首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 280 毫秒
1.
Amylose and resistant starch (RS) content in rice flour were manipulated. The experiment was conducted using a full factorial design. Rice flour with average amylose content of 20 and RS content of 0.5 g/100 g dry sample was fortified with pure amylose from potato and high RS modified starch to reach the final amylose content of 30, 40 and 50 and RS content of 2, 4 and 6 g/100 g dry sample. The fortified rice flours were examined for their gelatinisation properties, in-vitro enzymatic starch digestion and gel textural properties. It was found that amylose and RS significantly affect all the fortified rice flour properties (p < 0.05). High amylose and RS improved starch digestion properties, reducing the rate of starch digestion and lowering the glycaemic index (GI) values. Amylose had a more pronounced effect on the fortified rice starch properties than RS. In this study, the fortified rice flour which contained amylose and RS of approximately 74 and 9 g/100 g dry sample respectively was used to produce rice noodles. The noodles exhibited low GI values (GI < 55). However, amylose and RS affected the textures of rice noodles providing low tensile strength and break distance (extensibility).  相似文献   

2.
The in vitro starch digestibility of five gluten-free breads (from buckwheat, oat, quinoa, sorghum or teff flour) was analysed using a multi-enzyme dialysis system. Hydrolysis indexes (HI) and predicted glycaemic indexes (pGI) were calculated from the area under the curve (AUC; g RSR/100g TAC*min) of reducing sugars released (RSR), and related to that of white wheat bread. Total available carbohydrates (TAC; mg/4 g bread “as eaten”) were highest in sorghum (1634 mg) and oat bread (1384 mg). The AUC was highest for quinoa (3260 g RSR), followed by buckwheat (2377 g RSR) and teff bread (2026 g RSR). Quinoa bread showed highest predicted GI (95). GIs of buckwheat (GI 80), teff (74), sorghum (72) and oat (71) breads were significantly lower. Significantly higher gelatinization temperatures in teff (71 °C) and sorghum flour (69 °C) as determined by differential scanning calorimetry (DSC) correlated with lower pGIs (74 and 72). Larger granule diameters in oat (3–10 μm) and sorghum (6–18 μm) in comparison to quinoa (1.3 μm) and buckwheat flour (3–7 μm) as assessed with scanning electron microscopy resulted in lower specific surface area of starch granules. The data is in agreement with predictions that smaller starch granules result in a higher GI.  相似文献   

3.
Arising from work showing that conventionally bred high protein digestibility sorghum types have improved flour and dough functionality, the flour and dough properties of transgenic biofortified sorghum lines with increased protein digestibility and high lysine content (TG-HD) resulting from suppressed synthesis of several kafirin subclasses, especially the cysteine-rich γ-kafirin, were studied. TG-HD sorghums had higher flour water solubility at 30 °C (p < 0.05) and much higher paste viscosity (41% higher) than their null controls (NC). TG-HD doughs were twice as strong as their NC and dynamic rheological analysis indicated that the TG doughs were somewhat more elastic up to 90 °C. CLSM of doughs and pastes indicated that TG-HD had a less compact endosperm protein matrix surround the starch compared to their NC. The improved flour and dough functional properties of the TG-HD sorghums seem to be caused by reduced endosperm compactness resulting from suppression of synthesis of several kafirin subclasses which modifies protein body and protein matrix structure, and to improved protein-starch interaction through hydrogen bonding specifically caused by reduction in the level of the hydrophobic γ-kafirin. The improved flour functionality of these transgenic biofortified sorghums can increase their commercial utility by complementing their improved nutritional quality.  相似文献   

4.
The influence of high molecular weight glutenin subunits (HMW-GS) on wheat breadmaking quality has been extensively studied but the effect of different Glu-1 alleles on cookie quality is still poorly understood. This study was conducted to analyze the effect of HMW-GS composition and wheat-rye translocations on physicochemical flour properties and cookie quality of soft wheat flours. Alleles encoded at Glu-A1, Glu-B1 and Glu-D1 locus had a significant effect over physicochemical flour properties and solvent retention capacity (SRC) profile. The null allele for Glu-A1 locus presented the highest cookie factor observed (CF = 7.10), whereas 1BL/1RS and 1AL/1RS rye translocations had a negative influence on CF. The three cultivars that showed the highest CF (19, 44 and 47) had the following combination: Glu-A1 = null, Glu-B1 = 7 + 8, Glu-D1 = 2 + 12 and no secalins. Two prediction equations were developed to estimate soft wheat CF: one using the HMW-GS composition and the other using physicochemical flour parameters, where SRCsuc, SRC carb, water-soluble pentosans, damaged starch and protein turned out to be better CF predictors. This data suggests that grain protein allelic composition and physicochemical flour properties can be useful tools in breeding programs to select soft wheat of good cookie making quality.  相似文献   

5.
Arabinose to xylose ratio (A/X), phenolics, antioxidant capacity and gelling properties were evaluated in glucoarabinoxylans (GAX) extracted from white (W-GAX), red (R-GAX) and high tannin (T-GAX) sorghum brans (SB). The characterization of arabinoxylans from corn fiber (CFAX) was used as benchmark. Sorghum GAX had higher branched structure (A/X 1.08–1.41) than CFAX (0.59). Nine 3-deoxyanthocyanins (3-DAs) were identified in SB and two glycosylated forms remained associated to the R-GAX and T-GAX extracts. T-GAX was the only that contained tannins (0.41 mg catechin equivalents (CE)/g dry basis (db)) and exerted the highest antioxidant capacity (81.75 mM Trolox equivalents (TE)/g db) followed by R-GAX (48.49 mM TE/g db), which contained the highest amount of 3-DAs (0.11 mg Luteolinidin equivalents (Lut eq)/g db), and W-GAX (35.45 mM TE/g db) that was not significantly different from the CFAX (25.83 mM TE/g db). Among sorghums, only the W-GAX gelled but it formed a weaker gel compared to CFAX likely due to its lower hydroxycinnamic acids (HCA) concentration. The presence of 3-DAs in the structure of R-GAX and T-GAX affected negatively their solubility and gelling properties. The different SB showed potential as sources of GAX with antioxidant capacity.  相似文献   

6.
The effect of thermal processing on the degradation of the phytochemicals in black rice flour by means of fluorescence spectroscopy and degradation kinetics was investigated. In order to investigate the influence of food matrices, a comparative analysis between integral rice flour and different fractions was performed. The preliminary compositional results suggested a higher content in phytochemicals in fraction four of the seven fractions of black rice flour, which was sifting through a sieve with a diameter of 180 μm. The compositional complexity was highlighted by fluorescence spectroscopy. The heat-treatment caused structural changes that led to red- or blue-shifts in maximum emission. The first-order kinetic model was used to describe the mechanism of degradation. The activation energies were 10.07 ± 1.04 kJ/mol for total polyphenolic, 7.26 ± 0.58 kJ/mol for total monomeric anthocyanins and 6.71 ± 1.12 kJ/mol for antioxidant activity in case of integral flour extract. For fraction four extract obtained by, the Ea values were: 3.51 ± 0.53 kJ/mol, 11.49 ± 1.47 kJ/mol, 15.80 ± 1.50 kJ/mol and 19.91 ± 3.27 kJ/mol, respectively. The calculated values of the activation energy revealed higher temperature dependence of total polyphenols in integral flour and of antioxidant activity in fraction four, respectively.  相似文献   

7.
Grain amaranth was fractionated to prepare a seed coat rich fraction along with the fine seed coat, middling and flour fractions. The nutritional content of the coarse seed coat fraction and its antioxidant potential were evaluated. It was observed that, the coarse seed coat fraction contained highest protein (17.81 g/100 g), dietary fiber (25.78 g/100 g), free sugar (2.25 g/100 g), calcium (1115 mg/100 g), sodium (279 mg/100 g), magnesium (178.4 mg/100 g) and potassium (398.8 mg/100 g) contents compared to all other fractions. The carbohydrate and protein digestibility of all the fractions were more than 80%. A slight decrease in linoleic acid and a concurrent increase in palmitic acid contents were observed in coarse seed coat fraction. The total phytic acid increased and total polyphenols contents decreased in the coarse seed coat fraction compared to the native grain. The DPPH, ABTS and total antioxidant activities are comparatively high in this particular fraction. The study indicated a possibility of preparation of a protein, fiber and mineral rich fraction from grain amaranth with good antioxidant potential which can be used as a functional food ingredient.  相似文献   

8.
Whole grain oat flour was extruded under different moisture contents (15%, 18%, 21%), barrel temperatures (100 °C, 130 °C), and screw speeds (160 rpm, 300 rpm, 450 rpm), and selected physicochemical properties, in vitro starch digestibility, and β-glucan extractability of the extrudates were analyzed. An increase in screw speed resulted in an increase in radial expansion index, water absorption index, and water solubility index. Screw speed significantly affected slowly and rapidly digestible starch. Moderate screw speed (300 rpm) led to higher slowly digestible starch with an accompanying decrease in rapidly digestible starch. Low moisture conditions (15%) resulted in the highest resistant starch and water-extractable β-glucan. Under the conditions used in this study, extrusion did not result in changes in water-extractable β-glucan molecular weight. Thus, extrusion might be beneficial in improving functionality and consumer acceptability by affecting physicochemical properties, in vitro starch digestibility, and β-glucan extractability of oat extrudates.  相似文献   

9.
Common bacterial blight (Xanthomonas axonopodis pv. phaseoli) is a seed-borne disease that is difficult to control in dry bean (Phaseolus vulgaris L.). Laboratory and field studies were conducted over a two-year period to determine the effect of microwave radiation on navy (cv. Navigator and Envoy) and pinto (cv. AC Ole) bean. Laboratory tests resulted in a 12 to 25% decrease in germination following 50–60 s of radiation, while less than a 10% loss was observed between 0 and 40 s. Pathogen viability was also tested, however the incidence of pathogen infection was low and no correlation was observed between exposure time and the incidence of colonization. In field studies conducted at Morden, MB (2012) and Ridgetown and Exeter, ON (2012–2013) microwave radiation and two chemical seed treatments (copper hydroxide 53.8% and pyraclostrobin + fluxapyroxad + metalaxyl) were evaluated for their effect on emergence, disease infection, seed pick, yield and return on investment. The application of microwave treatment decreased emergence by up to 7%, but did not impact the other parameters measured. Chemical treatment alone or in combination with microwave treatment also did not affect emergence, disease incidence, yield, seed pick, or return on investment.  相似文献   

10.
The present investigation evaluated the effects of dried amaranth leaves (DAL) and amaranth seed flour (AF) as ingredients for pasta production and their contribution to antioxidant activity. Cooking quality, proximal and aroma analysis, antioxidant capacity and sensory evaluations were performed. The results demonstrated that pastas with amaranth ingredients had decreased cooking time, increased cooking loss percentage, and decreased luminosity values compared with semolina control pasta. Pastas with both AF and DAL demonstrated the highest protein, crude fiber and ash contents. The addition of DAL resulted in higher contents of iron, zinc, magnesium and potassium compared with the control pasta. TC, FRAP and ORAC assays showed that the pastas exhibited an important reduction in antioxidant capacity by cooking process. Formulas with DAL showed the higher antioxidant capacity values after cooking. The addition of AF and DAL has proved to increase the functional benefits of the pasta.  相似文献   

11.
Sorghum (Sorghum bicolor L.) is a gluten-free cereal that has the highest content of phenolic compounds among cereals. It needs to be processed prior to use for human consumption, which may change its antioxidant profile. The knowledge on the effects of extrusion and dry heat in a conventional oven on flavones, flavanones, and proanthocyanidins is limited. Thus, the content and stability to dry heat in a conventional oven (DHCO) and extrusion cooking on phenolic compounds profile in sorghum genotypes were evaluated. Flavanones and flavones decreased after extrusion cooking (100%) and DHCO (31.7–61.6%). The 3-deoxyanthocyanidins were stable in DHCO but were susceptible to extrusion cooking (70.7–93.9%). Proanthocyanidins were identified only in the genotype SC391 and were reduced after both treatments (DHCO: 39.2% and extrusion cooking: 52.1%). Phenols decreased in the genotype SC319 submitted to DHCO (8.3%) and in all extruded genotypes (13.6–14.9%). The DHCO increased the antioxidant capacity in all genotypes, whereas extrusion cooking reduced antioxidant capacity in only two genotypes. In general, differential stability of the major flavonoids in sorghum was observed under DHCO and extrusion cooking, implying that different processing techniques can be selected to minimize losses of bioactive polyphenols in sorghum depending on the flavonoid composition.  相似文献   

12.
Volatile compounds formed during heat-treatment of wheat flour influence the application of treated flour. In this study, normal and waxy hard wheat flours before and after dry-heat treatment were subjected to headspace analysis by solid-phase microextraction of volatiles followed gas chromatography–mass spectrometry (GC/MS). The untreated waxy wheat flour contained higher levels of odor-active compounds than normal wheat flour including aldehydes, alcohols, furans, and ketones. Lipid oxidation appears to play major role in producing such odor compounds. Heat treatments, depending on the severity, alter the profile of volatile compounds. Low temperature (100–110 °C) treatments effectively eliminated cereal odor (aldehyde) and did not introduce additional odors, providing a possible way to produce low-odor flours. Heat treatments at 120 °C and higher temperatures elevated the content of pyrazines, furans, and sulfur-containing compounds which together gave a roasty aroma to the flours. Considering organoleptic properties, treatments of flours at 140 °C was superior to 160 °C. The waxy wheat flour was more prone to produce odor-active compounds than normal wheat flour during the same heat treatment.  相似文献   

13.
Sorghum is a staple food for half a billion people and, through growth on marginal land with minimal inputs, is an important source of feed, forage and increasingly, biofuel feedstock. Here we present information about non-cellulosic cell wall polysaccharides in a diverse set of cultivated and wild Sorghum bicolor grains. Sorghum grain contains predominantly starch (64–76%) but is relatively deficient in other polysaccharides present in wheat, oats and barley. Despite overall low quantities, sorghum germplasm exhibited a remarkable range in polysaccharide amount and structure. Total (1,3;1,4)-β-glucan ranged from 0.06 to 0.43% (w/w) whilst internal cellotriose:cellotetraose ratios ranged from 1.8 to 2.9:1. Arabinoxylan amounts fell between 1.5 and 3.6% (w/w) and the arabinose:xylose ratio, denoting arabinoxylan structure, ranged from 0.95 to 1.35. The distribution of these and other cell wall polysaccharides varied across grain tissues as assessed by electron microscopy. When ten genotypes were tested across five environmental sites, genotype (G) was the dominant source of variation for both (1,3;1,4)-β-glucan and arabinoxylan content (69–74%), with environment (E) responsible for 5–14%. There was a small G × E effect for both polysaccharides. This study defines the amount and spatial distribution of polysaccharides and reveals a significant genetic influence on cell wall composition in sorghum grain.  相似文献   

14.
Dough rheological properties and noodle-making performance of non-waxy whole-wheat flour (WWF) with partial- or full-waxy (PW- or FW-) WWF substitution were studied. The substitution levels were 0, 250, 500, 750, and 1000 g/kg, respectively. FW-WWF reduced the peak viscosity and pasting temperature of WWF blends as its substitution level was increased due to its higher proportions of B-type starch granules and short amylopectin chains, while PW-WWF increased peak viscosity with the increasing substitution level because of its higher amylopectin content. As demonstrated by farinograph and rheometer measurements, FW-WWF interfered with gluten development because of the increased competition for water by arabinoxylans and amylopectin; however, PW-WWF enhanced dough strength due primarily to its increased protein content. Consequently, FW-WWF showed a detrimental effect on cooked noodle texture as the cooked noodle hardness was reduced by 50% at the 1000 g/kg substitution level. In contrast, PW-WWF enhanced noodle integrity and elasticity by increasing cooked noodle cohesiveness and resilience by 10.1% and 14.8%, respectively, at the 1000 g/kg substitution level. The results suggest that with waxy WWF substitution, the changes in starch composition, arabinoxylans, and protein content could modify the interactions among flour components and influence the quality characteristics of noodle products.  相似文献   

15.
Native and moistened wheat flours (moisture contents were 13.5 and 27.0%, respectively) were treated with superheated steam (SS) at different temperatures (140 and 170 °C) and times (1, 2 and 4 min). Their physicochemical and digestive properties were analyzed. For native flour, SS treatment altered the starch molecular structure and behavior slightly. While for moistened flour, crystalline degree, gelatinization enthalpy, amylose leaching (AML) and falling number significantly decreased, but thermal transition temperatures increased with the rise of treating severity. Clumping of starch granules, aggregation of proteins and formation of amylose-lipid complexes occurred in both native and moistened flours. Broader pasting temperature ranges and higher viscosities were found on SS-modified flours. Additionally, SS treatment on moistened flours increased resistant and slowly digestible starch contents. In general, SS treatment induced changes in starch molecular structure and reactions among flour components leading to more stable structures, thus affecting their pasting behavior, thermal properties and in vitro digestion.  相似文献   

16.
Hydrocolloids have traditionally been investigated as an alternative to gluten for making good quality products for coeliac patients. This study investigated the interactions between hydroxypropylmethylcellulose (HPMC) (2–4 g/100 g of flour), psyllium (0–4 g/100 g of flour) and water level (90–110 g/100 g of flour) in gluten-free breadmaking. Psyllium incorporation reduced the pasting temperature and compliance values, and increased elastic (G′) and viscous (G″) moduli values. In contrast, HPMC addition had no important effects on pasting properties and compliance values, but also increased G′ and G″ values. Psyllium inclusion reduced bread specific volume and increased bread hardness, while there were hardly differences in the bread specific volume and hardness between the percentages of HPMC studied. In addition, when the dough hydration level was increased, there was a decrease in the influence of hydrocolloids on dough rheology and specific volume and hardness of breads.  相似文献   

17.
The extensigraph is particularly useful in characterizing dough viscoelastic properties; however, testing throughput for standard method is low due to the prerequisite for farinograph water absorption, long dough resting and milling to prepare large amounts of flour. Therefore, a rapid extensigraph method was developed that reduced sample size (165 g wheat) for milling and more than tripled throughput. Wheat is milled in Quadrumat Junior mill with a modified sieving system. The resulting flour (100 g) was mixed with a pin mixer at constant water absorption to allow the evaluation of wheat genotypes at the absorption level they are expected to perform. Dough was subsequently stretched by an extensigraph after 15 min of floor time and 30 min resting. Strong correlations for extensigram Rmax (r > 0.93), extensibility (r > 0.64) and area (r > 0.88) were found for the proposed method compared to the standard method. Mixing parameters (time and energy) obtained during dough preparation provided further information about dough strength and mixing requirement. By significantly reducing sample size requirement and increasing testing throughput, this rapid extensigraph method can be widely adopted in milling and baking industry and meets the need for a fast evaluation of dough strength in breeding trials.  相似文献   

18.
Selection for water absorption, a fundamental wheat quality parameter, has been a challenge in wheat breeding programs due to limited wheat materials available for milling and consequent time-consuming farinograph test. Hence, a high shear-based method, which requires 8 g of flour and less than 10 min per test, was proposed to predict flour water absorption using the Brabender GlutoPeak instrument. Highly significant positive linear relationship (r2 = 0.97) was found between GlutoPeak maximum torque and farinograph water absorption for 83 flour samples prepared with Bühler test mill from wheat lines under evaluation in the Canadian wheat variety registration trials. Similar strong correlation (r2 = 0.96) was obtained from flours (n = 63) prepared with Quadrumat Junior laboratory mill using small amount of wheat. Flour prepared either with Bühler test mill or Quadrumat Junior mill can be used for predicting water absorption effectively. GlutoPeak maximum torque was found to be independent of dough strength (r2 = 0.02) as measured by extensigraph. GlutoPeak test can be a powerful tool for rapid and reliable prediction of water absorption of wheat flour.  相似文献   

19.
The potential of quinoa to act as a source of dipeptidyl peptidase IV (DPP-IV) inhibitory and antioxidant peptides was studied. A quinoa protein isolate (QPI) with a purity of 40.73 ± 0.90% was prepared. The QPI was hydrolysed at 50 °C for 3 h with two enzyme preparations: papain (P) and a microbial papain-like enzyme (PL) to yield quinoa protein hydrolysates (QPHs). The hydrolysates were evaluated for their DPP-IV inhibitory and oxygen radical absorbance capacity (ORAC) activities. Protein hydrolysis was observed in the QPI control, possibly due to the activity of quinoa endogenous proteinases. The QPI control had significantly higher DPP-IV half maximal inhibitory concentrations (IC50) and lower ORAC values than QPH-P and QPH-PL (P < 0.05). Both QPH-P and QPH-PL had similar DPP-IV IC50 and ORAC values. QPH-P had a DPP-IV IC50 value of 0.88 ± 0.05 mg mL−1 and an ORAC activity of 501.60 ± 77.34 μmol Trolox equivalent (T.E.) g−1. To our understanding, this is the first study demonstrating the in vitro DPP-IV inhibitory properties of quinoa protein hydrolysates. QPHs may have potential as functional ingredients with serum glucose lowering properties.  相似文献   

20.
The purpose of the research was to identify the phenolic and flavonoid compounds of seven different traditional pigmented whole rice cultivars grown in the temperate regions of Kashmir so as to study their relationship with in vitro antioxidant capacities. The completely pigmented rice cultivars were found to have higher phenolic, flavonoid, anthocyanin contents and exhibited higher antioxidant capacities than the light colored and sparely colored rice cultivars. A total of 40 compounds had been identified in the analyzed rice cultivars that were found to be distributed in 6 major categories with 6-phenolics, 6-flavonoids, 11-hydroxycinnamic acid derivatives, 7-hydroxybenzoic acid derivatives, 3-anthocyanins and 7-flavonoid glucosides of different flavonoid compounds. Among the free and bound fractions for each cultivars the light and sparsely colored depicted higher content of phenolics and in vitro antioxidant properties in bound faction, while the completely pigmented cultivars showed higher antioxidant properties in free fractions. The anthocyanins quercetin-3-O-galactoside, cyanidin-3-O-rutinoside and pelargonidin-3-O-diglucoside had been identified by LC-MS existing in the free fractions of the analyzed rice cultivars whereas, the free fraction of acetone + H2O possessed higher percentage of phenolic compounds as compared to methanolic extracts and bound fractions. The black colored cultivars possessed higher DPPH scavenging activity and lipid peroxidation inhibition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号