首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Species of Schizochytrium are well known for their remarkable ability to produce lipids intracellularly. However, during their lipid accumulation, reactive oxygen species (ROS) are generated inevitably as byproducts, which if in excess results in lipid peroxidation. To alleviate such ROS-induced damage, seven different natural antioxidants (ascorbic acid, α-tocopherol, tea extract, melatonin, mannitol, sesamol, and butylated hydroxytoluene) were evaluated for their effects on the lipid accumulation in Schizochytrium sp. PKU#Mn4 using a fractional factorial design. Among the tested antioxidants, mannitol showed the best increment (44.98%) in total fatty acids concentration. However, the interaction effects of mannitol (1 g/L) and ascorbic acid (1 g/L) resulted in 2.26 ± 0.27 g/L and 1.45 ± 0.04 g/L of saturated and polyunsaturated fatty acids (SFA and PUFA), respectively, in batch fermentation. These concentrations were further increased to 7.68 ± 0.37 g/L (SFA) and 5.86 ± 0.03 g/L (PUFA) through fed-batch fermentation. Notably, the interaction effects yielded 103.7% and 49.6% increment in SFA and PUFA concentrations in batch fermentation. The possible mechanisms underlining those increments were an increased maximum growth rate of strain PKU#Mn4, alleviated ROS level, and the differential expression of lipid biosynthetic genes andupregulated catalase gene. This study provides an applicable strategy for improving the accumulation of SFA and PUFA in thraustochytrids by exogenous antioxidants and the underlying mechanisms.  相似文献   

2.
As mammals are unable to synthesize essential polyunsaturated fatty acids (PUFA), these compounds need to be taken in through diet. Nowadays, obtaining essential PUFA in diet is becoming increasingly difficult; therefore this work investigated the suitability of using macroalgae as novel dietary sources of PUFA. Hence, 17 macroalgal species from three different phyla (Chlorophyta, Phaeophyta and Rhodophyta) were analyzed and their fatty acid methyl esters (FAME) profile was assessed. Each phylum presented a characteristic fatty acid signature as evidenced by clustering of PUFA profiles of algae belonging to the same phylum in a Principal Components Analysis. The major PUFA detected in all phyla were C18 and C20, namely linoleic, arachidonic and eicosapentaenoic acids. The obtained data showed that rhodophytes and phaeophytes have higher concentrations of PUFA, particularly from the n-3 series, thereby being a better source of these compounds. Moreover, rhodophytes and phaeophytes presented “healthier” ∑n-6/∑n-3 and PUFA/saturated fatty acid ratios than chlorophytes. Ulva was an exception within the Chlorophyta, as it presented high concentrations of n-3 PUFA, α-linolenic acid in particular. In conclusion, macroalgae can be considered as a potential source for large-scale production of essential PUFA with wide applications in the nutraceutical and pharmacological industries.  相似文献   

3.
Abyssal seafloor ecosystems cover more than 50% of the Earth’s surface. Being formed by mainly heterotrophic organisms, they depend on the flux of particulate organic matter (POM) photosynthetically produced in the surface layer of the ocean. As dead phytoplankton sinks from the euphotic to the abyssal zone, the trophic value of POM and the concentration of essential polyunsaturated fatty acids (PUFA) decrease. This results in pronounced food periodicity and limitations for bottom dwellers. Deep-sea invertebrate seston eaters and surface deposit feeders consume the sinking POM. Other invertebrates utilize different food items that have undergone a trophic upgrade, with PUFA synthesized from saturated and monounsaturated FA. Foraminifera and nematodes can synthesize arachidonic acid (AA), eicosapentaenoic acid (EPA), while some barophylic bacteria produce EPA and/or docosahexaenoic acid. FA analysis of deep-sea invertebrates has shown high levels of PUFA including, in particular, arachidonic acid, bacterial FA, and a vast number of new and uncommon fatty acids such as 21:4(n-7), 22:4(n-8), 23:4(n-9), and 22:5(n-5) characteristic of foraminifera. We suppose that bacteria growing on detritus having a low trophic value provide the first trophic upgrading of organic matter for foraminifera and nematodes. In turn, these metazoans perform the second-stage upgrading for megafauna invertebrates. Deep-sea megafauna, including major members of Echinodermata, Mollusca, and Polychaeta display FA markers characteristic of bacteria, foraminifera, and nematodes and reveal new markers in the food chain.  相似文献   

4.
The role of diatoms as a source of bioactive compounds has been recently explored. Diatom cells store a high amount of fatty acids, especially certain polyunsaturated fatty acids (PUFAs). However, many aspects of diatom metabolism and the production of PUFAs remain unclear. This review describes a number of technical strategies, such as modulation of environmental factors (temperature, light, chemical composition of culture medium) and culture methods, to influence the content of PUFAs in diatoms. Genetic engineering, a newly emerging field, also plays an important role in controlling the synthesis of fatty acids in marine microalgae. Several key points in the biosynthetic pathway of PUFAs in diatoms as well as recent progresses are also a critical part and are summarized here.  相似文献   

5.
Microalgae have been emerging as an important source for the production of bioactive compounds. Marine diatoms can store high amounts of lipid and grow quite quickly. However, the genetic and biochemical characteristics of fatty acid biosynthesis in diatoms remain unclear. Glycerophospholipids are integral as structural and functional components of cellular membranes, as well as precursors of various lipid mediators. In addition, diacylglycerol acyltransferase (DGAT) is a key enzyme that catalyzes the last step of triacylglyceride (TAG) biosynthesis. However, a comprehensive sequence-structure and functional analysis of DGAT in diatoms is lacking. In this study, an isoform of diacylglycerol acyltransferase type 2 of the marine diatom Phaeodactylum tricornutum was characterized. Surprisingly, DGAT2 overexpression in P. tricornutum stimulated more oil bodies, and the neutral lipid content increased by 35%. The fatty acid composition showed a significant increase in the proportion of polyunsaturated fatty acids; in particular, EPA was increased by 76.2%. Moreover, the growth rate of transgenic microalgae remained similar, thereby maintaining a high biomass. Our results suggest that increased DGAT2 expression could alter fatty acid profile in the diatom, and the results thus represent a valuable strategy for polyunsaturated fatty acid production by genetic manipulation.  相似文献   

6.
New compounds are needed to treat acne and superficial infections caused by Propionibacterium acnes and Staphylococcus aureus due to the reduced effectiveness of agents used at present. Long-chain polyunsaturated fatty acids (LC-PUFAs) are attracting attention as potential new topical treatments for Gram-positive infections due to their antimicrobial potency and anti-inflammatory properties. This present study aimed to investigate the antimicrobial effects of six LC-PUFAs against P. acnes and S. aureus to evaluate their potential to treat infections caused by these pathogens. Minimum inhibitory concentrations were determined against P. acnes and S. aureus, and the LC-PUFAs were found to inhibit bacterial growth at 32–1024 mg/L. Generally, P. acnes was more susceptible to the growth inhibitory actions of LC-PUFAs, but these compounds were bactericidal only for S. aureus. This is the first report of antibacterial activity attributed to 15-hydroxyeicosapentaenoic acid (15-OHEPA) and 15-hydroxyeicosatrienoic acid (HETrE), while the anti-P. acnes effects of the six LC-PUFAs used herein are novel observations. During exposure to the LC-PUFAs, S. aureus cells were killed within 15–30 min. Checkerboard assays demonstrated that the LC-PUFAs did not antagonise the antimicrobial potency of clinical agents used presently against P. acnes and S. aureus. However, importantly, synergistic interactions against S. aureus were detected for combinations of benzoyl peroxide with 15-OHEPA, dihomo-γ-linolenic acid (DGLA) and HETrE; and neomycin with 15-OHEPA, DGLA, eicosapentaenoic acid, γ-linolenic acid and HETrE. In conclusion, LC-PUFAs warrant further evaluation as possible new agents to treat skin infections caused by P. acnes and S. aureus, especially in synergistic combinations with antimicrobial agents already used clinically.  相似文献   

7.
The production of polyunsaturated fatty acids (PUFA) in Tisochrysis lutea was studied using the gradual incorporation of a 13C-enriched isotopic marker, 13CO2, for 24 h during the exponential growth of the algae. The 13C enrichment of eleven fatty acids was followed to understand the synthetic pathways the most likely to form the essential polyunsaturated fatty acids 20:5n-3 (EPA) and 22:6n-3 (DHA) in T. lutea. The fatty acids 16:0, 18:1n-9 + 18:3n-3, 18:2n-6, and 22:5n-6 were the most enriched in 13C. On the contrary, 18:4n-3 and 18:5n-3 were the least enriched in 13C after long chain polyunsaturated fatty acids such as 20:5n-3 or 22:5n-3. The algae appeared to use different routes in parallel to form its polyunsaturated fatty acids. The use of the PKS pathway was hypothesized for polyunsaturated fatty acids with n-6 configuration (such as 22:5n-6) but might also exist for n-3 PUFA (especially 20:5n-3). With regard to the conventional n-3 PUFA pathway, Δ6 desaturation of 18:3n-3 appeared to be the most limiting step for T. lutea, “stopping” at the synthesis of 18:4n-3 and 18:5n-3. These two fatty acids were hypothesized to not undergo any further reaction of elongation and desaturation after being formed and were therefore considered “end-products”. To circumvent this limiting synthetic route, Tisochrysis lutea seemed to have developed an alternative route via Δ8 desaturation to produce longer chain fatty acids such as 20:5n-3 and 22:5n-3. 22:6n-3 presented a lower enrichment and appeared to be produced by a combination of different pathways: the conventional n-3 PUFA pathway by desaturation of 22:5n-3, the alternative route of ω-3 desaturase using 22:5n-6 as precursor, and possibly the PKS pathway. In this study, PKS synthesis looked particularly effective for producing long chain polyunsaturated fatty acids. The rate of enrichment of these compounds hypothetically synthesized by PKS is remarkably fast, making undetectable the 13C incorporation into their precursors. Finally, we identified a protein cluster gathering PKS sequences of proteins that are hypothesized allowing n-3 PUFA synthesis.  相似文献   

8.
The molecular diversity of chemical compounds found in marine animals offers a good chance for the discovery of novel bioactive compounds of unique structures and diverse biological activities. Nudibranch mollusks, which are not protected by a shell and produce chemicals for various ecological uses, including defense against predators, have attracted great interest for their lipid composition. Lipid analysis of eight nudibranch species revealed dominant phospholipids, sterols and monoalkyldiacylglycerols. Among polar lipids, 1-alkenyl-2-acyl glycerophospholipids (plasmalogens) and ceramide-aminoethyl phosphonates were found in the mollusks. The fatty acid compositions of the nudibranchs differed greatly from those of other marine gastropods and exhibited a wide diversity: very long chain fatty acids known as demospongic acids, a series of non-methylene-interrupted fatty acids, including unusual 21:2∆7,13, and an abundance of various odd and branched fatty acids typical of bacteria. Symbiotic bacteria revealed in some species of nudibranchs participate presumably in the production of some compounds serving as a chemical defense for the mollusks. The unique fatty acid composition of the nudibranchs is determined by food supply, inherent biosynthetic activities and intracellular symbiotic microorganisms. The potential of nudibranchs as a source of biologically active lipids and fatty acids is also discussed.  相似文献   

9.
The marine opisthobranch Scaphander lignarius has been analyzed in the systematic search for novel bioactive compounds in Arctic marine organisms using bioassay guided fractionation. A number of highly cytotoxic fractions were shown to contain mainly polyunsaturated fatty acids (PUFAs). Selected PUFAs were isolated and identified using both liquid chromatography-mass spectrometry (LC-MS) and nuclear magnetic resonance (NMR). It was shown that the opisthobranch contained unusual PUFAs such as several ω3 fatty acids and the ω7 heneicosa-5,8,11,14-tetraenoic acid (21:4 n-7) not isolated before. The organism was shown to be a very rich source of PUFAs and the activity of the isolated compounds against a range of human cancer cell lines (melanoma, colon carcinoma and breast carcinoma) is further reported. The ω7 PUFA was significantly more cytotoxic in comparison with reference ω6 arachidonic and ω3 eicosapentaenoic acid. A noteworthy non-selective cytotoxicity against normal lung fibroblasts was also established. The paper contains isolation protocols in addition to cytotoxicity data of the isolated compounds. The potential of marine mollusks as a source for rare PUFAs is also discussed.  相似文献   

10.
采用气相色谱(GC)对茶籽的脂肪酸组成进行分析,并研究了活性脂肪酸对高浓度葡萄糖胁迫下RF/6A细胞生长的影响及其与葡萄糖对RF/6A细胞脂肪酸代谢的调节。结果表明,油酸与亚油酸为茶籽中含量最高的脂肪酸;而茶籽中脂肪酸的组成与其品种和产地有密切关系。亚油酸与亚麻酸对高浓度葡萄糖诱导的RF/6A细胞过度增殖有抑制作用。亚油酸、亚麻酸及棕榈酸对RF/6A细胞的脂肪酸代谢均具有调节作用。  相似文献   

11.
Long-chain (C20–24) polyunsaturated fatty acids (LC-PUFAs) are essential nutrients that are mostly produced in marine ecosystems. Previous studies suggested that gammarids have some capacity to endogenously produce LC-PUFAs. This study aimed to investigate the repertoire and functions of elongation of very long-chain fatty acid (Elovl) proteins in gammarids. Our results show that gammarids have, at least, three distinct elovl genes with putative roles in LC-PUFA biosynthesis. Phylogenetics allowed us to classify two elongases as Elovl4 and Elovl6, as they were bona fide orthologues of vertebrate Elovl4 and Elovl6. Moreover, a third elongase was named as “Elovl1/7-like” since it grouped closely to the Elovl1 and Elovl7 found in vertebrates. Molecular analysis of the deduced protein sequences indicated that the gammarid Elovl4 and Elovl1/7-like were indeed polyunsaturated fatty acid (PUFA) elongases, whereas Elovl6 had molecular features typically found in non-PUFA elongases. This was partly confirmed in the functional assays performed on the marine gammarid Echinogammarus marinus Elovl, which showed that both Elovl4 and Elovl1/7-like elongated PUFA substrates ranging from C18 to C22. E. marinus Elovl6 was only able to elongate C18 PUFA substrates, suggesting that this enzyme does not play major roles in the LC-PUFA biosynthesis of gammarids.  相似文献   

12.
为探明花生响应干旱胁迫的生理机制,以前期试验筛选的花生耐旱品种NH5和HY22,敏感品种FH18和NH16为试材,研究了干旱胁迫下不同花生品种ROS积累与清除能力,保护酶活性、渗透调节物质积累能力以及根系特征,以明确花生应对干旱胁迫的生理应答特性.结果表明,干旱胁迫导致花生的根系萎蔫皱缩且根系活力下降,植株的过氧化氢含...  相似文献   

13.
Low molecular weight secondary metabolites of marine fungi Aspergillus flocculosus, Aspergillus terreus and Penicillium sp. from Van Phong and Nha Trang Bays (Vietnam) were studied and a number of polyketides, bis-indole quinones and terpenoids were isolated. The structures of the isolated compounds were determined by 1D and 2D NMR and HR-ESI-MS techniques. Stereochemistry of some compounds was established based on ECD data. A chemical structure of asterriquinone F (6) was thoroughly described for the first time. Anthraquinone (13) was firstly obtained from a natural source. Neuroprotective influences of the isolated compounds against 6-OHDA, paraquat and rotenone toxicity were investigated. 4-Hydroxyscytalone (1), 4-hydroxy-6-dehydroxyscytalone (2) and demethylcitreoviranol (3) have shown significant increasing of paraquat- and rotenone-treated Neuro-2a cell viability and anti-ROS activity.  相似文献   

14.
The present study aimed to contrast the fatty acid (FA) profile of ascidians (Ascidiacea) and seaweeds (sea lettuce, Ulva spp. and bladderwrack, Fucus sp.) occurring in a coastal lagoon with versus without the influence of organic-rich effluents from fish farming activities. Our results revealed that ascidians and seaweeds from these contrasting environments displayed significant differences in their FA profiles. The n-3/n-6 ratio of Ascidiacea was lower under the influence of fish farming conditions, likely a consequence of the growing level of terrestrial-based ingredients rich on n-6 FA used in the formulation of aquafeeds. Unsurprisingly, these specimens also displayed significantly higher levels of 18:1(n-7+n-9) and 18:2n-6, as these combined accounted for more than 50% of the total pool of FAs present in formulated aquafeeds. The dissimilarities recorded in the FAs of seaweeds from these different environments were less marked (≈5%), with these being more pronounced in the FA classes of the brown seaweed Fucus sp. (namely PUFA). Overall, even under the influence of organic-rich effluents from fish farming activities, ascidians and seaweeds are a valuable source of health-promoting FAs, which confirms their potential for sustainable farming practices, such as integrated multi-trophic aquaculture.  相似文献   

15.
This study is evaluating the seasonal lipid and fatty acid composition of the brown seaweed Saccharina latissima. Biomass was sampled throughout the year (bi-monthly) at the commercial cultivation site near a fish farm in an integrated multi-trophic aquaculture (IMTA) and at a reference site in Denmark (2013–2014). Generally, there was no difference in the biomass composition between sites; however, significant seasonal changes were found. The lipid concentration varied from 0.62%–0.88% dry weight (DW) in July to 3.33%–3.35% DW in November (p < 0.05) in both sites. The fatty acid composition in January was significantly different from all the other sampling months. The dissimilarities were mainly explained by changes in the relative abundance of 20:5n-3 (13.12%–33.35%), 14:0 (11.07%–29.37%) and 18:1n-9 (10.15%–16.94%). Polyunsaturated fatty acids (PUFA’s) made up more than half of the fatty acids with a maximum in July (52.3%–54.0% fatty acid methyl esters; FAME). This including the most appreciated health beneficial PUFA’s, eicosapentaenoic (EPA; 20:5n-3) and docosahexaenoic acid (DHA; 22:6n-3), but also arachidonic (ARA) and stearidonic acid (SDA), which are not found in land vegetables such as cabbage and lettuce. Compared to fat (salmon) and lean fish (cod) this seaweed species contains higher proportions of ARA and SDA, but lower EPA (only cod) and DHA. Conclusively, the season of harvest is important for the choice of lipid quantity and quality, but the marine vegetables provide better sources of EPA, DHA and long-chain (LC)-PUFA’s in general compared to traditional vegetables.  相似文献   

16.
Aurantiochytrium is a heterotrophic marine microalga that has potential industrial applications. The main objectives of this study were to isolate an Aurantiochytrium strain from Sand Cay (Son Ca) Island, Vietnam, optimize its culture conditions, determine its nutritional composition, extract polyunsaturated fatty acids (PUFAs) in the free (FFA) and the alkyl ester (FAAE) forms, and evaluate the antioxidation and neuroprotection properties of the PUFAs. Aurantiochytrium sp. SC145 can be grown stably under laboratory conditions. Its culture conditions were optimized for a dry cell weight (DCW) of 31.18 g/L, with total lipids comprising 25.29%, proteins 7.93%, carbohydrates 15.21%, and carotenoid at 143.67 µg/L of DCW. The FAAEs and FFAs extracted from Aurantiochytrium sp. SC145 were rich in omega 3–6–9 fatty acids (40.73% and 44.00% of total fatty acids, respectively). No acute or subchronic oral toxicity was determined in mice fed with the PUFAs in FFA or FAAE forms at different doses over 90 days. Furthermore, the PUFAs in the FFA or FAAE forms and their main constituents of EPA, DHA, and ALA showed antioxidant and AChE inhibitory properties and neuroprotective activities against damage caused by H2O2- and amyloid-ß protein fragment 25–35 (Aβ25-35)-induced C6 cells. These data suggest that PUFAs extracted from Aurantiochytrium sp. SC145 may be a potential therapeutic target for the treatment of neurodegenerative disorders.  相似文献   

17.
Marine pyridoacridines are a class of aromatic chemicals that share an 11H-pyrido[4,3,2-mn]acridine skeleton. Pyridoacridine alkaloids display diverse biological activities including cytotoxicity, fungicidal and bactericidal properties, production of reactive oxygen species (ROS) and topoisomerase inhibition. These activities are often dependent on slight modifications to the pyridoacridine skeleton. Here we demonstrate that while structurally similar to neoamphimedine and amphimedine, the biological activity of deoxyamphimedine differs greatly. Deoxyamphimedine damages DNA in vitro independent of topoisomerase enzymes through the generation of reactive oxygen species. Its activity was decreased in low oxygen, with the removal of a reducing agent and in the presence of anti-oxidants. Deoxyamphimedine also showed enhanced toxicity in cells sensitive to single or double strand DNA breaks, consistent with the in vitro activity.  相似文献   

18.
A marine polycyclic quinone-type metabolite, halenaquinone (HQ), was found to inhibit the proliferation of Molt 4, K562, MDA-MB-231 and DLD-1 cancer cell lines, with IC50 of 0.48, 0.18, 8.0 and 6.76 μg/mL, respectively. It exhibited the most potent activity against leukemia Molt 4 cells. Accumulating evidence showed that HQ may act as a potent protein kinase inhibitor in cancer therapy. To fully understand the mechanism of HQ, we further explored the precise molecular targets in leukemia Molt 4 cells. We found that the use of HQ increased apoptosis by 26.23%–70.27% and caused disruption of mitochondrial membrane potential (MMP) by 17.15%–53.25% in a dose-dependent manner, as demonstrated by Annexin-V/PI and JC-1 staining assays, respectively. Moreover, our findings indicated that the pretreatment of Molt 4 cells with N-acetyl-l-cysteine (NAC), a reactive oxygen species (ROS) scavenger, diminished MMP disruption and apoptosis induced by HQ, suggesting that ROS overproduction plays a crucial rule in the cytotoxic activity of HQ. The results of a cell-free system assay indicated that HQ could act as an HDAC and topoisomerase catalytic inhibitor through the inhibition of pan-HDAC and topoisomerase IIα expression, respectively. On the protein level, the expression of the anti-apoptotic proteins p-Akt, NFκB, HDAC and Bcl-2, as well as hexokinase II was inhibited by the use of HQ. On the other hand, the expression of the pro-apoptotic protein Bax, PARP cleavage, caspase activation and cytochrome c release were increased after HQ treatment. Taken together, our results suggested that the antileukemic effect of HQ is ROS-mediated mitochondrial apoptosis combined with the inhibitory effect on HDAC and topoisomerase activities.  相似文献   

19.
CD36 is a scavenger receptor involved in lipid uptake and inflammation. Recently, non-cell-bound CD36 (sCD36) was identified in plasma and suggested to be a marker of lipid accumulation in the vessel wall. Marine n-3 polyunsaturated fatty acids (PUFA) may have cardioprotective effects. This study evaluated the effect of marine n-3 PUFA on sCD36 levels in overweight subjects. Fifty overweight subjects were randomized to 1.1 g of n-3 PUFA or 2 g of olive oil daily for six weeks. Neutrophils were isolated at baseline and after six weeks of treatment while an adipose tissue biopsy was obtained at baseline. The content of n-3 PUFA in adipose tissue and neutrophils was analyzed by gas chromatography, while plasma levels of sCD36 were determined using an enzyme-linked immunosorbent assay (ELISA). After six weeks of supplement plasma sCD36 did not differ between supplements (P = 0.18). There was no significant correlation between plasma sCD36 levels and n-3 PUFA in neutrophils at baseline (r = −0.02, P = 0.88), after six weeks supplement (r = −0.03, P = 0.85) or in adipose tissue (r = 0.14, P = 0.34). This study therefore does not provide evidence for a cardioprotective effect of n-3 PUFA acting through a CD36-dependent mechanism.  相似文献   

20.
Fish discards and by-products can be transformed into high value-added products such as fish protein hydrolysates (FPH) containing bioactive peptides. Protein hydrolysates were prepared from different parts (whole fish, skin and head) of several discarded species of the North-West Spain fishing fleet using Alcalase. All hydrolysates had moisture and ash contents lower than 10% and 15%, respectively. The fat content of FPH varied between 1.5% and 9.4% and had high protein content (69.8–76.6%). The amino acids profiles of FPH are quite similar and the most abundant amino acids were glutamic and aspartic acids. All FPH exhibited antioxidant activity and those obtained from Atlantic horse mackerel heads presented the highest 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity, reducing power and Cu2+ chelating activity. On the other hand, hydrolysates from gurnard heads showed the highest ABTS radical scavenging activity and Fe2+ chelating activity. In what concerns the α-amylase inhibitory activity, the IC50 values recorded for FPH ranged between 5.70 and 84.37 mg/mL for blue whiting heads and whole Atlantic horse mackerel, respectively. α-Glucosidase inhibitory activity of FPH was relatively low but all FPH had high Angiotensin Converting Enzyme (ACE) inhibitory activity. Considering the biological activities, these FPH are potential natural additives for functional foods or nutraceuticals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号