首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In response to customer concerns related to gluten strength in commercial baking, the Canadian Grain Commission assessed whether the Canadian Short Process (CSP) test bake method was generating useful data related to intrinsic strength of wheat varieties. Assessment of CSP loaf volume data for Canadian variety trials spanning 2003 to 2013 showed very little correlation with dough strength parameters as measured by farinograph and extensigraph. A lean no time (LNT) test baking method was developed that can better discriminate genotypes and provide objective indicators of the effect of intrinsic dough strength on baking quality. From early method development, through method validation and verification using diverse sets of samples targeting different Canadian wheat classes and grown in three different crop years, results showed the LNT method to be more discriminating and easily adopted by other laboratories. In 2015, the LNT method was adopted as the method of choice in future Canadian variety registration trials. The LNT method is fast, simple and well-suited to high throughput test baking conditions encountered in the evaluation of large numbers of breeder lines. A new objective parameter, loaf top ratio, was also introduced and found to correlate well with dough strength and dough handling properties.  相似文献   

2.
The objective of this study was to examine the influence of flour quality on the properties of bread made from pre-fermented frozen dough. The physicochemical parameters of 8 different wheat flours were determined, especially the protein quality was analysed in detail by a RP-HPLC procedure. A standardized baking experiment was performed with frozen storage periods from 1 to 168 days. Baked bread was characterised for specific loaf volume, crumb firmness and crumb elasticity. The results were compared to none frozen control breads. Duration of frozen storage significantly affected specific loaf volume and crumb firmness. The reduction of specific loaf volume was different among the used flours and its behaviour and intensity was highly influenced by flour properties. For control breads wet gluten, flourgraph E7 maximum resistance and RVA peak viscosity were positively correlated with specific loaf volume. However, after 1–28 days of frozen storage, wet gluten content was not significantly influencing specific loaf volume, while other parameters were still significantly correlated with the final bread properties. After 168 days of frozen storage all breads showed low volume and high crumb firmness, thus no significant correlations between flour properties and bread quality were found. Findings suggest that flours with strong gluten networks, which show high resistance to extension, are most suitable for frozen dough production. Furthermore, starch pasting characteristics were also affecting bread quality in pre-fermented frozen dough.  相似文献   

3.
Selection for water absorption, a fundamental wheat quality parameter, has been a challenge in wheat breeding programs due to limited wheat materials available for milling and consequent time-consuming farinograph test. Hence, a high shear-based method, which requires 8 g of flour and less than 10 min per test, was proposed to predict flour water absorption using the Brabender GlutoPeak instrument. Highly significant positive linear relationship (r2 = 0.97) was found between GlutoPeak maximum torque and farinograph water absorption for 83 flour samples prepared with Bühler test mill from wheat lines under evaluation in the Canadian wheat variety registration trials. Similar strong correlation (r2 = 0.96) was obtained from flours (n = 63) prepared with Quadrumat Junior laboratory mill using small amount of wheat. Flour prepared either with Bühler test mill or Quadrumat Junior mill can be used for predicting water absorption effectively. GlutoPeak maximum torque was found to be independent of dough strength (r2 = 0.02) as measured by extensigraph. GlutoPeak test can be a powerful tool for rapid and reliable prediction of water absorption of wheat flour.  相似文献   

4.
The extensigraph is particularly useful in characterizing dough viscoelastic properties; however, testing throughput for standard method is low due to the prerequisite for farinograph water absorption, long dough resting and milling to prepare large amounts of flour. Therefore, a rapid extensigraph method was developed that reduced sample size (165 g wheat) for milling and more than tripled throughput. Wheat is milled in Quadrumat Junior mill with a modified sieving system. The resulting flour (100 g) was mixed with a pin mixer at constant water absorption to allow the evaluation of wheat genotypes at the absorption level they are expected to perform. Dough was subsequently stretched by an extensigraph after 15 min of floor time and 30 min resting. Strong correlations for extensigram Rmax (r > 0.93), extensibility (r > 0.64) and area (r > 0.88) were found for the proposed method compared to the standard method. Mixing parameters (time and energy) obtained during dough preparation provided further information about dough strength and mixing requirement. By significantly reducing sample size requirement and increasing testing throughput, this rapid extensigraph method can be widely adopted in milling and baking industry and meets the need for a fast evaluation of dough strength in breeding trials.  相似文献   

5.
The genotype, environment and their interaction play an important role in the grain yielding and grain quality attributes. The main aim of this study was to determine the contributions of the genotype, environment and their interaction to the variation in bread-making traits. The data that were used for the analyses performed in this study were obtained from 3 locations in Poland from post-registration multi-environment trials with winter wheat in 2009 and 2010. The experimental factors were the cultivar (7 cultivars) and the crop management level (low input and high input). In the multi-environment trials, 17 traits were investigated that characterize grain, flour and dough quality. Most of the traits were affected much more strongly by environmental factors (i.e., year and location) than by genotype. The variance components revealed an especially strong effect of the year on the baking score, loaf volume and water absorption, as well a strong effect of the location on dough development and protein content. The obtained results demonstrate that the grain quality as measured by the parameters based on the protein content and quality may be substantially improved by crop management practices, especially by N fertilization level.  相似文献   

6.
Consumption of whole-wheat based products is encouraged due to their important nutritional elements that benefit human health. However, the use of whole-wheat flour is limited because of the poor processing and end-product quality. Bran was postulated as the major problem in whole wheat breadmaking. In this study, four major bran components including lipids, extractable phenolics (EP), hydrolysable phenolics (HP), and fiber were evaluated for their specific functionality in flour, dough and bread baking. The experiment was done by reconstitution approach using the 24 factorial experimental layout. Fiber was identified as a main component to have highly significant (P < 0.05) and negative influence on most breadmaking characteristics. Although HP had positive effect on farinograph stability, it was identified as another main factor that negatively impacted the oven spring and bread loaf volume. Bran oil and EP seemed to be detrimental to most breadmaking characteristics. Overall, statistical analysis indicates that influence of the four bran components are highly complex. The bran components demonstrate multi-way interactions in regards to their influence on dough and bread-making characteristics. Particularly, Fiber appeared to have a high degree of interaction with other bran components and notably influenced the functionality of those components in whole wheat bread-making.  相似文献   

7.
Wheat gluten was isolated in a laboratory dough-batter flour separation process in the presence or absence of lipases differing in hydrolysis specificity. The obtained gluten was blended with wheat starch to obtain gluten-starch (GS) blends of which the water and oil binding capacities were investigated. Furthermore, GS blends were mixed into dough and processed into model breads, of which dough extensibility and loaf volume were measured, respectively. In comparison to GS blends prepared with control gluten, oil binding capacity was higher when GS blends contained gluten isolated with Lecitase Ultra (at 5.0 mg enzyme protein/kg flour), a lipase hydrolyzing both non-polar and polar lipids. Additionally, dough extensibility and total work needed for fracture were lower for dough prepared from GS blends containing gluten isolated with Lipolase (at 5.0 mg enzyme protein/kg flour), a lipase selectively degrading non-polar lipids. In GS blend bread making, this resulted in inferior loaf volumes. Comparable GS blend properties were measured when using control gluten and gluten isolated with YieldMAX, a lipase mainly degrading N-acyl phosphatidylethanolamine. In conclusion, properties of GS blend model systems are altered when gluten prepared in the presence of lipases is used to a degree which depends on lipase specificity and concentration.  相似文献   

8.
The role of gluten proteins during lamination and fermentation of multi-layered wheat flour pastry dough was examined by including oxidizing or reducing agents in the recipe to respectively strengthen or weaken the gluten protein network. Pastry burst rig textural measurements showed that dough strength increases during lamination up to 16 fat layers. However, further lamination up to 64 and 128 fat layers decreases the dough strength, most likely due to destruction of layer integrity. Redox agents strongly affect dough strength. Furthermore, fermentation and spread tests showed that they strongly influence elastic recoil immediately after lamination and during relaxation. Moreover, elastic recoil consistently occurs to a greater extent in the final direction of sheeting. None of the observed changes in dough strength and relaxation behaviour could be linked to changes in the levels of protein extractable in sodium dodecyl sulfate containing medium (SDS-EP). This suggests that changes occur preferentially either within the SDS-extractable or within the non-SDS-EP fraction and that they do not render non-extractable protein fractions extractable or vice versa. Furthermore, elastic recoil is most likely caused by reformation of inter- and intramolecular hydrogen bonds and hydrophobic interactions.  相似文献   

9.
The GlutoPeak®-Test (GPT) as a rapid small-scale technique was optimized to evaluate the gluten aggregation properties and to predict the loaf volume, on the basis of a multiyear and multilocation analysis of wheat samples, using different solvents. 5 % lactic acid and 1 % sodium chloride displayed significant GPT responses. Relationships between protein content, sedimentation value, GPT parameters and loaf volume were investigated. With 1 % sodium chloride, the torque 15 s before maximum torque (AM) presented the highest correlation with loaf volume of samples from 2013 to 2014 (r = 0.77, r = 0.63, p < 0.001, respectively). A multiple regression analysis indicated that the best prediction of loaf volume was a linear function of protein content and AM, explaining the variation in loaf volume by 63 % and providing an uncertainty of ±39 ml. The accuracy of the validation of the linear function leads to 64 % correct and to 36 % incorrect predictions of the loaf volume. This emphasizes that the application of the linear function of protein content and AM cannot replace the actual measurement of loaf volume, but it could be a useful rapid screening test in breeding for improved baking quality in bread wheat.  相似文献   

10.
Increases in the proportion of amylose in the starch of wheat grains result in higher levels of resistant starch, a fermentable dietary fiber associated with human health benefits. The objective of this study was to assess the effect of combined mutations in five STARCH BRANCHING ENZYME II (SBEII) genes on starch composition, grain yield and bread-making quality in two hexaploid wheat varieties. Significantly higher amylose (∼60%) and resistant starch content (10-fold) was detected in the SBEII mutants than in the wild-type controls. Mutant lines showed a significant decrease in total starch (6%), kernel weight (3%) and total grain yield (6%). Effects of the mutations in bread-making quality included increases in grain hardness, starch damage, water absorption and flour protein content; and reductions in flour extraction, farinograph development and stability times, starch viscosity, and loaf volume. Several traits showed significant interactions between genotypes, varieties, and environments, suggesting that some of the negative impacts of the combined SBEII mutations can be ameliorated by adequate selection of genetic background and growing location. The deployment of wheat varieties with increased resistant starch will likely require economic incentives to compensate growers and millers for the significant reductions detected in grain and flour yields.  相似文献   

11.
Native (NF, 13.5% w.b) and moistened (MF, 27% w.b) wheat flours were treated with superheated steam (SS) at 170 °C for 1, 2 and 4 min, and their protein structure as well as dough rheological properties were analyzed. Confocal laser scanning microscopy (CLSM) and SDS-PAGE patterns indicated the formation of protein aggregates with reduced SDS extractability after treatment. Farinograph and dynamic rheometry measurements showed that the strength as well as elastic and viscous moduli of the dough made from SS-treated flours progressively increased with SS treatment time. And both the improvements were more pronounced for superheated steam-treated moistened flours (SS-MF) than for superheated steam-treated native flours (SS-NF). Size-exclusion high performance liquid chromatography (SE-HPLC) analysis demonstrated that dough rheological parameters have positive correlations with SDS unextractable polymeric proteins (UPP) contents. SS treatment on flours led to a transition of protein secondary structures to more ordered form (α-helix and β-sheet). Additionally, free sulfhydryl (SH) contents decreased after treatment, which implied that disulfide bonds accounted for protein extractability loss and dough rheological properties improvement. Elevated moisture level promoted the modification of both protein structure and dough behaviors of flours during SS treatment.  相似文献   

12.
Wheat flour is generally supplemented with α-amylases to increase maltose levels in bread dough and increase loaf volume. While the preference of yeast for glucose and fructose over maltose as substrate for fermentation is well documented, the impact of maltose versus glucose producing enzymes on bread dough fermentation kinetics and bread sugar levels is ill documented. Hence the impact of α-amylase, α-glucosidase and glucoamylase action on both aspects was investigated. Glucoamylase and α-amylase increase the total fermentable sugar content of dough, while α-glucosidase only affects the glucose/maltose ratio. Due to their effect on total fermentable sugar levels, addition of α-amylase or glucoamylase prolongs the total productive fermentation time, while this is not the case for α-glucosidase. In contrast to α-amylase, both glucoamylase and α-glucosidase supplementation leads to higher CO2 production rates during the initial stages of fermentation. In the final bread product, different sugar levels are observed depending on the dosage and type of starch-degrading enzyme. The results of this study imply that long and short fermentation processes benefit from α-amylase and α-glucosidase addition, respectively, while glucoamylase supplementation is suitable for both long and short fermentation times.  相似文献   

13.
High quality requirements are set on durum wheat (Triticum durum) from semolina mills and pasta producers. For the production of semolina and pasta with good cooking quality, high grain protein content and vitreosity is required. The dependency of vitreosity on protein content as well as its stability under the influence of humidity was not well investigated up to now. We (1) compared two methods to determine vitreosity, (2) investigated the relationship between vitreosity and protein content, (3) developed a method to analyze vitreosity under humidity, and (4) examined the relationship between protein content and agronomical as well as quality traits in durum wheat. The results showed that the formation of vitreous kernels greatly depends on the protein content. To evaluate the stability of vitreosity under the influence of humidity a new method was elaborated and employed to assess the durum germplasm under study. This revealed that vitreosity of a durum wheat variety depends on the potential to form vitreous kernels but also to maintain this vitreosity under the influence of humidity. Our results further show that protein content is a central trait in durum wheat that strongly influences important traits like grain yield, vitreosity, and b-value.  相似文献   

14.
The aim of this study was to investigate variation in protein content and gluten viscoelastic properties in wheat genotypes grown in two mega-environments of contrasting climates: the southeast of Norway and Minnesota, USA. Twelve spring wheat varieties, nine from Norway and three HRS from Minnesota, were grown in field experiments at different locations in Norway and Minnesota during 2009–2011. The results showed higher protein content but lower TW and TKW when plants were grown in Minnesota, while the gluten quality measured as Rmax showed large variation between locations in both mega-environments. On average, Rmax of the samples grown in Minnesota was higher than those grown in Norway, but some locations in Norway had similar Rmax values to locations in Minnesota. The data showed inconsistent relationship between the temperature during grain filling and Rmax. Our results suggest that the weakening effect of low temperatures on gluten reported in this study are caused by other environmental factors that relate to low temperatures. The variety Berserk showed higher stability in Rmax as it obtained higher values in the environments in Norway that gave very weak gluten for other varieties.  相似文献   

15.
Amyloglucosidase (AMG) is an enzyme that hydrolyzes starch into glucose units. AMG activity was tested in a model pie dough during the dough-making process (after mixing and sheeting) and during storage for 4 weeks at 4 °C. The activity was quantified by measuring the glucose content of dough and baked products using HPLC. The consequences of AMG activity on the sweet taste of the baked products (sensory ranking test) and on the rheological properties of the dough were studied and compared with a control dough formulated with sucrose. The results showed a significant production of glucose during the dough-making process and during baking when AMG was used. During the dough-making process, AMG activity was limited by the substrate. During baking, the substrate was no longer a limiting factor and the amount of glucose released was directly proportional to the amount of AMG used. The mixing time was increased and the elastic properties of the dough decreased when AMG was added. However, these impacts of AMG on dough properties were not as significant as those of sucrose addition. Addition of 0.75% AMG (flour basis) developed a sweet taste equivalent to that obtained by addition of 17% sucrose (flour basis).  相似文献   

16.
Most of the unique properties of waxy wheat have been associated with the lack of amylose, that in turn may affect the mutual interactions between starch and proteins. To address this particular aspect, we carried out molecular, rheological, and calorimetric studies on flours from two waxy wheat lines that were compared with a non-waxy one. Dough thermal properties and water binding capacity were investigated by Differential Scanning Calorimetry (DSC) and by thermogravimetric analysis, respectively. Protein solvation, aggregation, and thiol accessibility were also investigated, together with dough mixing properties and stickiness. Proteins in waxy wheat samples needed more water to complete solvation, likely because of the water-retaining capacity of waxy wheat starch. In waxy wheat dough, water was tightly bound to starch, and DSC studies indicated an increase in gelatinization temperature. Moreover, the low water mobility in waxy wheat resulted in low and retarded gluten hydration and in high stickiness. In samples with the highest stickiness, protein aggregates were stabilized mainly by hydrophobic interactions. Differences between waxy wheat lines may be attributed to a different structural organization of components within each class of biopolymers.  相似文献   

17.
Waxy wheat flour (WWF) was substituted for 10% regular wheat flour (RWF) in frozen doughs and the physicochemical properties of starch and protein isolated from the frozen doughs stored for different time intervals (0, 1, 2, 4 and 8 weeks) were determined to establish the underlying reasons leading to the effects observed in WWF addition on frozen dough quality. Using Nuclear Magnetic Resonance (NMR), Differential Scanning Calorimeter (DSC) and X-ray Diffraction (XRD) among others, the gluten content, water molecular state, glutenin macropolymer content, damaged starch content, starch swelling power, gelatinization properties, starch crystallinity and bread specific volume were measured. Compared to RWF dough at the same frozen storage condition, 10% WWF addition decreased dry gluten and glutenin macropolymer contents and T23 proton density of frozen dough, but increased the wet gluten content, T21 and T22 proton density. 10% WWF addition also decreased damaged starch content, but increased starch swelling power, gelatinization temperature and enthalpy, crystallinity of starch and bread specific volume of frozen dough. Results in the present study showed that the improvement observed due to WWF addition in frozen dough bread quality might be attributed to its inhibition of redistribution of water molecules bound to proteins, increase in damaged starch content and decrease in starch swelling power.  相似文献   

18.
Two commercial hard red spring wheat cultivars were exposed to high and low temperatures, as well as drought stress when the main tiller kernels were at the soft dough stage. The trial was done in the greenhouse for two consecutive seasons to determine the effects of these stress conditions on protein content, SDS sedimentation and selected Mixsmart characteristics. Heat stress had the largest effect on mixing characteristics. Heat and drought stress caused a significant increase in flour protein content of both cultivars and had similar effects on mixing characteristics. The Mixsmart characteristics associated with dough strength were increased by heat and drought stress. Cold stress caused a slight increase in protein content of the cultivars, but in general caused a reduction in dough strength as measured with Mixsmart characteristics. The reaction of Mixsmart characteristics to heat and drought stress was much larger in Duzi than in Kariega, confirming that there is a large genotype effect in rheological characteristics.  相似文献   

19.
Wheat flour replacement from 0 to 40% by single tef flours from three Ethiopian varieties DZ-01-99 (brown grain tef), DZ-Cr-37 (white grain tef) and DZ-Cr-387 (Quncho, white grain tef) yielded a technologically viable ciabatta type composite bread with acceptable sensory properties and enhanced nutritional value, as compared to 100% refined wheat flour. Incorporation of tef flour from 30% to 40% imparted discreet negative effects in terms of decreased loaf volume and crumb resilience, and increase of crumb hardness in brown tef blended breads. Increment of crumb hardness on aging was in general much lower in tef blended breads compared to wheat bread counterparts, revealing slower firming kinetics, especially for brown tef blended breads. Blended breads with 40% white tef exhibited similar extent and variable rate of retrogradation kinetics along storage, while brown tef-blended breads retrograded slower but in higher extent than control wheat flour breads. Breads that contains 40% tef grain flour were found to contain five folds (DZ-01-99, DZ-Cr-387) to 10 folds (DZ-Cr-37) Fe, three folds Mn, twice Cu, Zn and Mg, and 1.5 times Ca, K, and P contents as compared to the contents found in 100% refined wheat grain flour breads. In addition, suitable dietary trends for lower rapidly digestible starch and starch digestion rate index were met from tef grain flour fortified breads.  相似文献   

20.
In order to investigate the impact of different yeast strains from the species Saccharomyces cerevisiae on the dough and bread quality parameters, wheat flour was fermented using different beer yeasts. The results show that beer yeast strains could be included in the baking process since S. cerevisiae T-58 and S. cerevisiae s-23 provided adequate gas production and dough formation with superior structural properties like extensibility and stickiness to S. cerevisiae baker's yeast. The resulting breads show the highest specific volume with the highest slice area and the highest number of cells and the lowest hardness over time. The different yeasts had also an impact on the crust colour due to their abilities to ferment different sugars and on shelf life due to the production of a range of different metabolic by-products. According to this study it was possible to produce higher quality bread by using yeast coming from the brewing industry, instead of bread containing standard baker's yeast.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号