首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Increases in the proportion of amylose in the starch of wheat grains result in higher levels of resistant starch, a fermentable dietary fiber associated with human health benefits. The objective of this study was to assess the effect of combined mutations in five STARCH BRANCHING ENZYME II (SBEII) genes on starch composition, grain yield and bread-making quality in two hexaploid wheat varieties. Significantly higher amylose (∼60%) and resistant starch content (10-fold) was detected in the SBEII mutants than in the wild-type controls. Mutant lines showed a significant decrease in total starch (6%), kernel weight (3%) and total grain yield (6%). Effects of the mutations in bread-making quality included increases in grain hardness, starch damage, water absorption and flour protein content; and reductions in flour extraction, farinograph development and stability times, starch viscosity, and loaf volume. Several traits showed significant interactions between genotypes, varieties, and environments, suggesting that some of the negative impacts of the combined SBEII mutations can be ameliorated by adequate selection of genetic background and growing location. The deployment of wheat varieties with increased resistant starch will likely require economic incentives to compensate growers and millers for the significant reductions detected in grain and flour yields.  相似文献   

2.
The identification of “stay-green” in sorghum and its positive correlation with yield increases has encouraged attempts to incorporate “stay-green”-like traits into the genomes of other commercially important cereal crops. However, knowledge on the effects of “stay-green” expression on grain quality under extreme physiological stress is limited. This study examines impacts of “stay-green”-like expression on starch biosynthesis in barley (Hordeum vulgare L.) grain under mild, severe, and acute water stress conditions induced at anthesis. The proportions of long amylopectin branches and amylose branches in the grain of Flagship (a cultivar without “stay-green”-like characteristics) were higher at low water stress, suggesting that water stress affects starch biosynthesis in grain, probably due to early termination of grain fill. The changes in long branches can affect starch properties, such as the rates of enzymatic degradation, and hence its nutritional value. By contrast, grain from the “stay-green”-like cultivar (ND24260) did not show variation in starch molecular structure under the different water stress levels. The results indicate that the cultivar with “stay-green”-like traits has a greater potential to maintain starch biosynthesis and quality in grain during drought conditions, making the “stay-green”-like traits potentially useful in ensuring food security.  相似文献   

3.
To provide food and nutrition security for a growing world population, continued improvements in the yield and nutritional quality of agricultural crops will be required. Wheat is an important source of calories, protein and micronutrients and is thus a priority to breed for improvements in these traits. The GRAIN PROTEIN CONTENT-B1 (GPC-B1) gene is a positive regulator of nutrient translocation which increases protein, iron and zinc concentration in the wheat grain. In the ten years since it was cloned, the impacts of GPC-B1 allelic variation on quality and yield traits have been extensively analyzed in diverse genetic backgrounds in field studies spanning forty environments and seven countries. In this review, we compile data from twenty-five studies to summarize the impact of GPC-B1 allelic variation on fifty different traits. Taken together, the results demonstrate that the functional copy of the GPC-B1 gene is associated with consistent positive effects on grain protein, Fe and Zn content with only marginally negative impacts on yield. We conclude that the GPC-B1 gene has the potential to increase nutritional and end use quality in a wide range of modern cultivars and environments and discuss the possibilities for its application in wheat breeding.  相似文献   

4.
Ungerminated brown rice (UGBR) and pre-germinated brown rice (PGBR) obtained from different pre-germination durations were studied to investigate the changes in total starch contents of flour, amylopectin molecular structures, crystallinity, and thermal properties of starches as affected by pre-germination. Each paddy of three rice cultivars with different amylose contents (RD6, waxy; KDML105, low amylose; and RD31, high amylose) was soaked in water at 30°C for 12 h and incubated over different periods until the three stages of embryonic growth length (EGL) were achieved. The total starch contents of three-stage PGBR flour from all rice cultivars decreased when pre-germination durations were increased. The three-stage PGBR starches from the three rice cultivars had lower weight-average molecular weight (Mw) and number-average molecular weight (Mn) than UGBR starches. All starches from the three rice cultivars displayed an A-type X-ray diffraction pattern (XRD). Isolated UGBR starch from RD6 had the highest (31.33%) relative crystallinity (RC), while RD31 showed the lowest RC (26.79%). The slight increases in the RC of three-stage PGBR starches from three rice cultivars were found after pre-germination. Isolated PGBR starches from the three rice cultivars had higher gelatinization temperatures and enthalpy, but lower retrogradation enthalpy and %retrogradation than UGBR starches.  相似文献   

5.
Amylose and resistant starch (RS) content in rice flour were manipulated. The experiment was conducted using a full factorial design. Rice flour with average amylose content of 20 and RS content of 0.5 g/100 g dry sample was fortified with pure amylose from potato and high RS modified starch to reach the final amylose content of 30, 40 and 50 and RS content of 2, 4 and 6 g/100 g dry sample. The fortified rice flours were examined for their gelatinisation properties, in-vitro enzymatic starch digestion and gel textural properties. It was found that amylose and RS significantly affect all the fortified rice flour properties (p < 0.05). High amylose and RS improved starch digestion properties, reducing the rate of starch digestion and lowering the glycaemic index (GI) values. Amylose had a more pronounced effect on the fortified rice starch properties than RS. In this study, the fortified rice flour which contained amylose and RS of approximately 74 and 9 g/100 g dry sample respectively was used to produce rice noodles. The noodles exhibited low GI values (GI < 55). However, amylose and RS affected the textures of rice noodles providing low tensile strength and break distance (extensibility).  相似文献   

6.
To acquire a better understanding of whether RS influences the dynamics of in vivo starch digestion and seed vigour, the high-RS rice mutant RS4 (RS ca. 10%) and the wild type R7954 were used to investigate total amylase activity, seedling vigour, starch content and starch granule structure during germination. RS4 exhibited similar seed vigour to R7954. Amylose and amylopectin in R7954 showed synchronous degradation throughout the whole process, while amylopectin was hydrolysed significantly faster than amylose in RS4 during the earlier germination stages. The starch residues of RS4 after germination (GD) lost endotherm peaks and showed a special X-ray diffraction pattern with only two peaks at around 16.90° and 21.62°, probably due to remnants of amylopectin and its tight crosslinking with the cell wall. The remaining starch after 10 GD, primarily amylopectin may make a critical contribution to total resistant starch content. These results indicated that RS had no negative impact on seed vigour in rice lines, although RS cannot be hydrolysed by α-amylase from human and animal in vitro. By appropriately increasing the special amylopectin fraction, a new breeding programme of high RS crops and improvement in the eating quality of high RS rice varieties might be achieved.  相似文献   

7.
Native and moistened wheat flours (moisture contents were 13.5 and 27.0%, respectively) were treated with superheated steam (SS) at different temperatures (140 and 170 °C) and times (1, 2 and 4 min). Their physicochemical and digestive properties were analyzed. For native flour, SS treatment altered the starch molecular structure and behavior slightly. While for moistened flour, crystalline degree, gelatinization enthalpy, amylose leaching (AML) and falling number significantly decreased, but thermal transition temperatures increased with the rise of treating severity. Clumping of starch granules, aggregation of proteins and formation of amylose-lipid complexes occurred in both native and moistened flours. Broader pasting temperature ranges and higher viscosities were found on SS-modified flours. Additionally, SS treatment on moistened flours increased resistant and slowly digestible starch contents. In general, SS treatment induced changes in starch molecular structure and reactions among flour components leading to more stable structures, thus affecting their pasting behavior, thermal properties and in vitro digestion.  相似文献   

8.
9.
Wheat yield and quality are dependent largely on nitrogen (N) availability. In this study, we performed the first metabolomic analysis of the response to high-N fertilizer during wheat grain development using non-targeted gas chromatography-mass spectrometry (GC–MS). Quality parameter analyses demonstrated that high-N fertilizer application led to a significant increase in grain protein content and improvement in starch and bread-making quality. Comparative metabolomic profiling of six grain developmental stages resulted in identification of 74 metabolites, including amino acids, carbohydrates, organic acids and lipids/alcohol, which are primarily involved in carbon and N metabolism. Under high-N fertilizer treatment, numerous metabolites accumulated significantly during grain development. Principal component analysis revealed two principal components as being responsible for the variances resulting from N-fertilizer treatments. Metabolite–metabolite correlation analysis demonstrated that the high-N treatment group had a greater number of positive correlations among metabolites, suggesting that high-N fertilizer treatment induced a concerted metabolic change that resulted in improved grain development. Particularly, the high-N treatment-mediated significant accumulation of metabolites involved in the TCA cycle, starch and storage protein synthesis could be responsible for the improvement of grain yield and quality. Our results provide new insight into the molecular mechanisms of wheat grain development and yield and quality.  相似文献   

10.
In this study, scanning electron microscopy (SEM) revealed the formation of pits and pores on the surfaces of starch granules in response to drought stress, with substantially more pronounced effects in the ordinary yield potential wheat cv. Xindong 23 than the excellent yield potential wheat cv. Xindong 20. Drought induced a significant reduction in starch granule sizes in both wheat varieties, though the reduction observed in Xindong 23 was six times more pronounced than that observed for Xindong 20. Amyloglucosidase and α-amylase treatment of starch from wheat grown in drought conditions released significantly more reducing sugars compared with samples from irrigated controls. SEM and confocal laser scanning microscopy (CLSM) revealed that starch granules from the two wheat varieties grown under drought conditions had substantially increased fluorescence after treatment with proteolytic enzymes and staining with methanolic merbromin and 3-(4-carboxybenzoyl) quinoline-2-carboxaldehyde dyes. Analysis of pasting properties showed significant increases of peak viscosity, trough viscosity, break down, and setback following drought stresses. Furthermore, drought induced a significant reduction in the water binding capacity and increased damage to starch only in Xindong 23. These results provide insight into the potential mechanisms through which drought influences the ultrastructures and physicochemical properties of starch in wheat.  相似文献   

11.
High quality requirements are set on durum wheat (Triticum durum) from semolina mills and pasta producers. For the production of semolina and pasta with good cooking quality, high grain protein content and vitreosity is required. The dependency of vitreosity on protein content as well as its stability under the influence of humidity was not well investigated up to now. We (1) compared two methods to determine vitreosity, (2) investigated the relationship between vitreosity and protein content, (3) developed a method to analyze vitreosity under humidity, and (4) examined the relationship between protein content and agronomical as well as quality traits in durum wheat. The results showed that the formation of vitreous kernels greatly depends on the protein content. To evaluate the stability of vitreosity under the influence of humidity a new method was elaborated and employed to assess the durum germplasm under study. This revealed that vitreosity of a durum wheat variety depends on the potential to form vitreous kernels but also to maintain this vitreosity under the influence of humidity. Our results further show that protein content is a central trait in durum wheat that strongly influences important traits like grain yield, vitreosity, and b-value.  相似文献   

12.
Selected Lactobacillus plantarum DSM 32248 and Lactobacillus rossiae DSM 32249, isolated and identified from wheat germ, were used to ferment a milling by-products mixture. Lactic acid bacteria metabolisms improved the functional properties of wheat bran and germ, which are considered important sources of functional compounds. Wheat breads were manufactured using 15% (w/w) of fermented (and unfermented) milling by-products, and compared to baker’s yeast wheat bread manufactured without the addition of milling by-products. The use of the fermented ingredient improved the biochemical, functional, nutritional, textural, and sensory features of wheat bread, showing better performances compared to the solely use of wheat flour. Protein digestibility, nutritional indexes, and the rate of starch hydrolysis markedly improved using fermented milling by-products as ingredient. Enriched bread was also characterized by high content of dietary fibre and low glycaemic index determined in vivo.This study exploited the potential of fermented milling by products as functional ingredient. According to the Regulations the bread made under this study conditions can be defined as “high fibre content” and “low glycaemic index”. A number of advantages encouraged the manufacture of novel and healthy and functional leavened baked goods.  相似文献   

13.
Maize kernels contain different bioactive compounds that are important for human health. The aim of this study was to analyze the distribution of the bioactive compounds in maize fractions derived from two industrial dry-milling processes, characterized by a dry-degermination (DD) system and a tempering-degermination (TD) system.The bioactive compounds in maize resulted unevenly distributed in the milling fractions of the kernel. By-products such as the germ and the animal feed flour, had higher total antioxidant capacity (TAC), total polyphenol content (TPC) and total dietary fibre content (TDF) than the whole grains, while xanthophyll and resistant starch resulted to be higher in the fractions derived from the vitreous endosperm. The germ fraction showed also the highest folate content. Results also showed that the type of degermination process influences the bioactive compound contents in the milling fraction, in accordance to the effectiveness of the germ and bran removal from the endosperm fractions. In particular, the animal feed flour obtained by means of TD system resulted in a higher TAC, TPC and TDF than the same fraction obtained by means of the DD system. Conversely, the extraction rate do not affect the recovery of bioactive components in particular fractions.  相似文献   

14.
Arising from work showing that conventionally bred high protein digestibility sorghum types have improved flour and dough functionality, the flour and dough properties of transgenic biofortified sorghum lines with increased protein digestibility and high lysine content (TG-HD) resulting from suppressed synthesis of several kafirin subclasses, especially the cysteine-rich γ-kafirin, were studied. TG-HD sorghums had higher flour water solubility at 30 °C (p < 0.05) and much higher paste viscosity (41% higher) than their null controls (NC). TG-HD doughs were twice as strong as their NC and dynamic rheological analysis indicated that the TG doughs were somewhat more elastic up to 90 °C. CLSM of doughs and pastes indicated that TG-HD had a less compact endosperm protein matrix surround the starch compared to their NC. The improved flour and dough functional properties of the TG-HD sorghums seem to be caused by reduced endosperm compactness resulting from suppression of synthesis of several kafirin subclasses which modifies protein body and protein matrix structure, and to improved protein-starch interaction through hydrogen bonding specifically caused by reduction in the level of the hydrophobic γ-kafirin. The improved flour functionality of these transgenic biofortified sorghums can increase their commercial utility by complementing their improved nutritional quality.  相似文献   

15.
Most of the unique properties of waxy wheat have been associated with the lack of amylose, that in turn may affect the mutual interactions between starch and proteins. To address this particular aspect, we carried out molecular, rheological, and calorimetric studies on flours from two waxy wheat lines that were compared with a non-waxy one. Dough thermal properties and water binding capacity were investigated by Differential Scanning Calorimetry (DSC) and by thermogravimetric analysis, respectively. Protein solvation, aggregation, and thiol accessibility were also investigated, together with dough mixing properties and stickiness. Proteins in waxy wheat samples needed more water to complete solvation, likely because of the water-retaining capacity of waxy wheat starch. In waxy wheat dough, water was tightly bound to starch, and DSC studies indicated an increase in gelatinization temperature. Moreover, the low water mobility in waxy wheat resulted in low and retarded gluten hydration and in high stickiness. In samples with the highest stickiness, protein aggregates were stabilized mainly by hydrophobic interactions. Differences between waxy wheat lines may be attributed to a different structural organization of components within each class of biopolymers.  相似文献   

16.
Increasing cereal yield is needed to meet the projected increased demand for world food supply of about 70% by 2050. Sirius, a process-based model for wheat, was used to estimate yield potential for wheat ideotypes optimized for future climatic projections for ten wheat growing areas of Europe. It was predicted that the detrimental effect of drought stress on yield would be decreased due to enhanced tailoring of phenology to future weather patterns, and due to genetic improvements in the response of photosynthesis and green leaf duration to water shortage. Yield advances could be made through extending maturation and thereby improve resource capture and partitioning. However the model predicted an increase in frequency of heat stress at meiosis and anthesis. Controlled environment experiments quantify the effects of heat and drought at booting and flowering on grain numbers and potential grain size. A current adaptation of wheat to areas of Europe with hotter and drier summers is a quicker maturation which helps to escape from excessive stress, but results in lower yields. To increase yield potential and to respond to climate change, increased tolerance to heat and drought stress should remain priorities for the genetic improvement of wheat.  相似文献   

17.
This study aimed at investigating the effects of amylose content (AC) of 0.12–19.00% w/w on dry basis, cooling rate (1, 3, 5, and 9 °C/min), and aging time (24, 48, and 72 h) on structure, physical properties and sensory attributes of rice starch-based puffed products. They had an influence upon the crystalline type, and the relative crystallinity (RC). The thermal and physical properties of starch gels were also determined. Amorphism was found for starch gels with 0.12% AC. The polymorphisms (B and V) and differential scanning calorimetric endotherms were found for those with AC ≥4.00%. The RC, retrogradation enthalpy (ΔHr) and gel hardness increased with AC and aging time. The cooling rate did not affect RC, but increased ΔHr and gel hardness. The higher AC and aging time resulted in higher hardness, fracturability, crispiness and bulk density, but lower expansion ratio and less oiliness of the puffed products. The hardness, fracturability, crispiness and bulk density of puffed products were well correlated with the RC of starch gel.  相似文献   

18.
Starch is a crucial component in wheat endosperm and plays an important role in processing quality. Endosperm of matured wheat grains contains two distinct starch granules (SG), referred to as larger A- and smaller B-granules. In the present study, 166 Chinese bread wheat cultivars planted in four environments were characterized for variation in SG size. A genome-wide association study (GWAS) using the 90 K SNP assay identified 23 loci for percentage volumes of A- and B-granules, and 25 loci for the ratio of A-/B-granules volumes, distributing on 15 chromosomes. Fifteen MTAs were associated with both the percentage volumes of A-, B-granules and the ratio of A-/B-granules volumes. MTAs IWB34623 and IWA3693 on chromosome 7A and IWB22624 and IWA4574 on chromosome 7B associated with the percentage volumes of A- and B-granules consistently identified in multiple environments were considered to be stable. Linear regression analysis showed a significantly negative correlation of the number of favorable alleles with the percentage volumes of A-granules and a significantly positive correlation between the number of favorable alleles and the percentage volumes of B-granules, respectively. The loci identified in this study and associated markers could provide basis for manipulating SG size to obtain superior noodle quality in wheat.  相似文献   

19.
Hulless barley breeding lines varying in amylose (1–20% DM) and β-glucan content (5–10% DM) have been developed at the Crop Development Centre, Canada. The objectives of this large-scale study were to 1) determine and confirm the effect of these new hulless barley lines (zero-amylose waxy, CDC Fibar; 5%-amylose waxy, CDC Rattan; normal-amylose, CDC McGwire and high-amylose, HB08302) with altered carbohydrate traits on 1) metabolic characteristics of protein; 2) intestinal digestion of various nutrients and 3) modeling nutrient supply from these barley varieties by using NRC Dairy 2001 model and DVE/OEB system. CDC Copeland was included as a hulled barley control. Among the hulless barley lines, CDC Fibar contained the highest and CDC McGwire contained the lowest total digestible protein (TDP: 147 vs. 116 g/kg DM). HB08302 was greater (P < 0.05) in intestinal digestible protein (IDP: 40.6% RUP) but relatively lower (P < 0.05) in total digestible protein (TDP: 120 g/kg DM). Compared with hulless barley, hulled barley showed relatively lower (P < 0.05) intestinal digestible protein (38 vs. 53 g/kg DM) and total digestible protein (102 vs. 129 g/kg DM). In modeling nutrient supply from the DVE/OEB system, the results showed hulled barley was lower (P < 0.01) in true protein supplied to the small intestine (TPSI: 127 vs. 142 g/kg DM), lower in truly absorbed rumen bypassed feed protein in small intestine (ABCPDVE: 43 vs. 58 g/kg DM), lower in truly absorbed protein in the small intestine (DVE: 95 vs. 111 g/kg DM), and lower in degraded protein balance (OEBDVE: −39 vs. −23 g/kg DM) than the hulless barley lines but greater (P < 0.01) in undigested inorganic matter (9 g/kg DM). From NRC Dairy 2001 model, CDC Fibar was greater (P < 0.05) in degraded protein balance (OEBNRC: −30 g/kg DM) and metabolizable protein (MP: 118 g/kg DM) than the other hulless barley lines, while hulled barley was relatively lower (P < 0.01) in total metabolizable protein (MP: 83 vs. 105 g/kg DM). Our correlation results suggested that TDP was negatively correlated to amylose (r = −0.85, P < 0.001) but positively correlated to β-glucan level (r = 0.74, P < 0.001) in hulless barley cultivars. The DVE and OEBDVE as well as MP were negatively correlated (P < 0.05) to amylose level but positively correlated to β-glucan level (P < 0.05). In conclusion, altered carbohydrate traits in the hulless barley varieties have the potential to increase intestinal nutrient availability to ruminants and significantly improved the truly absorbed protein supply to dairy cattle compared to hulled barley. Hulless barley with lower amylose and higher β-glucan level could provide greater (P < 0.05) truly digested protein in the small intestine, better synchronized available energy and N and increase metabolizable protein supply to ruminants.  相似文献   

20.
Eleven maize landraces were evaluated for pozole quality. The microstructural, thermal and rheological properties of annealed starch granules determine most of the quality of pozole. Annealed starch in traditional nixtamalisation has an important role in increasing gelatinisation onset (To), peak (Tp) and final (Tf) temperatures; peak, setback and final viscosity as well as the stability of the starch granule, all of which significantly affect pozole quality. Annealed starch in Cacahuacintle nixtamal (pozole end-use) increased temperatures To, Tp and Tf by >5.2, >3.8 and >4.1 °C respectively, and narrowed the range Tf − To from 13.78 to 12.62 °C. The enthalpy was reduced from 6.76 to 5.85 J/g, while the nixtamal starch in tortilla maize landraces presented fewer annealing effects. The annealing effect in nixtamal starch seems to stabilize the starch granules and avoid their collapse, compared to native starch, as shown by the X-ray diffraction peak intensity and pattern that is similar to unprocessed maize. Starch in nixtamal changes from Type A to Type V pattern in pozole. Kernel physical parameters, although important, affected the quality to a lesser extent, with the exception of the flotation index. Cacahuacintle maize landrace showed the best quality and yield as well as a short pozole cooking time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号