首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fucoidan is a fucose-containing sulfated polysaccharide derived from brown seaweeds, crude extracts of which are commercially available as nutritional supplements. Recent studies have demonstrated antiproliferative, antiangiogenic, and anticancer properties of fucoidan in vitro. Accordingly, the anticancer effects of fucoidan have been shown to vary depending on its structure, while it can target multiple receptors or signaling molecules in various cell types, including tumor cells and immune cells. Low toxicity and the in vitro effects of fucoidan mentioned above make it a suitable agent for cancer prevention or treatment. However, preclinical development of natural marine products requires in vivo examination of purified compounds in animal tumor models. This review discusses the effects of systemic and local administration of fucoidan on tumor growth, angiogenesis, and immune reaction and whether in vivo and in vitro results are likely applicable to the development of fucoidan as a marine anticancer drug.  相似文献   

2.
The aim of this study was to examine the absorption of fucoidan through the intestinal tract. Fucoidan (0.1, 0.5, 1.0, 1.5 and 2.0 mg/mL) was added to Transwell inserts containing Caco-2 cells. The transport of fucoidan across Caco-2 cells increased in a dose-dependent manner up to 1.0 mg/mL. It reached a maximum after 1 h and then rapidly decreased. In another experiment, rats were fed standard chow containing 2% fucoidan for one or two weeks. Immunohistochemical staining revealed that fucoidan accumulated in jejunal epithelial cells, mononuclear cells in the jejunal lamina propria and sinusoidal non-parenchymal cells in the liver. Since we previously speculated that nitrosamine may enhance the intestinal absorption of fucoidan, its absorption was estimated in rats administered N-butyl-N-(4-hydroxybutyl) nitrosamine (BBN) in their drinking water. Rats were fed 0.2% fucoidan chow (BBN + 0.2% fucoidan rats), 2% fucoidan chow (BBN + 2% fucoidan rats) and standard chow for eight weeks. The uptake of fucoidan through the intestinal tract seemed to be low, but was measurable by our ELISA method. Fucoidan-positive cells were abundant in the small intestinal mucosa of BBN + 2% fucoidan rats. Most fucoidan-positive cells also stained positive for ED1, suggesting that fucoidan was incorporated into intestinal macrophages. The uptake of fucoidan by Kupffer cells was observed in the livers of BBN + 2% fucoidan rats. In conclusion, the absorption of fucoidan through the small intestine was demonstrated both in vivo and in vitro.  相似文献   

3.
Metastasis, the greatest clinical challenge associated with cancer, is closely connected to multiple biological processes, including invasion and adhesion. The hypoxic environment in tumors is an important factor that causes tumor metastasis by activating HIF-1α. Fucoidan, extracted from brown algae, is a sulfated polysaccharide and, as a novel marine biological material, has been used to treat various disorders in China, Korea, Japan and other countries. In the present study, we demonstrated that fucoidan derived from Undaria pinnatifida sporophylls significantly inhibits the hypoxia-induced expression, nuclear translocation and activity of HIF-1α, the synthesis and secretion of VEGF-C and HGF, cell invasion and lymphatic metastasis in a mouse hepatocarcinoma Hca-F cell line. Fucoidan also suppressed lymphangiogenesis in vitro and in vivo. In addition, accompanied by a reduction in the HIF-1α nuclear translocation and activity, fucoidan significantly reduced the levels of p-PI3K, p-Akt, p-mTOR, p-ERK, NF-κB, MMP-2 and MMP-9, but increased TIMP-1 levels. These results indicate strongly that the anti-metastasis and anti-lymphangiogenesis activities of fucoidan are mediated by suppressing HIF-1α/VEGF-C, which attenuates the PI3K/Akt/mTOR signaling pathways.  相似文献   

4.
Accumulating data clearly indicate that the induction of apoptosis by nontoxic natural compounds is a potent defense against the development and progression of many malignancies, including colon cancer. Resveratrol and the fucoidans have been shown to possess potent anti-tumor activity in vitro and in vivo. The aim of the present study was to examine whether the combination of a fucoidan from the brown alga Saccharina cichorioides Miyabe and resveratrol would be an effective preventive and/or therapeutic strategy against colon cancer. Based on NMR spectroscopy and MALDI-TOF analysis, the fucoidan isolated and purified from Saccharina cichorioides Miyabe was (1→3)-α-L-fucan with sulfate groups at C2 and C4 of the α-L-fucopyranose residues. The fucoidan enhanced the antiproliferative activity of resveratrol at nontoxic doses and facilitated resveratrol-induced apoptosis in the HCT 116 human colon cancer cell line. Apoptosis was realized by the activation of initiator caspase-9 and effector caspase-7 and -3, followed by the cleavage of PARP. Furthermore, significant inhibition of HCT 116 colony formation was associated with the sensitization of cells to resveratrol by the fucoidan. Taken together, these results demonstrate that the combination of the algal fucoidan with resveratrol may provide a potential therapy against human colon cancer.  相似文献   

5.
Marine-derived sulfated polysaccharides have been shown to possess certain anti-virus, anti-tumor, anti-inflammatory and anti-coagulant activities. However, the in vivo immunomodulatory effects of marine-derived pure compounds have been less well characterized. In this study, we investigated the effect of ascophyllan, a sulfated polysaccharide purified from Ascophyllum nodosum, on the maturation of mouse dendritic cells (DCs) in vitro and in vivo. Ascophyllan induced up-regulation of co-stimulatory molecules and production of pro-inflammatory cytokines in bone marrow-derived DCs (BMDCs). Moreover, in vivo administration of ascophyllan promotes up-regulation of CD40, CD80, CD86, MHC class I and MHC class II and production of IL-6, IL-12 and TNF-α in spleen cDCs. Interestingly, ascophyllan induced a higher degree of co-stimulatory molecule up-regulation and pro-inflammatory cytokine production than fucoidan, a marine-derived polysaccharide with well-defined effect for promoting DC maturation. Ascophyllan also promoted the generation of IFN-γ-producing Th1 and Tc1 cells in the presence of DCs in an IL-12-dependent manner. Finally, myeloid differentiation primary response 88 (MyD88) signaling pathway was essential for DC maturation induced by ascophyllan. Taken together, these results demonstrate that ascophyllan induces DC maturation, and consequently enhances Th1 and Tc1 responses in vivo. This knowledge could facilitate the development of novel therapeutic strategies to combat infectious diseases and cancer.  相似文献   

6.
Fucoidans, sulfated polysaccharides extracted from brown algae, are marine products with the potential to modulate bone formation and vascularization processes. The bioactivity and safety of fucoidans are highly associated with their chemical structure, which may vary with algae species and extraction method. Thus, in depth evaluation of fucoidan extracts in terms of endotoxin content, cytotoxicity, and their detailed molecular biological impact on the individual cell types in bone is needed. In this study, we characterized fucoidan extracts from three different Fucus species including Fucus vesiculosus (Fv), Fucus serratus (Fs), and Fucus distichus subsp. evanescens (Fe) for their chemical features, endotoxin content, cytotoxicity, and bioactive effects on human outgrowth endothelial cells (OEC) and human mesenchymal stem cells (MSC) as in vitro models for bone function and vascularization. Extracts contained mainly high molecular weight (HMW) fucoidans and were free of endotoxins that may cause inflammation or influence vascularization. OEC tolerated fucoidan concentrations up to 200 µg/mL, and no indication of cytotoxicity was observed. The inflammatory response, however, investigated by real-time PCR (RT-PCR) and enzyme-linked immunosorbent assay (ELISA) and endothelial barrier assessed by impedance measurement differed for the individual extracts. MSC in comparison with endothelial cells were more sensitive to fucoidans and showed partly reduced metabolic activity and proliferation at higher doses of fucoidans. Further results for MSC indicated impaired osteogenic functions in alkaline phosphatase and calcification assays. All tested extracts consistently lowered important molecular mediators involved in angiogenesis, such a VEGF (vascular endothelial growth factor), ANG-1 (angiopoietin 1), and ANG-2 (angiopoietin 2), as indicated by RT-PCR and ELISA. This was associated with antiangiogenic effects at the functional level using selected extracts in co-culture models to mimic bone vascularization processes during bone regeneration or osteosarcoma.  相似文献   

7.
Fucoidan compounds may increase immune activity and are known to have cancer inhibitory effects in vitro and in vivo. In this study, we aimed to investigate the effect of fucoidan compounds on ex vivo human peripheral blood mononuclear cells (PBMCs), and to determine their cancer cell killing activity both solely, and in combination with an immune-checkpoint inhibitor drug, Nivolumab. Proliferation of PBMCs and interferon gamma (IFNγ) release were assessed in the presence of fucoidan compounds extracted from Fucus vesiculosus, Undaria pinnatifida and Macrocystis pyrifera. Total cell numbers and cell killing activity were assessed using a hormone resistant prostate cancer cell line, PC3. All fucoidan compounds activated PBMCs, and increased the effects of Nivolumab. All fucoidan compounds had significant direct cytostatic effects on PC3 cells, reducing cancer cell numbers, and PBMCs exhibited cell killing activity as measured by apoptosis. However, there was no fucoidan mediated increase in the cell killing activity. In conclusion, fucoidan compounds promoted proliferation and activity of PBMCs and added to the effects of Nivolumab. Fucoidan compounds all had a direct cytostatic effect on PC3 cells, as shown through their proliferation reduction, while their killing was not increased.  相似文献   

8.
Macroalgae, or seaweeds, are a rich source of components which may exert beneficial effects on the mammalian gut microbiota through the enhancement of bacterial diversity and abundance. An imbalance of gut bacteria has been linked to the development of disorders such as inflammatory bowel disease, immunodeficiency, hypertension, type-2-diabetes, obesity, and cancer. This review outlines current knowledge from in vitro and in vivo studies concerning the potential therapeutic application of seaweed-derived polysaccharides, polyphenols and peptides to modulate the gut microbiota through diet. Polysaccharides such as fucoidan, laminarin, alginate, ulvan and porphyran are unique to seaweeds. Several studies have shown their potential to act as prebiotics and to positively modulate the gut microbiota. Prebiotics enhance bacterial populations and often their production of short chain fatty acids, which are the energy source for gastrointestinal epithelial cells, provide protection against pathogens, influence immunomodulation, and induce apoptosis of colon cancer cells. The oral bioaccessibility and bioavailability of seaweed components is also discussed, including the advantages and limitations of static and dynamic in vitro gastrointestinal models versus ex vivo and in vivo methods. Seaweed bioactives show potential for use in prevention and, in some instances, treatment of human disease. However, it is also necessary to confirm these potential, therapeutic effects in large-scale clinical trials. Where possible, we have cited information concerning these trials.  相似文献   

9.
Arabinoxylans (AX) are part of dietary fiber. They are currently under study due to their potential prebiotic effect. Wheat whole grain flours contain all the grain layers and, therefore, present a higher arabinoxylan content than white flour. It is known that the chemical structure of these compounds varies with the type of wheat cultivar and the tissue from which they are extracted. In this work, water soluble extractable arabinoxylans (WE-AX) from two types of wheat whole flours (hard and soft) were extracted. We characterized the molecular size distribution and the potential prebiotic effect of those extracts. The prebiotic effect was evaluated in vitro and confirmed in vivo. Bacterial group abundance (Lactobacillus, Bifidobacterium, Clostridium, Enterococcus, Bacteriodes and total bacteria) was determined by quantitative RT-PCR. The molecular size of AX from hard wheats was significantly higher than AX from soft wheats. Both extracts showed potential prebiotic activity by increasing the growth of beneficial bacteria in vitro and in vivo, decreasing the pathogens in the profile of intestinal microorganisms and increasing the amount of short chain fatty acids in the intestine. WE-AX from hard wheat showed a higher prebiotic activity. Prebiotic effect assessed in vitro and in vivo assays showed a significant correlation between both types of analysis. This finding suggests that the in vitro indices performed allow predicting the potential prebiotic effect in vivo.  相似文献   

10.
Induction of angiogenesis is a potential treatment for chronic ischemia. Low molecular weight fucoidan (LMWF), the sulfated polysaccharide from brown seaweeds, has been shown to promote revascularization in a rat limb ischemia, increasing angiogenesis in vivo. We investigated the potential role of two heparan sulfate (HS) metabolism enzymes, exostosin-2 (EXT2) and heparanase (HPSE), and of two HS-membrane proteoglycans, syndecan-1 and -4 (SDC-1 and SDC-4), in LMWF induced angiogenesis. Our results showed that LMWF increases human vascular endothelial cell (HUVEC) migration and angiogenesis in vitro. We report that the expression and activity of the HS-degrading HPSE was increased after LMWF treatment. The phenotypic tests of LMWF-treated and EXT2- or HPSE-siRNA-transfected cells indicated that EXT2 or HPSE expression significantly affect the proangiogenic potential of LMWF. In addition, LMWF increased SDC-1, but decreased SDC-4 expressions. The effect of LMWF depends on SDC-4 expression. Silencing EXT2 or HPSE leads to an increased expression of SDC-4, providing the evidence that EXT2 and HPSE regulate the SDC-4 expression. Altogether, these data indicate that EXT2, HPSE, and SDC-4 are involved in the proangiogenic effects of LMWF, suggesting that the HS metabolism changes linked to LMWF-induced angiogenesis offer the opportunity for new therapeutic strategies of ischemic diseases.  相似文献   

11.
Intracellular fucoidanase was isolated from the marine bacterium, Formosa algae strain KMM 3553. The first appearance of fucoidan enzymatic hydrolysis products in a cell-free extract was detected after 4 h of bacterial growth, and maximal fucoidanase activity was observed after 12 h of growth. The fucoidanase displayed maximal activity in a wide range of pH values, from 6.5 to 9.1. The presence of Mg2+, Ca2+ and Ba2+ cations strongly activated the enzyme; however, Cu2+ and Zn2+ cations had inhibitory effects on the enzymatic activity. The enzymatic activity of fucoidanase was considerably reduced after prolonged (about 60 min) incubation of the enzyme solution at 45 °C. The fucoidanase catalyzed the hydrolysis of fucoidans from Fucus evanescens and Fucus vesiculosus, but not from Saccharina cichorioides. The fucoidanase also did not hydrolyze carrageenan. Desulfated fucoidan from F. evanescens was hydrolysed very weakly in contrast to deacetylated fucoidan, which was hydrolysed more actively compared to the native fucoidan from F. evanescens. Analysis of the structure of the enzymatic products showed that the marine bacteria, F. algae, synthesized an α-l-fucanase with an endo-type action that is specific for 1→4-bonds in a polysaccharide molecule built up of alternating three- and four-linked α-l-fucopyranose residues sulfated mainly at position 2.  相似文献   

12.
Fucoidans are sulfated, complex, fucose-rich polymers found in brown seaweeds. Fucoidans have been shown to have multiple bioactivities, including anti-inflammatory effects, and are known to inhibit inflammatory processes via a number of pathways such as selectin blockade and enzyme inhibition, and have demonstrated inhibition of inflammatory pathologies in vivo. In this current investigation, fucoidan extracts from Undaria pinnatifida, Fucus vesiculosus, Macrocystis pyrifera, Ascophyllum nodosum, and Laminaria japonica were assessed for modulation of pro-inflammatory cytokine production (TNF-α, IL-1β, and IL-6) by human peripheral blood mononuclear cells (PBMCs) and in a human macrophage line (THP-1). Fucoidan extracts exhibited no signs of cytotoxicity in THP-1 cells after incubation of 48 h. Additionally, all fucoidan extracts reduced cytokine production in LPS stimulated PBMCs and human THP-1 cells in a dose-dependent fashion. Notably, the 5–30 kDa subfraction from Macrocystis pyrifera was a highly effective inhibitor at lower concentrations. Fucoidan extracts from all species had significant anti-inflammatory effects, but the lowest molecular weight subfractions had maximal effects at low concentrations. These observations on various fucoidan extracts offer insight into strategies that improve their efficacy against inflammation-related pathology. Further studies should be conducted to elucidate the mechanism of action of these extracts.  相似文献   

13.
The aim of this study was to evaluate the effects of ingesting fucoidan derived from Okinawa mozuku (Cladosiphon okamuranus) on natural killer (NK) cell activity and to assess its safety in healthy adults via a randomized, double-blind, parallel-group, placebo-controlled pilot study. Subjects were randomly divided into two groups—a placebo group (ingesting citric acid, sucralose, and caramel beverages; n = 20; 45.5 ± 7.8 years (mean ± standard deviation)) and a fucoidan group (3.0 g/day from beverages; n = 20; 47.0 ± 7.6 years); after 12 weeks, blood, biochemical, and immunological tests were performed. Clinically adverse events were not observed in any of the tests during the study period. In addition, adverse events due to the test food were not observed. In the immunological tests, NK cell activity was significantly enhanced at 8 weeks in the fucoidan group, compared to before ingestion (0 weeks). In addition, a significantly enhanced NK cell activity was observed in male subjects at 8 weeks, compared with the placebo group. These results confirm that Okinawa mozuku-derived fucoidan enhances NK cell activity and suggest that it is a safe food material.  相似文献   

14.
Three structurally different fucoidans from the brown seaweeds Saccharina latissima (SL), Fucus vesiculosus (FV), and Cladosiphon okamuranus (CO), two chemically modified fucoidans with a higher degree of sulfation (SL-S, CO-S), and a synthetic totally sulfated octasaccharide (OS), related to fucoidans, were assessed on anticoagulant and antithrombotic activities in different in vitro experiments. The effects were shown to depend on the structural features of the compounds tested. Native fucoidan SL with a degree of sulfation (DS) of 1.3 was found to be the most active sample, fucoidan FV (DS 0.9) demonstrated moderate activity, while the polysaccharide CO (DS 0.4) was inactive in all performed experiments, even at high concentrations. Additional introduction of sulfate groups into fucoidan SL slightly decreased the anticoagulant effect of SL-S, while sulfation of CO, giving rise to the preparation CO-S, increased the activity dramatically. The high level of anticoagulant activity of polysaccharides SL, SL-S, and CO-S was explained by their ability to form ternary complexes with ATIII-Xa and ATIII-IIa, as well as to bind directly to thrombin. Synthetic per-O-sulfated octasaccharide OS showed moderate anticoagulant effect, determined mainly by the interaction of OS with the factor Xa in the presence of ATIII. Comparable tendencies were observed in the antithrombotic properties of the compounds tested.  相似文献   

15.
Sulphated polysaccharides (SP) extracted from seaweeds have antiviral properties and are much less cytotoxic than conventional drugs, but little is known about their mode of action. Combination antiviral chemotherapy may offer advantages over single agent therapy, increasing efficiency, potency and delaying the emergence of resistant virus. The paramyxoviridae family includes pathogens causing morbidity and mortality worldwide in humans and animals, such as the Newcastle Disease Virus (NDV) in poultry. This study aims at determining the antiviral activity and mechanism of action in vitro of an ulvan (SP from the green seaweed Ulva clathrata), and of its mixture with a fucoidan (SP from Cladosiphon okamuranus), against La Sota NDV strain. The ulvan antiviral activity was tested using syncytia formation, exhibiting an IC50 of 0.1 μg/mL; ulvan had a better anti cell-cell spread effect than that previously shown for fucoidan, and inhibited cell-cell fusion via a direct effect on the F0 protein, but did not show any virucidal effect. The mixture of ulvan and fucoidan showed a greater anti-spread effect than SPs alone, but ulvan antagonizes the effect of fucoidan on the viral attachment/entry. Both SPs may be promising antivirals against paramyxovirus infection but their mixture has no clear synergistic advantage.  相似文献   

16.
Intensive efforts have been undertaken in the fields of prevention, diagnosis, and therapy of lung cancer. Fucoidans exhibit a wide range of biological activities, which are dependent on the degree of sulfation, sulfation pattern, glycosidic branches, and molecular weight of fucoidan. The determination of oversulfation of fucoidan and its effect on anti-lung cancer activity and related signaling cascades is challenging. In this investigation, we used a previously developed fucoidan (SCA), which served as a native fucoidan, to generate two oversulfated fucoidan derivatives (SCA-S1 and SCA-S2). SCA, SCA-S1, and SCA-S2 showed differences in compositions and had the characteristic structural features of fucoidan by Fourier transform infrared (FTIR) and nuclear magnetic resonance (NMR) analyses. The anticancer properties of SCA, SCA-S1, and SCA-S2 against human lung carcinoma A-549 cells were analyzed in terms of cytotoxicity, cell cycle, Bcl-2 expression, mitochondrial membrane potential (MMP), expression of caspase-3, cytochrome c release, Annexin V/propidium iodide (PI) staining, DNA fragmentation, and the underlying signaling cascades. Our findings indicate that the oversulfation of fucoidan promotes apoptosis of lung cancer cells and the mechanism may involve the Akt/mTOR/S6 pathway. Further in vivo research is needed to establish the precise mechanism whereby oversulfated fucoidan mitigates the progression of lung cancer.  相似文献   

17.
The immunotoxic potential of domoic acid (DA), a well-characterized neurotoxin, has not been fully investigated. Phagocytosis and lymphocyte proliferation were evaluated following in vitro and in vivo exposure to assay direct vs indirect effects. Mice were injected intraperitoneally with a single dose of DA (2.5 μg/g b.w.) and sampled after 12, 24, or 48 hr. In a separate experiment, leukocytes and splenocytes were exposed in vitro to 0, 1, 10, or 100 μM DA. In vivo exposure resulted in a significant increase in monocyte phagocytosis (12-hr), a significant decrease in neutrophil phagocytosis (24-hr), a significant decrease in monocyte phagocytosis (48-hr), and a significant reduction in T-cell mitogen-induced lymphocyte proliferation (24-hr). In vitro exposure significantly reduced neutrophil and monocyte phagocytosis at 1 μM. B- and T-cell mitogen-induced lymphocyte proliferation were both significantly increased at 1 and 10 μM, and significantly decreased at 100 μM. Differences between in vitro and in vivo results suggest that DA may exert its immunotoxic effects both directly and indirectly. Modulation of cytosolic calcium suggests that DA exerts its effects through ionotropic glutamate subtype surface receptors at least on monocytes. This study is the first to identify DA as an immunotoxic chemical in a mammalian species.  相似文献   

18.
Neonatal hypoxic-ischemic encephalopathy causes neurodegeneration and brain injury, leading to sensorimotor dysfunction. Xyloketal B is a novel marine compound isolated from a mangrove fungus Xylaria species (no. 2508) with unique antioxidant effects. In this study, we investigated the effects and mechanism of xyloketal B on oxygen-glucose deprivation-induced neuronal cell death in mouse primary cortical culture and on hypoxic-ischemic brain injury in neonatal mice in vivo. We found that xyloketal B reduced anoxia-induced neuronal cell death in vitro, as well as infarct volume in neonatal hypoxic-ischemic brain injury model in vivo. Furthermore, xyloketal B improved functional behavioral recovery of the animals following hypoxic-ischemic insult. In addition, xyloketal B significantly decreased calcium entry, reduced the number of TUNEL-positive cells, reduced the levels of cleaved caspase-3 and Bax proteins, and increased the level of Bcl-2 protein after the hypoxic-ischemic injury. Our findings indicate that xyloketal B is effective in models of hypoxia-ischemia and thus has potential as a treatment for hypoxic-ischemic brain injury.  相似文献   

19.
Fucoidan is an l-fucose-enriched sulfated polysaccharide isolated from brown algae and marine invertebrates. In this study, we investigated the protective effect of fucoidan from Fucus vesiculosus on alcohol-induced murine liver damage. Liver injury was induced by oral administration of 25% alcohol with or without fucoidan (30 mg/kg or 60 mg/kg) for seven days. Alcohol administration increased serum aspartate aminotransferase and alanine aminotransferase levels, but these increases were suppressed by the treatment of fucoidan. Transforming growth factor beta 1 (TGF-β1), a liver fibrosis-inducing factor, was highly expressed in the alcohol-fed group and human hepatoma HepG2 cell; however, the increase in TGF-β1 expression was reduced following fucoidan administration. Treatment with fucoidan was also found to significantly reduce the production of inflammation-promoting cyclooygenase-2 and nitric oxide, while markedly increasing the expression of the hepatoprotective enzyme, hemeoxygenase-1, on murine liver and HepG2 cells. Taken together, the antifibrotic and anti-inflammatory effects of fucoidan on alcohol-induced liver damage may provide valuable insights into developing new therapeutics or interventions.  相似文献   

20.
Nanoparticle drug delivery (NDDS) is a novel system in which the drugs are delivered to the site of action by small particles in the nanometer range. Natural or synthetic polymers are used as vectors in NDDS, as they provide targeted, sustained release and biodegradability. Here, we used the chitosan and hepatoma cell-specific binding molecule, glycyrrhetinic acid (GA), to synthesize glycyrrhetinic acid-modified chitosan (GA-CTS). The synthetic product was confirmed by Fourier transformed infrared spectroscopy (FT-IR) and 1H-nuclear magnetic resonance (1H-NMR). By combining GA-CTS and 5-FU (5-fluorouracil), we obtained a GA-CTS/5-FU nanoparticle, with a particle size of 217.2 nm, a drug loading of 1.56% and a polydispersity index of 0.003. The GA-CTS/5-FU nanoparticle provided a sustained release system comprising three distinct phases of quick, steady and slow release. We demonstrated that the nanoparticle accumulated in the liver. In vitro data indicated that it had a dose- and time-dependent anti-cancer effect. The effective drug exposure time against hepatic cancer cells was increased in comparison with that observed with 5-FU. Additionally, GA-CTS/5-FU significantly inhibited the growth of drug-resistant hepatoma, which may compensate for the drug-resistance of 5-FU. In vivo studies on an orthotropic liver cancer mouse model demonstrated that GA-CTS/5-FU significantly inhibited tumor growth, resulting in increased survival time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号