首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 171 毫秒
1.
在坡面股流的流程上,当径流侵蚀力增大到足以冲刷土块,形成小跌水,进而演化为细沟下切沟头时,细沟侵蚀就开始发生了。下切沟头的下切侵蚀和下切沟头间径流对沟底的冲刷、沟头的溯源侵蚀、沟壁的崩塌形成了断续细沟。而一条股流的流程上多个断续细沟溯源侵蚀的连接,就形成了连续细沟。在这个过程中,由于降雨径流侵蚀力和土壤抗侵蚀力在时空上的强弱对比关系,出现细沟的分叉、合并及连通现象。所有这些过程,不但进一步促进了细沟的发展,而且随之造成严重的细沟侵蚀。  相似文献   

2.
黄土高原地区鱼鳞坑坡面侵蚀演化过程及水力学特征   总被引:6,自引:0,他引:6  
为明确鱼鳞坑坡面抗侵蚀演化过程及其水流水力学特性,采用间歇性人工模拟降雨实验,对鱼鳞坑坡面水流水力学特性以及阻力规律进行了系统分析。结果表明:(1)鱼鳞坑坡面侵蚀演化过程表现为:雨滴溅蚀—片蚀—股流冲刷—跌坑—细沟侵蚀—下切侵蚀—溯源侵蚀—崩塌。(2)随着降雨历时的增加,由于鱼鳞坑的层层拦截与蓄满,其下方的坡面径流流速、水深均呈波动式增长趋势,坑内出现旋涡,坡面径流呈现断续股流。降雨累积历时为58 min左右,总降雨量达到87 mm时,鱼鳞坑侵蚀量急剧增加,拦蓄径流作用失效。(3)五场降雨过程中,上坡和中坡水流流态为层流,下坡由于鱼鳞坑蓄满后径流出现波动,水流流态由层流变为紊流且时而为缓流时而为急流。(4)鱼鳞坑坡面水流阻力来源于降雨阻力、颗粒阻力、形态阻力叠加,在整个降雨过程中阻力总和呈下降趋势;其中,受地形高低起伏、地表糙度的影响,形态阻力一直居于主导地位。  相似文献   

3.
坡面细沟发生临界水动力条件初探   总被引:15,自引:2,他引:15  
通过玻璃水槽试验和土槽放水冲刷试验对坡面细沟侵蚀发生的临界水动力条件进行了初步研究。结果表明 ,坡面径流在顺坡向下流动过程中以滚波形式运动并发生叠加是造成侵蚀方式发生变化的主要原因。由于径流流动过程中发生滚波叠加 ,造成在径流流路上出现局部水深增加 ,导致侵蚀切应力激增 ,当切应力大于该处的土壤抗蚀力时便发生侵蚀 ,并最终造成细沟沟头的出现。通过对土槽冲刷试验的结果分析 ,运用能量守恒原理建立了径流能耗和径流侵蚀产沙率之间的关系 ,给出了给定土壤条件下坡面细沟侵蚀率估算模型。结果表明 ,坡面土壤侵蚀的发生具有一定的临界条件 ,当径流能耗大于 7 3 8(J)时坡面开始有细沟侵蚀发生  相似文献   

4.
晋西黄土丘陵沟壑区坡面土壤侵蚀及预报研究   总被引:5,自引:0,他引:5  
细沟间侵蚀是指坡面上细沟未形成之前或细沟形成之后细沟间的土壤侵蚀过程。细沟间侵蚀量预报是整个坡面水土流失预报的一个重要组成部分。本文以晋西黄土丘陵沟壑区的土壤侵蚀为背景,以野外及室内试验资料为基础,论述了降雨动能、土壤抗剪强度、坡度、植被、表土结皮对细沟间土壤侵蚀的影响,提出了坡面一次降雨细沟间侵蚀总量的预报模型。本模型与径流及细沟侵蚀量预报模型结合,可形成一个较为完整的坡面水蚀总量预报模型。  相似文献   

5.
坡耕地细沟侵蚀影响因素的研究   总被引:42,自引:3,他引:42  
本文利用人工降雨试验和野外调查资料分析研究了黄土高原坡耕地细沟侵蚀发生发展的影响因素.其结果表明:降雨径流能量(尤其是径流能量)、土壤抗侵蚀性能、坡度、坡长、坡形、土地管理是影响细沟侵蚀的主要因素.作者认为防治坡耕地土壤侵蚀的关键是削弱降雨能量和提高土壤的抗侵蚀性能.  相似文献   

6.
黄土坡面细沟发育及细沟与细沟间侵蚀比率研究   总被引:2,自引:2,他引:2  
基于室内人工模拟降雨试验,采用三维激光扫描仪对坡面进行监测,研究了黄土坡面不同坡度(10°,15°,20°,25°)和雨强(90,120mm/h)下细沟发育过程、形态特征及细沟与细沟间侵蚀比率变化规律。结果表明:(1)随着坡度、降雨强度增大,坡面产流时间、细沟出现时间有减小趋势,断面流速有增大趋势;(2)黄绵土坡面细沟形态变化受降雨强度影响较小,受坡度影响较大。在10°,15°坡度条件下,受溯源侵蚀及沟道下切作用较强,形成的细沟长、窄,深;在20°,25°条件下,受沟壁坍塌作用影响较大,形成的细沟短、宽、浅;(3)采用多元回归方法对细沟与细沟间侵蚀比率与坡度、雨强、径流的关系进行拟合,拟合函数为幂函数方程,细沟与细沟间侵蚀比率随着坡度、降雨强度增大而增大。  相似文献   

7.
基于三维激光扫描仪的坡面细沟侵蚀动态过程研究   总被引:13,自引:0,他引:13       下载免费PDF全文
 利用三维激光扫描仪探索多场降雨情况下同一坡面细沟侵蚀的动态过程,为解释细沟侵蚀过程提供一定的理论依据。采用室内人工模拟降雨,在坡度为15°的土槽上进行恒降雨强度的7场降雨冲刷实验,利用三维激光扫描仪对每场降雨冲刷后的坡面形态进行了监测,定量分析坡面细沟侵蚀的动态发育过程。结果表明:前2场降雨与后5场降雨产流产沙过程和细沟侵蚀发育过程有较大差异,细沟从第3场降雨开始明显发育。表现为小跌水一下切沟头一断续细沟一连续细沟一细沟沟网的发育过程。通过三维激光扫描仪精确监测7场降雨坡面各点微地形变化,发现细沟平均沟宽、平均沟深、沟长最大值、细沟平均密度在前2场降雨增长幅度较小,至第3场降雨后开始迅速增人,细沟侵蚀强度不断加强。侵蚀强度由第1场降雨的0. 103 kg/m2发展至第7场降雨的8.788 kg/m2,增加了84倍。  相似文献   

8.
黄土坡面细沟沟头溯源侵蚀的量化研究   总被引:14,自引:8,他引:6  
沟头溯源侵蚀占坡面细沟侵蚀量的60%以上。该文运用立体摄影测量技术和人工模拟径流冲刷的方法,研究不同流量和坡度下沟头溯源侵蚀过程及其产沙特征,探讨沟头下切造成的地表形态变化对坡面产沙的影响。结果表明:1)坡面产沙率和沟头溯源侵蚀速率随流量和坡度的增加而增大。流量每增加1 L/min,产沙率增加0.59~5.34倍;坡度从15°增加到20°,产沙率增加14.0%~89.7%。2)当流量小于或等于2 L/min时,产沙率在试验初期增加较快,而后缓慢上升;当流量大于2 L/min时,产沙率始终保持快速上升趋势,沟头溯源长度达到100 cm所需时间较流量为1 L/min时缩短12 min以上。3)坡度对沟头溯源侵蚀速率的影响随流量的增加逐渐减弱。4)细沟长度随时间的变化受流量和坡度的影响,其值可由线性增函数表达;产沙率受沟头溯源侵蚀速率、沟头跌坎高度和沟头下方沟槽内发育的二级沟头数影响,其值可由多元非线性回归方程表示。研究结果可为沟头溯源侵蚀预报模型建立和坡面水土保持措施布设提供理论依据。  相似文献   

9.
基于三维重建技术的坡面细沟侵蚀演变过程研究   总被引:3,自引:1,他引:3  
作为黄土高原地区沟头溯源侵蚀和水流汇集发源地的梁峁坡面,在强降雨下其产流产沙对沟缘线以下坡面及沟道侵蚀有着重大影响。该研究根据野外实地考查构建5°~35°变坡段实体模型,进行6场间歇性人工模拟降雨试验,并借助基于三维重建技术的PhotoScan软件获取坡面DEM,将其侵蚀演化过程进行图形化、数字化,定性定量揭示其侵蚀形态演变特征。研究表明:1)梁峁坡面细沟侵蚀历经4个阶段:面蚀阶段,即产生一系列呈串珠状分布的侵蚀跌坑,宽度5~9 cm,深度1~4 cm;细沟形成阶段,由面蚀所产生的微小跌坑在径流作用下长、宽、深均不断增大,最大分别达到266、7.6、13.8cm;细沟网形成阶段,细沟出现分叉及联通,有明显流路;小切沟形成阶段,伴随沟壁崩塌、沟壁加宽和沟底下切,最大沟长及最大沟深较细沟形成时增大3倍以上。2)对比次降雨过程基于三维建模所计算侵蚀量与实测侵蚀量,第1场降雨试验因地表疏松颗粒较多导致实测侵蚀量比建模计算侵蚀量大而引起较大偏差(20.82%),其他场次偏差均在10%左右或以下,总体来说,该技术可以较好地应用于侵蚀发育过程的研究。该研究实现侵蚀演变关键过程图形化、数字化,有助于人们定性、定量了解和认识梁峁坡面侵蚀过程,且对于创新侵蚀过程研究方法亦具有实践指导价值。  相似文献   

10.
黄土高塬沟壑区董志塬沟头溯源侵蚀特征及其防治途径   总被引:7,自引:2,他引:5  
黄土高塬沟壑区沟头溯源侵蚀非常普遍,已经对塬面地区的土地、农田、村庄民居、道路和工厂造成了严重的威胁.通过对董志塬的调查发现,影响溯源侵蚀的因素为自然和人为因素两类.自然因素主要包括降雨径流、地形地貌和土质.总结出溯源侵蚀的发生类型为水力冲刷型、陷穴诱发型、裂缝诱发型和人为诱发型.溯源侵蚀的过程从时间顺序上可分为3个阶段,主要分为水力冲刷阶段、水力和重力共同作用阶段、重力侵蚀阶段.最后,根据不同类型的沟头侵蚀与活动特点,提出了沟头的主要防护措施.  相似文献   

11.
T.W. Lei  Q.W. Zhang  L.J. Yan  J. Zhao  Y.H. Pan 《Geoderma》2008,144(3-4):628-633
Soil erodibility and critical shear stress are two of the most important parameters for physically-based soil erosion modeling. To aid in future soil erosion modeling, a rational method for determining the soil erodibility and critical shear stress of rill erosion under concentrated flow is advanced in this paper. The method suggests that a well-defined rill be used for shear stress estimation while infinite short rill lengths be used for determination of detachment capacity. The derivative of the functional relationship between sediment yield and rill length at the inlet of rill flow, as opposed to average detachment rate of a long rill, was used for the determination of detachment capacity. Soil erodibility and critical shear stress were then regressively estimated with detachment capacity data under different flow regimes. Laboratory data of rill erosion under well defined rill channels from a loess soil was used to estimate the soil erodibility and critical shear stress. The results showed that no significant change in soil erodibility (Kr) was observed for different slope gradients ranging from 5 to 25 while critical shear stress increased slightly with the slope gradient. Soil erodibility of the loess soil was 0.3211 ± 0.001 s m− 1. The soil erodibility and critical shear stress calculations were then compared with data from other resources to verify the feasibility of the method. Data comparison showed that the method advanced is a physically logical and feasible method to calculate the soil erodibility and critical shear stress for physically-based soil erosion models.  相似文献   

12.
土壤可蚀性参数和临界剪切应力是评价土壤易侵蚀程度和抗水流剪切变形能力的重要指标,目前在黄绵土坡面细沟侵蚀过程中,土壤饱和条件下可蚀性参数和临界剪切应力的变化尚不明确。该研究采用室内土槽模拟冲刷试验确定不同坡度(5°、10°、15°、20°)和流量(2、4、8 L/min)下饱和黄绵土坡面的最大细沟剥蚀率,基于数值法、修正数值法和解析法计算土壤可蚀性参数和临界剪切应力。结果表明,3种方法所得最大细沟剥蚀率均随坡度和流量增加而增大,其中修正数值法和解析法计算的最大细沟剥蚀率更接近。土壤可蚀性参数分别是0.485、0.283和0.268 s/m,土壤临界剪切应力分别为1.225、1.244和1.381 N/m2。修正数值法可提高数值法近似计算的精度,使近似计算结果更接近解析法计算获得的理论值。饱和较未饱和黄绵土的土壤可蚀性参数略有减小(16.83%),而临界剪切应力减小了66.97%,表明土壤饱和对黄绵土土壤可蚀性参数影响很小,但大幅度削弱了土壤临界剪切应力,使得黄绵土坡面饱和后土壤侵蚀更为强烈。此外,饱和黄绵土边坡的临界剪切应力比饱和紫色土坡面大6.38%,而细沟可蚀性参数大2.35倍,表明土壤饱和对2种土壤临界剪切应力影响程度相似,但黄绵土较紫色土对土壤侵蚀的敏感性更高。研究结果可为饱和状态下不同土壤坡面细沟侵蚀模型参数的优化提供参考。  相似文献   

13.
J.M. Roels 《CATENA》1984,11(1):377-389
A simple equation is needed to predict soil loss on a storm-by-storm basis and on a hill-slope scale. In response to this need a modelling procedure is proposed that incorporates not only the relation between soil loss and one or more determining factors at individual locations in different source areas (interrill, pre-rill and rill areas) but also the spatial variation in this relation among locations within a source area. The initial version of the relation presented here considers soil loss only as a function of erosivity and rainfall and runoff erosivity factors are used for interrill areas and for pre-rill and rill areas respectively. About 85% of the variation in soil loss at individual locations in each source area is explained by erosivity. The influence of erosivity, however, is found to vary with the size of the area under consideration. In addition, this scale-dependence varies with the type of erosion occurring. Modelling soil loss becomes much more effective if this effect is taken into account.The rainsplash and interrill erosion equations presented are very site-specific. This means that modelling these types of erosion on a hillslope scale will involve the introduction of many erosion determining factors. The rill and pre-rill erosion equations are less site-specific. Accordingly, fewer factors are required to describe these erosion types. On a hillslope scale a pre-rill erosion model for instance based only on erosivity can explain as much as 76% of the variation in soil loss.  相似文献   

14.
J.M. Roels 《CATENA》1984,11(4):377-389
A simple equation is needed to predict soil loss on a storm-by-storm basis and on a hill-slope scale. In response to this need a modelling procedure is proposed that incorporates not only the relation between soil loss and one or more determining factors at individual locations in different source areas (interrill, pre-rill and rill areas) but also the spatial variation in this relation among locations within a source area. The initial version of the relation presented here considers soil loss only as a function of erosivity and rainfall and runoff erosivity factors are used for interrill areas and for pre-rill and rill areas respectively. About 85% of the variation in soil loss at individual locations in each source area is explained by erosivity. The influence of erosivity, however, is found to vary with the size of the area under consideration. In addition, this scale-dependence varies with the type of erosion occurring. Modelling soil loss becomes much more effective if this effect is taken into account.The rainsplash and interrill erosion equations presented are very site-specific. This means that modelling these types of erosion on a hillslope scale will involve the introduction of many erosion determining factors. The rill and pre-rill erosion equations are less site-specific. Accordingly, fewer factors are required to describe these erosion types. On a hillslope scale a pre-rill erosion model for instance based only on erosivity can explain as much as 76% of the variation in soil loss.  相似文献   

15.
基于GIS和RS的巢湖流域水土流失评估   总被引:6,自引:2,他引:4  
汤丽洁  舒畅 《水土保持通报》2013,33(1):305-308,312
基于地理信息系统(GIS)和遥感技术(RS),提取了巢湖流域地表覆盖、水土保持措施、坡度坡长、土壤可蚀性、降雨侵蚀力5个主要影响水土流失的因子,并运用修正的通用土壤侵蚀模型(revised univer-sal soil loss equation,RUSLE)估算土壤侵蚀量,生成水土流失等级分布图,从而完成对巢湖流域水土流失现状和空间分布特征的评估分析.结果表明,巢湖流域水土流失主要为微度侵蚀和轻度侵蚀,分别占流域总面积的93.87%和6.04%.此外,坡度和植被覆盖是影响流域土壤侵蚀的主要因素.研究结果可为巢湖流域水土流失治理及决策提供科学参考.  相似文献   

16.
WEPP模型中细沟可蚀性参数估计方法误差的理论分析   总被引:8,自引:4,他引:4  
细沟土壤侵蚀在坡面土壤侵蚀占有重要地位。土壤可蚀性参数是WEPP模型中计算预报/计算细沟土壤侵蚀中极其重要的参数。WEPP模型现在采用的可蚀性参数是用长的细沟/径流小区试验以细沟侵蚀产沙估计得到的最大可能剥蚀率为基础获得的。该文分析了细沟侵蚀产沙随沟长的变化关系,分析了可蚀性参数估计误差的来源。从理论上推导出了计算现有WEPP可蚀性参数估计误差的计算方法。理论分析表明,对于限定性细沟,可蚀性参数的估计误差主要来源于细沟最大可能剥蚀率的估计值。最大可能剥蚀率的理想估计值是水流载沙量与细沟长度的函数关系在细沟  相似文献   

17.
Erodibility of agricultural soils on the Loess Plateau of China   总被引:6,自引:0,他引:6  
K. Zhang  S. Li  W. Peng  B. Yu   《Soil & Tillage Research》2004,76(2):157-165
Soil erodibility is thought of as the ease with which soil is detached by splash during rainfall or by surface flow. Soil erodibility is an important factor in determining the rate of soil loss. In the universal soil loss equation (USLE) and the revised universal soil loss equation (RUSLE), soil erodibility is represented by an erodibility factor (K). The K factor was defined as the mean rate of soil loss per unit rainfall erosivity index from unit runoff plots. Although high rate of soil loss from the Loess Plateau in China is well known and widely documented, it is remarkable that there is little systematic attempt to develop and validate an erodibility index for soils on the Loess Plateu for erosion prediction. Field experimental data from four sites on the Loess Plateau were analyzed to determine the K factor for USLE/RUSLE and to compare with another erodibility index based on soil loss and runoff commonly used for the region. The data set consists of event erosivity index, runoff, and soil loss for 17 runoff plots with slope ranging from 8.7 to 60.1%. Results indicate that the K factor for USLE/RULSE is more appropriate for agricultural soils on the Loess Plateau than the erodibility index developed locally. Values of the K factor for loessial soils range from 0.0096 to 0.0269 t h/(MJ mm). The spatial distribution of the K value in the study area follows a simple pattern showing high values in areas with low clay content. For the four sites investigated, the K factor was significantly related to the clay content, (K=0.031−0.0013 Cl, r2=0.75), where Cl is the clay content in percent. The measured values of the K factor are systematically lower than the nomograph-based estimates by a factor of 3.3–8.4. This implies that use of the nomograph method to estimate soil erodibility would considerably over-predict the rate of soil loss, and local relationship between soil property and the K factor is required for soil erosion prediction for the region.  相似文献   

18.
以长江中上游典型侵蚀性土壤紫色土为研究对象,采用变坡限定性细沟土槽,研究不同流量、坡度和沟长情况下,紫色土细沟侵蚀特征,并量化了细沟侵蚀参数。结果表明:细沟侵蚀受水流水力特征、土壤性质和坡面影响,随着水流含沙量的增大,细沟侵蚀速率呈现减小趋势;流量越大,坡度越陡,细沟水流的剥蚀率越大,造成细沟侵蚀速率也越大。在5L/min的小流量下,细沟侵蚀速率受剥蚀率限制与含沙量没有出现线性关系,15,25L/min流量下,细沟侵蚀速率与含沙量呈线性相关。侵蚀速率在细沟开始处最大,随沟长的增大,水流能量消耗于挟带泥沙而迅速减小,相关性分析得到侵蚀速率与沟长呈指数递减,相关系数R2变化于0.45~0.98之间。通过回归分析得到试验条件下,紫色土细沟土壤可蚀性均值为0.005 3s/m,临界剪切力均值为2.92Pa。研究结果对于坡面土壤侵蚀物理模型的建立和推广应用提供数据支撑,为紫色土坡面侵蚀研究提供借鉴。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号