain in fertility from indirect selection on BCS should be based on measurements taken in mid lactation when the genetic variance for BCS is largest, and the genetic correlations between BCS and fertility is strongest.  相似文献   

9.
A simulation study examined issues important for genetic evaluation of growth in beef cattle by random regression models with cubic Legendre polynomials (RRML) and linear splines with three knots (RRMS) compared with multiple-trait models (MTM). Parameters for RRML were obtained by conversion from covariance functions. Parameters for MTM and RRMS were extracted from RRML at 1, 205, and 365 d; parameters for RRMS were the same as MTM for all effects except the permanent environment and the residual. Four data sets were generated assuming RRML included records at 1, 205, and 365 d; at 1, 160 to 250, and 320 to 410 d; at 1, 100, 205, 300, and 365 d; and at 1, 55 to 145, 160 to 250, 275 to 325, and 320 to 410 d. Accuracies were computed as correlations between the true (simulated) and predicted breeding values. With the first data set, excellent agreement in accuracy was obtained for all models. With the second data set, the accuracy of MTM dropped by up to 1.5% compared with the first data set, but accuracy was unchanged for both RRML and RRMS. With the third (fourth) data set, accuracies of RRML were up to 2.4% (2.5%) higher than with the first (second) data set. Small differences in accuracy between RRML and RRMS were found with the third and fourth data sets, which were traced to inflated correlations especially between 1 and 205 d in RRMS; inflation could be decreased by adding one extra knot at 100 d to RRMS. Diagonalization of random coefficients was crucial for RRML but not for RRMS, resulting in approximately six (two) times faster convergence with RRML (RRMS). Reduction of dimensionality in RRML associated with small eigenvalues caused a less accurate evaluation for birth weight. Genetic evaluation of growth by RRM requires careful implementation. The RRMS is simpler to implement than the RRML.  相似文献   

10.
Summary A multi-trait (MT) random regression (RR) test day (TD) model has been developed for genetic evaluation of somatic cell scores for Australian dairy cattle, where first, second and third lactations were considered as three different but correlated traits. The model includes herd-test-day, year-season, age at calving, heterosis and lactation curves modelled with Legendre polynomials as fixed effects, and random genetic and permanent environmental effects modelled with Legendre polynomials. Residual variance varied across the lactation trajectory. The genetic parameters were estimated using asreml . The heritability estimates ranged from 0.05 to 0.16. The genetic correlations between lactations and between test days within lactations were consistent with most of the published results. Preconditioned conjugate gradient algorithm with iteration on data was implemented for solving the system of equations. For reliability approximation, the method of Tier and Meyer was used. The genetic evaluation system was validated with Interbull validation method III by comparing proofs from a complete evaluation with those from an evaluation based on a data set excluding the most recent 4 years. The genetic trend estimate was in the allowed range and correlations between the two sets of proofs were very high. Additionally, the RR model was compared to the previous test day model. The correlations of proofs between both models were high (0.97) for bulls with high reliabilities. The correlations of bulls decreased with increasing incompleteness of daughter performance information. The correlations between the breeding values from two consecutive runs were high ranging from 0.97 to 0.99. The MT RR TD model was able to make effective use of available information on young bulls and cows, and could offer an opportunity to breeders to utilize estimated breeding values for first and later lactations.  相似文献   

11.
The objectives of this study were to compare covariance functions (CF) and estimate the heritability of milk yield from test‐day records among exotic (Saanen, Anglo‐Nubian, Toggenburg and Alpine) and crossbred goats (Thai native and exotic breed), using a random regression model. A total of 1472 records of test‐day milk yield were used, collected from 112 does between 2003 and 2006. CF of the study were Wilmink function, second‐ and third‐order Legendre polynomials, and linear splines 4 knots located at 5, 25, 90 and 155 days in milk (SP25–90) and 5, 35, 95 and 155 of days in milk (SP35–95). Variance components were estimated by restricted maximum likelihood method (REML). Goodness of fit, Akaike information criterion (AIC), percentage of squared bias (PSB), mean square error (MSE), and empirical correlation (RHO) between the observed and predicted values were used to compare models. The results showed that CF had an impact on (co)variance estimation in random regression models (RRM). The RRM with splines 4 knots located at 5, 25, 90 and 155 of days in milk had the lowest AIC, PSB and MSE, and the highest RHO. The heritability estimated throughout lactation obtained with this model ranged from 0.13 to 0.23.  相似文献   

12.
Reliable estimates of genetic parameters for growth traits as a trajectory of age are needed to optimize existing turbot breeding programmes. To evaluate the potential of early selection strategies, the use of biometric body measurements, length (L), width (W) and area (A), at early ages as alternative indicators for the selection trait at harvest was explored. Random regression model (RRM) based on molecular relatedness (MR) was used to analyse the trajectory of genetic parameters for growth traits in turbot from 162 to 756 days posthatch (dph). Heritability estimates for body weight (BW) ranged from 0.34 to 0.54. Heritability estimates for W, A and L were also moderate to high ranging from 0.18 to 0.43. Estimates for L and W declined with age, while those for A increased towards harvest age. Genetic (rG) and phenotypic (rP) correlations between BW and the three morphometric traits L, A and W were estimated using simple bivariate animal models at young (AC1), medium (AC2) and old (AC3) age classes. Correlations between BW and morphometric body traits were high, ranging from 0.7 to 0.9 in all three age groups. Genetic correlations between traits were highest (>0.9) in AC3. To explore the potential for early selection, genetic correlations were derived from the RRM between all days of measurement for all traits separately. From dph 300 onwards, intratrait estimates of rG were moderate to high (above 0.7 for dph 410 and higher ages for traits BW, L and A). Results showed that genetic selection for BW, L and A is promising and that A and L could be successfully used as alternative indicator traits if measurements of BW are not available. Large BW and A at harvest could be achieved as a correlated response to early selection for these traits at around 500 dph.  相似文献   

13.
14.
Estimates of direct and maternal genetic parameters in beef cattle were obtained with a random regression model with a linear spline function (SFM) and were compared with those obtained by a multitrait model (MTM). Weight data of 18,900 Gelbvieh calves were used, of which 100, 75, and 17% had birth (BWT), weaning (WWT), and yearling (YWT) weights, respectively. The MTM analysis was conducted with a three-trait maternal animal model. The MTM included an overall linear partial fixed regression on age at recording for WWT and YWT, and direct-maternal genetic and maternal permanent environmental effects. The SFM included the same effects as MTM, plus a direct permanent environmental effect and heterogeneous residual variance. Three knots, or breakpoints, were set to 1, 205, and 365 d. (Co)variance components in both models were estimated with a Bayesian implementation via Gibbs sampling using flat priors. Because BWT had no variability of age at recording, there was good agreement between corresponding components of variance estimated from both models. For WWT and YWT, with the exception of the sum of direct permanent environmental and residual variances, there was a general tendency for SFM estimates of variances to be lower than MTM estimates. Direct and maternal heritability estimates with SFM tended to be lower than those estimated with MTM. For example, the direct heritability for YWT was 0.59 with MTM, and 0.48 with SFM. Estimated genetic correlations for direct and maternal effects with SFM were less negative than those with MTM. For example, the direct-maternal correlation for WWT was -0.43 with MTM and -0.33 with SFM. Estimates with SFM may be superior to MTM due to better modeling of age in both fixed and random effects.  相似文献   

15.
Genetic parameters for a random regression model of growth in Gelbvieh beef cattle were constructed using existing estimates. Information for variances along ages was provided by parameters used for routine Gelbvieh multiple-trait evaluation, and information on correlations among different ages was provided by random regression model estimates from literature studies involving Nellore cattle. Both sources of information were combined into multiple-trait estimates; corrected for continuity, smoothness, and general agreement with literature estimates; and extrapolated to 730 d. Covariance functions using standardized Legendre polynomials were fit for the following effects: additive genetic (direct and maternal), and animal and maternal permanent environment. Residual variances at different ages were fitted using linear splines with three knots. Fit was by least squares. The order of polynomials was varied from third to sixth. Increasing the fit beyond cubic provided small improvements in R2 and increased the number of small eigenvalues of covariance matrices, especially for the additive effect. Parameters for a random regression model in beef cattle can be constructed with negligible artifacts from literature estimates. Formulas can easily be modified for other types of polynomials and splines.  相似文献   

16.
  1. This study examined the changes in eggshell strength and the genetic parameters related to this trait throughout a hen’s laying life using random regression.

  2. The data were collected from a crossbred population between 2011 and 2014, where the eggshell strength was determined repeatedly for 2260 hens.

  3. Using random regression models (RRMs), several Legendre polynomials were employed to estimate the fixed, direct genetic and permanent environment effects. The residual effects were treated as independently distributed with heterogeneous variance for each test week.

  4. The direct genetic variance was included with second-order Legendre polynomials and the permanent environment with third-order Legendre polynomials.

  5. The heritability of eggshell strength ranged from 0.26 to 0.43, the repeatability ranged between 0.47 and 0.69, and the estimated genetic correlations between test weeks was high at > 0.67.

  6. The first eigenvalue of the genetic covariance matrix accounted for about 97% of the sum of all the eigenvalues.

  7. The flexibility and statistical power of RRM suggest that this model could be an effective method to improve eggshell quality and to reduce losses due to cracked eggs in a breeding plan.

  相似文献   

17.
The purpose of this study was to compare estimates of genetic parameters for sequential growth of beef cattle using two models and two data sets. Growth curves of Nellore cattle were analyzed using body weights measured at ages 1 (birth weight) to 733 d. Two data samples were created, one with 71,867 records sampled from all herds (MISS), and the other with 74,601 records sampled from herds with no missing traits (NMISS). Records preadjusted to a fixed age were analyzed by a multiple-trait model (MTM), which included the effects of contemporary group, age of dam class, additive direct, additive maternal, and maternal permanent environment. Analyses were by REML, with five traits at a time. The random regression model (RRM) included the effects of age of animal, contemporary group, age of dam class, additive direct, additive maternal, permanent environment, and maternal permanent environment. All effects were modeled as cubic Legendre polynomials. These analyses were also by REML. Shapes of estimates of variances by MTM were mostly similar for both data sets for all except late ages, where estimates for MISS were less regular, and for birth weight with MISS. Genetic correlations among ages for the direct and maternal effects were less smooth with MISS. Genetic correlations between direct and maternal effects were more negative for NMISS, where few sires were maternal grandsires. Parameter estimates with RRM were similar to MTM cept that estimates of variances showed more artifacts for MISS; the estimates of additive direct-maternal correlations were more negative with both data sets and approached -1.0 for some ages with NMISS. When parameters of a growth model obtained by used for genetic evaluation, these parameters should be examined for consistency with parameters from MTM and prior information, and adjustments may be required to eliminate artifacts.  相似文献   

18.
The first three lactation curves of the Japanese Holstein cows were analyzed using a random regression (RR) test-day model with a cubic Legendre polynomial fitted to each of the three parities. The first three eigenvectors of the additive genetic RR covariance matrix explained 77.8, 10.9, and 4.2% of the total variance of the three parities and are associated mainly with the level of milk yield, the linear increase, and the concave curve, respectively. On a lactational basis, as the parity increases, the contribution of the first eigenvector to a lactational variation decreases whereas the contribution of the second eigenvector increases sharply. This means that the impact of the first eigenvector on the level of milk production decreases across parity whereas the effect of the second eigenvector on the shape of the lactation curve increases across parity. The first lactation curve was the most persistent, followed by the second and the third lactation. Persistency and days to reach peak yield decrease as the parity increases (45, 40, and 36 days for the first three parities). Daily heritabilities within lactation were lower for the first parity than for the second or the third parity. The first three lactation curves possess distinctive genetic characteristics that merit consideration when combining the proofs of the first three lactations to select for lifetime production. Within- and between-parity genetic correlations between the constant and the linear RR coefficients were all positive, suggesting that raising the level of milk production in one parity would increase the linear slope in all parities, thus improving persistency. Within- and between-parity genetic correlations between the constant and the quadratic RR coefficients were all negative, implying that increasing the level of production in one parity would deepen and/or widen the concave curve in all parities, thus decreasing persistency. The linear and quadratic RR coefficients were negatively correlated within or between parities and thus have antagonistic effects on persistency.  相似文献   

19.
Various random regression models have been advocated for the fitting of covariance structures. It was suggested that a spline model would fit better to weight data than a random regression model that utilizes orthogonal polynomials. The objective of this study was to investigate which kind of random regression model fits best to weight data of pigs. Two random regression models that described weight of individual pigs, one using orthogonal polynomials, and the other using splines, were compared. A comparison with a multivariate model, Akaike's information criterion, and the Bayesian-Schwarz information criterion were used to select the best model. Genetic, permanent environmental, and total variances increased with age. Heritabilities for the multivariate model ranged from 0.14 to 0.19, and for both random regression models the heritabilities were fluctuating around 0.17. Both genetic and phenotypic correlations decreased when the interval between measurements increased. The spline model needed fewer parameters than the multivariate and polynomial models. Akaike's information criterion was least for the spline model and greatest for the multivariate model. The Bayesian-Schwarz information criterion was least for the polynomial model and greatest for the multivariate model. Residuals of all models were normally distributed. Based on these results, it is concluded that random regression models provide the best fit to pig weight data.  相似文献   

20.
Autoregressive (AR) and random regression (RR) models were fitted to test-day records from the first three lactations of Brazilian Holstein cattle with the objective of comparing their efficiency for national genetic evaluations. The data comprised 4,142,740 records of milk yield (MY) and somatic cell score (SCS) from 274,335 cows belonging to 2,322 herds. Although heritabilities were similar between models and traits, additive genetic variance estimates using AR were 7.0 (MY) and 22.2% (SCS) higher than those obtained from RR model. On the other hand, residual variances were lower in both traits when estimated through AR model. The rank correlation between EBV obtained from AR and RR models was 0.96 and 0.94 (MY) and 0.97 and 0.95 (SCS), respectively, for bulls (with 10 or more daughters) and cows. Estimated annual genetic gains for bulls (cows) obtained using AR were 46.11 (49.50) kg for MY and −0.019 (−0.025) score for SCS; whereas using RR these values were 47.70 (55.56) kg and −0.022 (−0.028) score. Akaike information criterion was lower for AR in both traits. Although AR model is more parsimonious, RR model assumes genetic correlations different from the unity within and across lactations. Thus, when these correlations are relatively high, these models tend to yield to similar predictions; otherwise, they will differ more and RR model would be theoretically sounder.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号