首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Three protracted outbreaks of strangles were investigated using endoscopic examination and a total of 14 asymptomatic carriers of Streptococcus equi were identified of which 13 showed evidence of carriage in the guttural pouch. Treatment was initiated to eliminate S. equi colonisation since these animals posed an infectious risk to susceptible horses. Two further horses were referred to us with severe guttural pouch pathology and from which S. equi was cultured, and treatment of these cases is also described. Treatment in the first instance was directed towards removal of gross guttural pouch pathology as seen on endoscopic examination. This was done with a combination of irrigation of the pouch with moderate to large amounts of saline, suction of fluid material and endoscopic manipulation of chondroids. Subsequently, antibiotic treatment was used to eliminate S. equi infection. All animals received systemic antibiotics, in some cases combined with topical antimicrobial treatment. Treatment was generally regarded as successful when the guttural pouches appeared normal and S. equi was not detected in nasopharangeal swabs and pouch lavages on 3 consecutive occasions. Successful treatment of one carrier required surgical intervention due to occlusion of both guttural pouch pharyngeal openings. Fourteen of 15 carriers were successfully treated by endoscopic removal of inflammatory material and antibiotic treatment, without surgical intervention. Five carriers originally given potentiated sulphonamide (33%) required further therapy with penicillin or ceftiofur, administered both systemically and topically, before S. equi infection and associated inflammation of the guttural pouches were eliminated.  相似文献   

2.
3.
4.
Strangles is a serious respiratory disease in horses caused by Streptococcus equi subspecies equi (S. equi). Transmission of the disease occurs by direct contact with an infected horse or contaminated equipment. Genetically, S. equi strains are highly homogenous and differentiation of strains has proven difficult. However, the S. equi M-protein SeM contains a variable N-terminal region and has been proposed as a target gene to distinguish between different strains of S. equi and determine the source of an outbreak. In this study, strains of S. equi (n=60) from 32 strangles outbreaks in Sweden during 1998-2003 and 2008-2009 were genetically characterized by sequencing the SeM protein gene (seM), and by pulsed-field gel electrophoresis (PFGE). Swedish strains belonged to 10 different seM types, of which five have not previously been described. Most were identical or highly similar to allele types from strangles outbreaks in the UK. Outbreaks in 2008/2009 sharing the same seM type were associated by geographic location and/or type of usage of the horses (racing stables). Sequencing of the seM gene generally agreed with pulsed-field gel electrophoresis profiles. Our data suggest that seM sequencing as a epidemiological tool is supported by the agreement between seM and PFGE and that sequencing of the SeM protein gene is more sensitive than PFGE in discriminating strains of S. equi.  相似文献   

5.
Previously published studies have neither used nor reported the results of an indirect enzyme-linked immunosorbent assay (iELISA) to measure serologic responses in natural outbreaks of strangles. The concept of using serologic responses to identify persistent carriers of Streptococcus equi has been proposed but not scientifically evaluated. The specific aims of the current study were to determine the duration and level of truncated fibrinogen-binding protein-specific (SeM allele 1) antibody production in ponies involved in a natural outbreak of strangles and to determine if test results from this serologic iELISA could predict persistent carrier status. Serologic samples were obtained before and after an outbreak of naturally occurring strangles infection. Persistent carriers of S. equi were identified via culture and polymerase chain reaction (PCR) testing of lavage fluid collected from the guttural pouches and nasopharynx or swabs of the nasopharynx after recovery from acute disease and at postmortem examination. Logistic regression analysis was used to determine if an association existed between serologic response and persistent carrier state. The ELISA reported in the current study definitively confirmed a recent exposure to S. equi. However, the measured serologic response did not predict carrier status in this strangles outbreak. Therefore, a guttural-pouch endoscopy with subsequent culture or PCR testing to detect S. equi remains the most accurate method available for the identification of persistent carriers.  相似文献   

6.
Reasons for performing study: Little is known about entry and subsequent multiplication of Streptococcus equi following exposure of a susceptible horse. This information would have value in design of intranasal vaccines and understanding of shedding and protective immune responses. Objectives: To determine entry points and sites of subsequent replication and dispersion of S. equi at different times after intranasal infection or commingling exposure. Methods: Previously unexposed horses and ponies were subjected to euthanasia 1, 3, 20 or 48 h following intranasal inoculation with biotin labelled or unlabelled S. equi CF32. Some ponies were inoculated with suspensions of equal numbers of CF32 and its mutants lacking capsule, S. equi M‐like protein or streptolysin S. Others were infected by commingling exposure and subjected to euthanasia after onset of fever. Tonsils and lymph nodes were cultured for S. equi and tissues sectioned for histopathological examination and fluorescent microscopy. Results: Tonsillar tissues of both the oro‐ and nasopharynx served as portals of entry. Entry was unexpectedly rapid but involved few bacteria. Small numbers of organisms were detected in tonsillar crypts, in adjacent subepithelial follicular tissue and draining lymph nodes 3 h after inoculation. By 48 h, clumps of S. equi were visible in the lamina propria. At onset of fever, tonsillar tissues and one or more mandibular and retropharyngeal lymph nodes were heavily infiltrated by neutrophils and long chains of extracellular S. equi. Mutant S. equi lacking virulence factors were not seen in draining lymph nodes. Conclusions: Although very small numbers of S. equi entered the lingual and nasopharyngeal tonsils, carriage to regional lymph nodes occurred within hours of inoculation. This observation, together with visual evidence of intracellular and extracellular multiplication of S. equi in tonsillar lymphoid tissue and lymph nodes over the following days, indicates involvement of potent antiphagocytic activity and failure of innate immune defences. Relevance: Future research should logically address the tonsillar immune mechanisms involved including identification of effector cell(s) and antigens.  相似文献   

7.
8.
Strangles is a contagious equine disease caused by Streptococcus equi subsp. equi. In this study, clinical strains of S. equi (n=24) and Streptococcus equi subsp. zooepidemicus (n=24) were genetically characterized by sequencing of the 16S rRNA and sodA genes in order to devise a real-time PCR system that can detect S. equi and S. zooepidemicus and distinguish between them. Sequencing demonstrated that all S. equi strains had the same 16S rRNA sequence, whereas S. zooepidemicus strains could be divided into subgroups. One of these (n=12 strains) had 16S rRNA sequences almost identical with the S. equi strains. Interestingly, four of the strains biochemically identified as S. zooepidemicus were found by sequencing of the 16S rRNA gene to have a sequence homologous with Streptococcus equi subsp. ruminatorum. However, they did not have the colony appearance or the biochemical characteristics of the type strain of S. ruminatorum. Classification of S. ruminatorum may thus not be determined solely by 16S rRNA sequencing. Sequencing of the sodA gene demonstrated that all S. equi strains had an identical sequence. For the S. zooepidemicus strains minor differences were found between the sodA sequences. The developed real-time PCR, based on the sodA and seeI genes was compared with conventional culturing on 103 cultured samples from horses with suspected strangles or other upper respiratory disease. The real-time PCR system was found to be more sensitive than conventional cultivation as two additional field isolates of S. equi and four of S. zooepidemicus were detected.  相似文献   

9.
REASONS FOR PERFORMING STUDY: Streptococcus equi is the cause of strangles in horses. To improve diagnostic sensitivity, development and evaluation of DNA-based methods are necessary. OBJECTIVES: To evaluate diagnostic methods and observe the pattern of bacterial shedding during natural outbreaks. METHODS: Two herds with natural outbreaks of strangles were visited over a period of 15 weeks and 323 samples originating from 35 horses investigated. The diagnostic use of a nested PCR test was evaluated using a collection of 165 isolates of Lancefield group C streptococci (species specificity) and swabs from nasal passages or from abscesses from horses infected with S. equi (diagnostic sensitivity). RESULTS: All 45 S. equi isolates tested positive in the nested PCR, whereas no amplicon was formed when testing the other 120 Lancefield group C isolates. A total of 43 samples were collected from 11 horses showing clinical signs of strangles during the study period. The diagnostic sensitivity for PCR test was 45% and 80% for samples from the nasal passages and abscesses, respectively; the corresponding diagnostic sensitivity for cultivation was 18% and 20%. The diagnostic sensitivity was significantly higher for PCR than for bacterial cultivation. Furthermore, the shedding of S. equi in 2 infected horse populations was evaluated. An intermittent shedding period of S. equi of up to 15 weeks was recorded in this part of the study. It was also shown that shedding of S. equi occurred both from horses with and without clinical signs. CONCLUSIONS AND POTENTIAL RELEVANCE: The nested PCR test represents a species-specific and -sensitive method for diagnosis of S. equi from clinical samples. It may, however, be desirable in future to develop detection methods with high diagnostic sensitivity and specificity without the potential problems inherent in nested PCR.  相似文献   

10.
11.
12.
13.
14.
15.
本试验旨在建立一种快速、特异、敏感的双重PCR鉴定猪链球菌和马链球菌兽疫亚种病原检测方法。根据猪链球菌GDH蛋白和马链球菌类 M 蛋白的基因保守区分别设计引物,优化了该双重PCR检测方法的引物浓度及比例,并筛选了其最佳退火温度;用该双重PCR反应体系以其他几株阴性菌株为对照,检测了该反应体系的特异性。以新鲜培养的猪链球菌倍比稀释后进行菌落计数,对该检测方法的敏感性进行了鉴定。M-like和GDH引物的加入量均为1 μL(20 pmol/L),最佳退火温度为52.3℃;该双重PCR反应体系有较高敏感性,检测马链球菌兽疫亚种和猪链球菌的敏感度分别达100和10 CFU;特异性试验结果显示,常见的5种病原菌在该双重PCR体系中无特异性条带出现;临床应用该方法分离鉴定了1株猪链球菌和2株马链球菌兽疫亚种。本试验建立了一种能同时检测猪链球菌和马链球菌兽疫亚种的双重PCR方法,且该方法应用快速、特异且敏感。  相似文献   

16.
17.
As part of a search for a safe and efficacious strangles vaccine, several different vaccines and different vaccination routes were tested in foals. The degree of protection was evaluated after an intranasal challenge with virulent Streptococcus equi by clinical, postmortem and bacteriological examinations. Inactivated vaccines containing either native purified M-protein (500 microg per dose) or whole S equi cells (10(10) cells per dose) administered at least twice intramuscularly at intervals of four weeks, did not protect against challenge. Different live attenuated S equi mutants administered at least twice at intervals of four weeks by the intranasal route were either safe but not protective or caused strangles. In contrast, a live attenuated deletion mutant administered intramuscularly, induced complete protection but also induced unacceptable local reactions at the site of vaccination. Submucosal vaccination in the inner side of the upper lip with the live attenuated mutant at > or =10(8) colony-forming units per dose, appeared to be safe and efficacious in foals as young as four months of age. The submucosal vaccinations caused small transient swellings that resolved completely within two weeks, and postmortem no vaccine remnants or other abnormalities were found at the site of vaccination.  相似文献   

18.
19.
Genome sequencing data for Streptococcus equi subspecies equi and zooepidemicus were used to develop a novel diagnostic triplex quantitative PCR (qPCR) assay targeting two genes specific to S. equi (eqbE and SEQ2190) and a unique 100 base pair control DNA sequence (SZIC) inserted into the SZO07770 pseudogene of S. zooepidemicus strain H70. This triplex strangles qPCR assay can provide results within 2 h of sample receipt, has an overall sensitivity of 93.9% and specificity of 96.6% relative to the eqbE singlex assay and detects S. equi at levels below the threshold of the culture assay, even in the presence of contaminating bacteria.  相似文献   

20.
This study aimed to validate a point-of-care polymerase chain reaction (PCR) assay for detection of Streptococcus equi subsp. equi (S. equi) in rostral nasal swabs from horses with suspected acute strangles and to compare the results against the molecular gold standard of quantitative polymerase chain reaction (qPCR). Two hundred thirty-two individual swabs of rostral nasal passages were characterized by qPCR as S. equi positive, S. equi subsp. zooepidemicus (S. zooepidemicus) positive, or S. equi and S. zooepidemicus negative. The specificity and sensitivity of the point-of-care PCR assay were 89% and 84%, respectively. The limits of detection of the qPCR assay and the point-of-care PCR analyzer were 3 and 277 eqbE target genes of S. equi, respectively. Overall agreement and short turnaround time make the point-of-care PCR assay a potential molecular diagnostic platform that will enhance the capability of equine veterinarians to timely support a diagnosis of strangles and institute proper biosecurity protocols.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号