首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Gelatinized waxy and normal corn starches at various concentrations (20–50%) in water were stored under temperature cycles of 4°C and 30°C (each for 1 day) up to 7 cycles or at a constant temperature of 4°C for 14 days to investigate the effects of temperature cycling on the retrogradation of both starches. Compared to starches stored only at 4°C, both starches stored under the 4/30°C temperature cycles exhibited smaller melting enthalpy for retrogradation (ΔHr), higher onset temperature (To), and lower melting temperature range (Tr) regardless of the starch concentration tested. Fewer crystallites might be formed under the temperature cycles compared to the isothermal storage, but the crystallites formed under temperature cycling appeared more homogeneous than those under the isothermal storage. The effect of starch content on the retrogradation was greater when the starch gels were stored under cycled temperatures. The reduction in ΔHr and the increase in conclusion temperature (Tc) by retrogradation under 4/30°C temperature cycles became more apparent when the starch concentration was lower (20 or 30%). Degree of retrogradation based on melting enthalpy was greater in normal corn starch than in waxy corn starch when starch content was low.  相似文献   

2.
The complicated effects of added sugars and maltodextrins (5–20%) on the retrogradation of starch gels were investigated using differential scanning calorimetry and dynamic rheometry. One indica (Kaoshiung Sen 7, KSS7) and one japonica (Tainung 67, TNu67) rice starch with well-defined physico-chemical properties were used to clarify changes in re-crystallisation behaviour of starch components due to the addition of saccharides at different concentrations. The sugars showed marked suppression effects on the short-term retrogradation of KSS7, and both short- and long-term retrogradation of TNu67 gels. The suppressing effect of the sugars depended not only on sugar concentration, but also on the starch variety and the aging period. Maltodextrins with high average-degree of polymerisation exhibited a high retrogradation-promoting capability, especially in TNu67 gels on the first day. The addition of sugars and maltodextrins at 5–20% generally had little effect on the correlation between the storage modulus and the retrogradation enthalpy of starch gels.  相似文献   

3.
Storage retrogradation behavior and properties of sorghum, maize, and rice starches were compared to better understand the relationship of amylopectin fine structure to quality issues. Long-term changes in texture of starch gels were attributed to amylopectin retrogradation. In starch pastes aged 7 days at 4 °C, change in the storage modulus (ΔG) during heating (representing intermolecular associations) was highly and positively correlated (r = 0.93, p < 0.01) with the proportion of fraction I (FrI) long chains from debranched amylopectin. One sorghum cultivar, Mota Maradi, showed a dramatic increase in the storage modulus (G′) over the 7 day storage period that was related to its high proportion of FrI. Pastes/gels made from starches with normal (20–30%) amylose content and higher proportions of FrI long chains from debranched amylopectin tended to become firmer with more syneresis during extended storage. Both degree of polymerization measurements and previous models for amylopectin structure indicate that FrI represents long B chains of amylopectin. Cereal cultivars having amylopectin structures with lower proportion of long B chains were speculated to give improved quality products with lower rates of retrogradation and staling. This is particularly an issue in sorghum foods where products generally lack storage stability and tend to stale relatively quickly.  相似文献   

4.
The fatty acid composition, Acid Value, and the content and composition of tocopherols, tocotrienols, carotenoids, phytosterols, and steryl ferulates were determined in corn germ oil and four post-fermentation corn oils from the ethanol dry grind process. The oxidative stability index at 110 °C was determined for the five oils, and four oils were compared for their stability during storage at 40 °C as determined by peroxide value and hexanal content. The fatty acid composition of all five oils was typical for corn oil. The Acid Value (and percentage of free fatty acids) was highest (28.3 mg KOH/g oil) in corn oil extracted centrifugally from a conventional dry grind ethanol processing facility and for oil extracted, using hexane, from distillers dried grains with solubles (DDGS) from a raw starch ethanol processing facility (20.8 mg KOH/g oil). Acid Value was lowest in two oils extracted centrifugally from thin stillage in a raw starch ethanol facility (5.7 and 6.9 mg KOH/g oil). Tocopherols were highest in corn germ oil (∼1400 μg/g), but tocotrienols, phytosterols, steryl ferulates, and carotenoids were higher in all of the post-fermentation corn oils. Hexane extracted oil from DDGS was the most oxidatively stable as evaluated by OSI and storage test at 40 °C, followed by centrifugally extracted thin stillage oil from the raw starch ethanol process, and centrifugally extracted thin stillage oil from the conventional dry grind ethanol process. Corn germ oil was the least oxidatively stable. When stored at room temperature, the peroxide value of centrifugally extracted thin stillage oil from the raw starch ethanol process did not significantly increase until after six weeks of storage, and was less than 2.0 mequiv. peroxide/kg oil after three months of storage. These results indicate that post-fermentation corn oils have higher content of valuable functional lipids than corn germ oil. Some of these functional lipids have antioxidant activity which increases the oxidative stability of the post-fermentation oils.  相似文献   

5.
A 23 full-factorial study was designed to study the effect of corn preparation methods (flaking and grinding) on dry-grind ethanol performance using raw starch hydrolysis (RSH) process. Moisture content (15, 22%), flaker roller gapsetting (0.508 mm, 1.016 mm), and grinding were studied. Fifteen hundred g of corn samples were cracked, roller pressed, and were either ground further or retained, along with control ground corn. A bimodal size distribution was observed for ground corn, regardless of flaking. Moisture at 22% resulted in bigger-sized flakes with d50 between ∼1.3 and 1.8 mm, compared to ∼138–169 μm for ground corn. Not all ground corn resulted in higher ethanol concentration in fermentation beer; the ethanol levels in beer did not reflect the starch hydrolysis trend that favored ground corn. In a related study, the beer ethanol concentration did not show a clear trend with rollermill gapsetting while fermenting the flakes produced at 0.203, 0.305, 0.406, and 0.508 mm gapsettings. Generally, flakes from corn at 22% moisture resulted in higher ethanol content in beer. Rollermill flaking was found comparable to hammermill grinding for dry-grind corn ethanol via raw starch hydrolysis and yeast fermentation.  相似文献   

6.
月桂酸对小麦淀粉凝胶回生特性的影响   总被引:1,自引:0,他引:1  
为了解月桂酸对小麦淀粉凝胶回生特性的影响,利用X射线衍射仪和差示扫描量热仪研究了月桂酸对小麦淀粉凝胶晶体结构和热特性的影响。结果表明,月桂酸与小麦淀粉结合形成了月桂酸-淀粉复合物。在短期回生过程中,淀粉含有V-型结晶结构和B-型结晶结构,淀粉凝胶中直链淀粉分子特征衍射峰减弱,月桂酸-淀粉复合物衍射峰增强;短期回生淀粉含有直链淀粉重结晶的熔融峰和淀粉-脂肪酸复合物的熔融峰,月桂酸-淀粉复合物熔融焓显著小于淀粉凝胶熔融焓;月桂酸对淀粉短期回生的抑制作用主要是对直链淀粉重结晶的抑制。长期回生过程中,随贮藏时间延长,支链淀粉分子发生了重结晶,淀粉凝胶的结晶度从15.37%增大至18.75%,而月桂酸-淀粉复合物结晶度从10.36%增大至13.23%;回生淀粉中支链淀粉重结晶的熔融焓增大,复合物重结晶的熔融焓减少。说明月桂酸与淀粉形成复合物能抑制小麦淀粉的短期回生和长期回生。  相似文献   

7.
Retrogradation of gelatinised starch is the main phenomenon that influences the texture of cooked rice. The rate of retrogradation is affected by several factors including amylose and amylopectin ratio, protein and fibre. The objective of this study was to analyse the pasting properties and the retrogradation behaviour of six traditional and five aromatic Italian rice varieties. The pasted gels, after cooling, were evaluated by dynamic rheological measurements for up to 7 days of storage at 4 °C. The samples were also analysed by a NIR spectrometer. The pasting properties and the retrogradation behaviour of milled rice flours strongly depended on the rice varieties. During gel ageing, a noticeable increase of G′ and G″ was observed only for the milled rice varieties Asia, Gange, Fragrance and Vialone Nano, characterised by a high amylose content. No further hardening was found either for the other milled varieties or for all the brown samples. The methods used in this work (dynamic oscillatory rheometry and FT-NIR spectroscopy) turned out to be very useful in the definition of rice starch gels ageing.  相似文献   

8.
Lipids have an important effect on starch physicochemical properties. There exist few reports about the effect of exogenous lipids on native corn starch structural properties. In this work, a study of the morphological, structural and thermal properties of native corn starch with L-alpha-lysophosphatidylcholine (LPC, the main phospholipid in corn) was performed under an excess of water. Synchrotron radiation, in the form of real-time small and wide-angle X-ray scattering (SAXS/WAXS), was used in order to track structural changes in corn starch, in the presence of LPC during a heating process from 30 to 85 °C. When adding LCP, water absorption decreased within starch granule amorphous regions during gelatinization. This is explained by crystallization of the amylose-LPC inclusion complex during gelatinization, which promotes starch granule thermal stability at up to 95 °C. Finally, a conceptual model is proposed for explaining the formation mechanism of the starch-LPC complex.  相似文献   

9.
In present study, a total of 275 retail cereal samples including rice, corn and corn products was analyzed for the presence of aflatoxins and ochratoxin A (OTA) using HPLC equipped with a fluorescence detector. The data has shown that 38 out of 68 samples of rice, 37/105 of corn and 43/102 samples of corn products have been found contaminated with AFs, average level of AFB1 and total AFs, 8.23 and 19.54, 7.90 and 12.08, and 5.47 and 7.85 μg/kg, respectively. Furthermore, 34, 28 and 26 numbers of rice, corn and corn product samples were found to be contaminated with OTA with an average level of 12.94, 5.29 and 3.69 μg/kg, respectively. The samples of rice, corn and corn products found above the permissible European Union (EU) limit for AFB1 and total AFs were 18, 13 and 14 and 28, 14 and 20%, respectively; however, the samples of rice, corn and corn products above the EU limit were 40, 14 and 15%, respectively.  相似文献   

10.
In present study, a total of 275 retail cereal samples including rice, corn and corn products was analyzed for the presence of aflatoxins and ochratoxin A (OTA) using HPLC equipped with a fluorescence detector. The data has shown that 38 out of 68 samples of rice, 37/105 of corn and 43/102 samples of corn products have been found contaminated with AFs, average level of AFB1 and total AFs, 8.23 and 19.54, 7.90 and 12.08, and 5.47 and 7.85 μg/kg, respectively. Furthermore, 34, 28 and 26 numbers of rice, corn and corn product samples were found to be contaminated with OTA with an average level of 12.94, 5.29 and 3.69 μg/kg, respectively. The samples of rice, corn and corn products found above the permissible European Union (EU) limit for AFB1 and total AFs were 18, 13 and 14 and 28, 14 and 20%, respectively; however, the samples of rice, corn and corn products above the EU limit were 40, 14 and 15%, respectively.  相似文献   

11.
Vital wheat gluten and lecithin (GL) (50:50, w/w) were dry blended in a coffee grinder and a 9.5% (w/v) aqueous slurry was jet-cooked (steam pressures of 65 psi/g inlet and 40 psi/g outlet) to disaggregate wheat gluten and facilitate better dispersion of the two components. The jet-cooked material was freeze-dried and stored at 0 °C for future use. The GL blend was added to pure food grade common maize and rice starch at concentrations of 0 (control), 6, 11, 16, and 21%. Starch gelatinization and retrogradation temperature transitions were determined using Differential Scanning Calorimetry (DSC). From the DSC profiles, the change in the ΔH value was used as an indication of starch retrogradation, where a higher ΔH value indicated higher retrogradation. The ΔH values of the blends at 4 °C had higher values than the −20 °C and the ambient (25 °C) storage temperatures. Overall, the 21% GL/starch blends reduced retrogradation by 50%. The lower amylose content of rice starch relative to maize starch was reflected in Rapid Visco Amylograph (RVA) measurements of peak viscosity, and similarly, Texture Analyzer (TA) measurements indicated that maize starch gel is firmer than rice starch gel. Retrogradation was also evaluated by observing G′, the shear storage modulus, as a function of time after running a standard pasting curve. Using this method, it appears that GL has a significant effect on maize starch retrogradation, since low concentrations (<0.4%, w/w) reduced G′ up to 40%. The opposite behavior was seen in rice starch, where G′ increased directly with added GL. It appears that the amylose level in the rice starch is too low to be affected by the GL, and the increase seen in G′ is most likely due to added solids.  相似文献   

12.
The effect of gluten on the retrogradation of wheat starch   总被引:1,自引:0,他引:1  
The retrogradation of amylopectin in a wheat starch and a wheat starch/gluten (10:1) blend prepared by extrusion and containing 34% water (wet weight basis) was studied using X-ray diffraction, differential scanning calorimetry and NMR relaxometry during storage at constant water content and temperature (25 °C). For both samples, amylopectin ‘fully’ retrograded after 2–3 days storage, i.e. the different parameters monitored with time to follow the retrogradation had reached their maximum value, and crystallised predominantly into the A polymorph. Under the experimental conditions used, there was no evidence of any significant effects of the presence of gluten on the kinetics, extent or polymorphism of amylopectin retrogradation.  相似文献   

13.
This study aimed at investigating the effects of amylose content (AC) of 0.12–19.00% w/w on dry basis, cooling rate (1, 3, 5, and 9 °C/min), and aging time (24, 48, and 72 h) on structure, physical properties and sensory attributes of rice starch-based puffed products. They had an influence upon the crystalline type, and the relative crystallinity (RC). The thermal and physical properties of starch gels were also determined. Amorphism was found for starch gels with 0.12% AC. The polymorphisms (B and V) and differential scanning calorimetric endotherms were found for those with AC ≥4.00%. The RC, retrogradation enthalpy (ΔHr) and gel hardness increased with AC and aging time. The cooling rate did not affect RC, but increased ΔHr and gel hardness. The higher AC and aging time resulted in higher hardness, fracturability, crispiness and bulk density, but lower expansion ratio and less oiliness of the puffed products. The hardness, fracturability, crispiness and bulk density of puffed products were well correlated with the RC of starch gel.  相似文献   

14.
Gelatinisation and retrogradation of starch in wheat flour systems and whole wheat grains were studied using DSC and the impact of these events on starch digestibility was investigated. Gelatinisation of starch was possible in wheat flours with more than 60% moisture content (dwb) and gelatinised samples had higher digestibility values. Retrogradation of starch was studied with partially and fully cooked (boiled at 100 °C for 12 min and 32 min, respectively) wheat grains that were subjected to storage at 22 °C for 48 h. Stored samples had lower digestibility values when compared to the freshly cooked counterparts. The effect of moisture on retrogradation was studied with fully cooked wheat grains that were dried to a range of moisture contents (14.6–35.9%, wwb) and stored at 20 °C for 24 h. Retrogradation enthalpy increased with increasing moisture content; however, digestibility values did not reflect the changes in retrogradation enthalpy. The possibility of estimating the degree of retrogradation in fully cooked grains (32 min cooking) was investigated using a wheat flour-water system. The retrogradation enthalpy of fully cooked grains was slightly higher than the wheat flour-water system (at a moisture content of 49%, wwb) during the course of storage at 22 °C.  相似文献   

15.
Normal corn, Hylon V and Hylon VII starches were partially degraded by acid-ethanol treatment and applied to heat-moisture treatment (HMT) for improving the enzymatic resistance of starch. The weight-average degree of polymerization (DPw) of acid-ethanol-treated (AET) corn starches ranged from 6.75 × 105 to 181, 4.48 × 105 to 121, and 1.94 × 105 to 111 anhydrous glucose units for normal corn, Hylon V and Hylon VII starches, respectively. Starch retained its granular structure after AET and HMT, recovery of starch granules after modifications were higher than 92%. Resistant starch (RS) content and boiling-stable RS content of corn starch increased after dual modification, and the increment increased with increasing duration of AET. The boiling-stable RS content of dual-modified starch increased from 1.5 to 9.2, 12.2 to 24.1, and 18.0 to 36.2% for normal corn, Hylon V and Hylon VII starches, respectively. Increments of RS content and boiling-stable RS content of dual-modified starches were significantly correlated (r2 > 0.700) with DPw of starch, revealing that the enzymatic resistance of dual-modified corn starch granules increased with decreasing molecular size of starch. Result also suggested that starch granules partially degraded with AET could improve the molecular mobility and ordering during the consequent HMT.  相似文献   

16.
The rheological changes in rice noodles by the substitution of corn bran and the effect of temperature on the xanthophyll content (lutein and zeaxanthin) of the corn bran-rice flour noodles were evaluated. The use of corn bran increased the water holding capacity of rice flour at room temperature while the opposite results were observed after heating. The pasting parameters of rice flour-corn bran mixture were reduced with increasing levels of corn bran and the mixture paste exhibited more dominant liquid-like behavior. The noodles containing corn bran exhibited lower expansion ratio and softer textural properties. The levels of lutein and zeaxanthin in raw corn bran were 336.9 and 123.1 μg/100 g, respectively and were significantly reduced (P < 0.05) by heating. While lutein and zeaxanthin were not detected in the control noodles without corn bran, their levels in corn bran-incorporated noodles ranged from 56.2 to 137.3 μg/100 g and from 37.9 to 61.9 μg/100 g, respectively and were significantly reduced by 37.7–45.4% (P < 0.05) after cooking. Thus, the heat-labile characteristics of two xanthophylls were clearly observed. This study provides useful information on the processing performance and xanthophyll content of corn bran, possibly extending its use in a wider variety of foods.  相似文献   

17.
Corn is widely used as animal feed as well as for fuel ethanol production. Fiber present in corn is not digested well by non-ruminants such as chicken and swine. Also, this fiber does not participate in conversion of starch to ethanol. Fiber separation from ground corn flour using the Elusieve process, a combination of sieving and elutriation (air classification) results in high starch animal feed, and in increased ethanol productivity. The objective of this study was to understand the effect of retention screen size in the hammer mill on fiber separation from corn flour using the Elusieve process. Four different retention screen opening sizes were studied; 1.4 mm (3.5/64”), 2.0 mm (5/64”), 2.8 mm (7/64”) and 3.2 mm (8/64”). Ground corn flour was sieved into size fractions and the size fractions were subjected to air classification. As the retention screen size increased, fiber separation improved, and the difference in starch content between enhanced flour and original flour increased. The highest starch content of 64.1-65.2% was in the enhanced flour from Elusieve processing of corn flour obtained by using 3.2 mm (8/64”) retention screen in the hammer mill, while the starch content of the original corn flour was 62.5%. It is expected that at some threshold retention screen size, the fiber separation using the Elusieve process would be deteriorated. This threshold retention screen size was not reached in this study.  相似文献   

18.
Reduced glutathione (GSH) commonly exists in wheat flour and has remarkable influence on gluten properties. In this study, effect of GSH on the gelatinization and retrogradation of wheat flour and wheat starch were investigated to better understand the GSH-gluten-starch interactions in wheat flour. Compared with wheat starch, wheat flour showed significant decreases in peak and final viscosity, and gelatinization onset temperature with increasing GSH concentration. GSH depolymerized gluten and thereby broke down the protein barrier around starch granules to make the starch easily gelatinized. However, the interaction between GSH and wheat starch restrained starch swelling. GSH addition resulted in weakened structure with higher water mobility in freshly gelatinized wheat flour dispersions but decreased water mobility in wheat starch dispersions. After storage at 4 °C for 7 d, GSH increased elasticity and retrogradation degree in wheat flour dispersions but retarded retrogradation in wheat starch dispersions. The results indicated that GSH promoted retrogradation of wheat flour, which mainly attributed to the depolymerized gluten embedding in the leached starch chains, and inhibiting the re-association of amylose, and subsequently promoted the starch intermolecular associations and starch retrogradation. This study could provide valuable information for the control of the quality of wheat flour-based products.  相似文献   

19.
Corn at 21% and 14·4% moisture was treated with two long-chain polyphosphates. The corn was wet milled using a laboratory batch steeping process soon after treatment and again after 6 months of cold storage. The phosphate content of the steep solutions, and the yields and approximate composition of the milled fractions, were determined. The steep solutions of the phosphate-treated corn were significantly higher in phosphate than those of the untreated corn, but the total solids contents of the steep solutions were not significantly different. Phosphate-treated corn had a lower starch yield than did untreated corn after 6 months of storage, but the purity of the starch was unaffected. The yields of the other products, in general, were not affected by phosphate treatment. The protein content of the gluten and fiber was greater than in phosphate-treated corn, and the oil content of the germ was lower when milled soon after treatment but not after 6 months of storage. When the phosphate treatment did affect the wet milled fractions, the effects were not dependent on the type or level of phosphate used, but were influenced in some cases by storage time.  相似文献   

20.
The crystallinity of starch in crispy bread crust was quantified using several different techniques. Confocal scanning laser microscopy (CSLM) demonstrated the presence of granular starch in the crust and remnants of granules when moving towards the crumb. Differential scanning calorimetry (DSC) showed an endothermic transition at 70 °C associated with the melting of crystalline amylopectin. The relative starch crystallinity, as determined by X-ray and DSC, from different types of breads was found to lie between 36% and 41% (X-ray) and between 32% and 43% (DSC) for fresh bread crust. Storage of breads in a closed box (22 °C) for up to 20 days showed an increase in crust crystallinity due to amylopectin retrogradation both by X-ray and DSC. However, DSC thermograms of 1-day old bread crust showed no amylopectin retrogradation and after 2 days storage, amylopectin retrogradation in the crust was hardly detectable. 13C CP MAS NMR was used to characterize the physical state of starch in flour and bread crumb and crust. The intensity of the peaks showed a dependence on the degree of starch gelatinization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号