首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
In this work, α-amylase was used to treat oat flour with the intent to release phenolic compounds with known antioxidant properties. After methanol extraction, the amounts of nine beneficial phenolic compounds were measured using HPLC. The antioxidant activities of the extracts were assessed using 2,2′-azinobis (3- ethylbenzothiazoline-6-sulfonic acid) (ABTS),2,2-diphenyl-1-picrylhydrazyl (DPPH), ferric reducing antioxidant power (FRAP) and protein oxidative damage protection assays. Compared with heating-only treated oat flour, that treated with α-amylase showed significant increase of extractable total phenolic content (0.46–1.35 μmol gallic acid equivalents per gram oat), total antioxidant capacity, and an increased ability on the protection of protein from oxidative damage. Heating-only increased caffeic acid and vanillin content by 17 (0.03 vs 0.54 μg/g oat) and 1.8 (0.62 vs 1.11 μg/g oat) folds, but slightly increased the content of other phenols. Excluding heating effect, α-amylase treatment increased gallic acid content by 2.6 folds (0.38 vs 1.38 μg/g oat), caffeic acid content by 2.4 (0.54 vs 1.82 μg/g oat) folds, and other phenols by 1.0–1.8 folds. In conclusion, α-amylase treatment can yield oat products containing more extractable phenolic compounds with increased antioxidant capacity.  相似文献   

2.
The outstanding high carotenoid content of the tritordeum (×Tritordeum Ascherson et Graebner) grains, a promising novel cereal derived from the crossing of durum wheat and the wild barley Hordeum chilense, has previously been assigned as a character derived from the genetic background of its wild parent. The carotenoid profile of H. chilense, especially the lutein esters presented in this study, provide biochemical evidences to confirm this affirmation, being the first time that the individual carotenoid profile of this cereal has been characterized. The total carotenoid content (6.14 ± 0.12 μg/g) and the individual carotenoid composition were very similar to the tritordeum grains, with lutein being the major carotenoid (88%; 5.38 ± 0.11 μg/g) and very low levels of β-carotene. In contrast to tritordeum, H. chilense presented a considerable amount of zeaxanthin (12%; 0.74 ± 0.01 μg/g). Up to 55% of lutein was esterified with palmitic (C16:0) and linoleic (C18:2) acids, presenting a characteristic acylation pattern, in agreement with the tritordeum one, and composed by four monoesters (lutein 3′-O-linoleate, lutein 3-O-linoleate, lutein 3′-O-palmitate and lutein 3-O-palmitate) and four diesters (lutein dilinoleate, lutein 3′-O-linoleate-3-O-palmitate, lutein 3′-O-palmitate-3-O-linoleate, lutein dipalmitate). These data may be useful in the field of carotenoid biofortification of cereals.  相似文献   

3.
4.
A new microwave-assisted extraction (MAE) method has been developed for the extraction of melatonin from rice grains. The stability of melatonin under MAE conditions was studied in order to define the working range. The studied analytical conditions for the MAE were temperature (125−175 °C), microwave power (500−1000 W), time (5−15 min), solvent (10−90% EtOAc in MeOH), and ratio of solvent to sample (10:1–20:1). Extraction variables were optimized by Response Surface Methodology (RSM). Extraction temperature was found to have a highly significant effect on the response value (p < 0.0001) and the solvent and quadratic of time also had significant effects (p < 0.1). The optimized MAE conditions were as follows: extraction temperature 195 °C, microwave power 1000 W, extraction time 20 min, solvent 100% MeOH, and ratio of solvent to sample 10:1. The developed method showed high precision (in terms of CV: 4.97% for repeatability and 4.34% for intermediate precision). Finally, the new method was applied to real samples in order to investigate the presence of melatonin in a wide variety of rice grains.  相似文献   

5.
In order to further exploit the by-products of Isatis indigotica Fort., the seed oil was studied for its extraction and physicochemical properties. Ultrasound-assisted extraction (UAE) was used, and the parameters affecting seed oil recovery were optimized through response surface methodology (RSM). The optimum conditions were as follows: solvent-to-sample, 24:1; particle size, 110 meshes; extraction temperature, 49 °C; and extraction time, 44 min. Which resulted in a maximum oil recovery of 81.20 ± 0.21% (n = 3). Furthermore, the effects of UAE on the yield, fatty acid compositions, physicochemical properties, and microstructure of the seed powder were also investigated by calculating the recovery rate, utilizing a gas chromatograph fitted with a mass spectrometer (GC-MS), and performing scanning electron microscopy, respectively. The results show that UAE was an effective method for the seed oil extraction and the high content of unsaturated fatty acids (93.81%) demonstrates the oil has potential benefits for the cosmetics, edible products, or pharmaceutical industries.  相似文献   

6.
Milling of wheat produces co-products rich in dietary fiber, micronutrients and phytochemicals which can be used to integrate healthy functional foods. In the study different co-products including bran, shorts, and red dog were identified by physicochemical and functional analyses. The results showed that the fat, protein and starch contents decreased in order of red dog > shorts > bran (P < 0.05). The ash, neutral detergent fiber (NDF), acid detergent fiber (ADF), hemicellulose, water and oil holding capacities (WHC, OHC) were in order bran > shorts > red dog, respectively (P < 0.05). Antioxidant capacity was in order red dog > shorts > bran (P < 0.05). The bran was selected as the co-product with the highest fiber that was finely grounded to four different fractions (>355, 250–355, 180–250, <180 μm) and they were characterized more detail. The fat, protein and starch contents decreased with increasing bran particle size (P < 0.05). The ash, crude fiber, NDF, ADF, hemicellulose and WHC and OHC increased with the increasing bran particle size (P < 0.05). DPPH radical scavenging activity increased with increasing particle size (P < 0.05). The bran fractions 250–355 and >355 μm can be used as high fiber ingredients rich in antioxidants to generate functional foods.  相似文献   

7.
The process of in vivo esterification of xanthophylls has proven to be an important part of the post-carotenogenesis metabolism which mediates their accumulation in plants. The biochemical characterization of this process is therefore necessary for obtaining new and improved crop varieties with higher carotenoid contents. This study investigates the impact of postharvest storage conditions on carotenoid composition, with special attention to the esterified pigments (monoesters, diesters and their regioisomers), in durum wheat and tritordeum, a novel cereal with remarkable carotenoid content. For tritordeum grains, the total carotenoid content decreased during the storage period in a clear temperature-dependent manner. On the contrary, carotenoid metabolism in durum wheat was very much dependent on the physiological adaptation of the grains to the imposed conditions. Interestingly, when thermal conditions were more intense (37 °C), a higher carotenoid retention was observed for tritordeum, and was directly related to the de novo esterification of the lutein induced by temperature. The profile of lutein monoester regioisomers was constant during storage, indicating that the regioisomeric selectivity of the XAT enzymes was not altered by temperature. These data can be useful for optimizing the storage conditions of grains favoring a greater contribution of carotenoids from these staple foods.  相似文献   

8.
The performance of four techniques, conventional maceration, Soxhlet extraction, microwave assisted extraction (MAE), and ultrasound assisted extraction (UAE), for extraction of Pinus radiata bark, in one and several stages, were evaluated. For each technique, the mass extracted (g extract/g bark), total phenols (by Folin-Cicalteau), and tannin (by precipitation) concentration and anti-radical capacity (diphenyl-picrylhydrazyl, DPPH) were quantified. In one stage, the extracted mass increased in the following order: maceration < UAE < MAE < Soxhlet (p < 0.05). The total phenols and tannin levels were also higher with the Soxhlet technique. With additional extraction stages, only the samples produced with MAE and UAE techniques improved their parameters. Additionally, MAE extracts presented a higher anti-radical capacity than does Soxhlet and Pycnogenol® extracts. Therefore, MAE was a simple and rapid method that was useful for extraction of P. radiata bark. Scanning electron micrographs (SEM) provided evidence of the mechanical effects on cell walls, mainly evidenced by cell destruction produced by Soxhlet, MAE, and UAE on the bark. In contrast, maceration only results in slightly ruptured cell pores, which could explain its low extraction yield.  相似文献   

9.
Tracking changes in the bioactive compounds of white (ML-W), red (ML-R) and black (RB) rice during the 5 stages of grain development were studied. Total anthocyanin (TAC) was found only in RB (stages 3–5) and proanthocyanidin (TPAC) contents were only found in ML-R (stages 2–5). Considerable amounts of total phenolic contents (TPC) were found in stages 2–4 of ML-R, while total flavonoid contents (TFC) were most detected in stages 4–5 of RB. The DPPH activity of ML-W and ML-R decreased from stages 1–5. The highest FRAP activity was found in ML-R (stages 2–3) indicating that it is highly related to the bioactive compound content. Cyanidin-3-glucoside and peonidin-3-glucoside were found in RB at stages 3–5. The cyanidin of RB in stages 4–5 was related to the amount of TAC. The proanthocyanidin compound catechin was first found and reported in stages 2–3 of ML-R. Principal component analysis indicated that antioxidant activity and the bioactive components were highly related. The data from this study suggests that ML-R at stage 2 and RB at stage 4 are the most suitable stages for harvesting to achieve the highest level of bioactive compounds, which have many health benefits.  相似文献   

10.
The effect of particle size of hull-less barley (HLB) bran DF on antioxidant and physicochemical properties was investigated. HLB bran and extracted DF was ground by regular and superfine grinding, their particle sizes were determined using laser diffraction method. The results showed that superfine grinding could significantly pulverize DF particles to micro-scale; the particle size distribution was close to a Gaussian distribution. The soluble DF in HLB bran was increased effectively with superfine grinding. Insoluble DF with submicron scale showed increased total phenolic content (TPC), DPPH radical scavenging activity and ferric reducing antioxidant power (FRAP). With particle size reduction, the water retention capacity (WRC), swelling capacity (SC), oil binding capacity (OBC), and nitrite ion absorption capacity (NIAC) were significantly (p < 0.05) increased and the water holding capacity (WHC) had no significant change. A kind of health beneficial DF with higher soluble DF content, WRC, SC, OBC, NIAC and antioxidant activity was obtained using superfine grinding.  相似文献   

11.
This study aims to explore novel extraction technologies (ultrasound-assisted extraction (UAE), microwave-assisted extraction (MAE), ultrasound–microwave-assisted extraction (UMAE), hydrothermal-assisted extraction (HAE) and high-pressure-assisted extraction (HPAE)) and extraction time post-treatment (0 and 24 h) for the recovery of phytochemicals and associated antioxidant properties from Fucus vesiculosus and Pelvetia canaliculata. When using fixed extraction conditions (solvent: 50% ethanol; extraction time: 10 min; algae/solvent ratio: 1/10) for all the novel technologies, UAE generated extracts with the highest phytochemical contents from both macroalgae. The highest yields of compounds extracted from F. vesiculosus using UAE were: total phenolic content (445.0 ± 4.6 mg gallic acid equivalents/g), total phlorotannin content (362.9 ± 3.7 mg phloroglucinol equivalents/g), total flavonoid content (286.3 ± 7.8 mg quercetin equivalents/g) and total tannin content (189.1 ± 4.4 mg catechin equivalents/g). In the case of the antioxidant activities, the highest DPPH activities were achieved by UAE and UMAE from both macroalgae, while no clear pattern was recorded in the case of FRAP activities. The highest DPPH scavenging activities (112.5 ± 0.7 mg trolox equivalents/g) and FRAP activities (284.8 ± 2.2 mg trolox equivalents/g) were achieved from F. vesiculosus. Following the extraction treatment, an additional storage post-extraction (24 h) did not improve the yields of phytochemicals or antioxidant properties of the extracts.  相似文献   

12.
The impact of high hydrostatic-pressure (HHP) processing on the volatile profile of cooked Japonica rice (Wuchang) and Jasmine rice (Complete Wheel) was investigated by SPME–GC/MS. Presoaked samples were treated at 200, 400 and 600 MPa for 10 min and then cooked for volatile compound analysis. Seventy-seven compounds were identified in two cooked rice varieties: 20 aldehydes, 16 alcohols, 14 ketones, 9 arenes, 7 esters, 5 alkanes, 3 olefins and 3 hetero-cycle compounds. Results showed that both pressure level (P < 0.01) and rice variety (0.01 < P < 0.05) significantly impact the volatile compounds in rice and there is also an interaction between pressure and rice variety (P < 0.01). Overall, HPP decreased the amount of aldehydes more obviously in Complete Wheel rice than that in Wuchang variety. Both 200 and 400 MPa increased the levels of alcohols, ketones, esters and olefins, but reduced those of heterocycles, alkanes and arenes. Similar volatile change trends were found at 600 MPa except the concentration of each component was closer to that of control group. Based on the changes in the three key flavor compounds in rice (aldehydes, alcohols and ketones), the HPP process could be a suitable alternative to traditional pretreatment for improving flavor in cooked rice.  相似文献   

13.
The study presents a protocol for the preparation of phenolics-saponins rich fraction (PSRF), a new active nutraceutical from defatted rice bran followed by the determination of its antioxidant properties. PSRF was prepared by employing a simple alcoholic fractionation procedure on the crude alcoholic extract (CAE) of defatted rice bran. PSRF was found to be significantly higher in the contents of total phenolic, saponin, and steroidal saponin than CAE and its counterpart, aqueous fraction (AqF) (p < 0.05). Except for iron chelating activity, PSRF exhibited notably higher activity than CAE and AqF in all antioxidant activity assays performed (p < 0.05). HPLC-DAD analysis revealed that PSRF contained substantially higher amounts of gallic acid, 4-hydroxybenzoic acid, caffeic acid, p-coumaric acid, and ferulic acid than CAE and AqF (p < 0.05). In conclusion, alcoholic fractionation of CAE simultaneously concentrated the phenolic compounds and saponins into PSRF, thus contributed to its higher antioxidant activity. Due to its elevated antioxidant properties, PSRF may be recommended for investigation as an active ingredient in the nutraceutical, functional food, and natural food preservative formulations. This is also the first report suggesting defatted rice bran as a potential and sustainable source of saponins.  相似文献   

14.
Microwave-assisted extraction (MAE) was applied for extracting rice bran protein with a response surface methodology (RSM). The optimal condition was 1000 W of microwave power, 90 s of extraction time, and a solid to liquid ratio of 0.89 g rice bran/10 mL of distilled water. The protein yield of MAE was higher than that of alkaline extraction (ALK) by about 1.54-fold (P < 0.05), while the protein digestibility was similar. The protein hydrolysates (PHs) with at different degrees of hydrolysis (DH) (5.04, 10.37 and 15.04%) were produced by alcalase. The molecular weight (MW) of the rice bran protein concentrates (RBPC) and the PHs ranged between <11 kDa and 100 kDa. The excessive enzymatic hydrolysis resulted in a negative effect on water and oil absorption capacities. The PHs with DH15.04% acted as the strongest DPPH radical scavenger, ferric reducing agent, and also metal ion chelator (P < 0.05). However, a DH of 5.04% was sufficient for improving the functional properties of RBPC, especially foam ability and the emulsion activity index. This study suggests that the desirable properties of rice bran protein can be controlled with enzymatic modification.  相似文献   

15.
The objective of this study was to explore optimal extraction technology of β-glucan from bran of hull-less barley (Qingke in Chinese), and provide scientific basis for industrialization of β-glucan extraction from a commodity waste which is rich in β-glucan. β-Glucan extraction from bran of hull-less barley was performed with an accelerated solvent extraction (ASE) technique and compared with ultrasound-assisted extraction (UAE), microwave-assisted extraction (MAE), and reflux extraction. The best combination of extraction parameters was obtained through response surface methodology (RSM) with a three-variable-three-level Box-Behnken design (BBD). The optimum extraction parameters were as follow: extraction time for 9 min, extraction temperature at 70 °C, number of cycles at 4, and extraction pressure at 10 MPa. Under these conditions, the experimental extraction yield of β-glucan was 16.39 ± 0.3%, which agreed closely with the predicted value (16.33%). Compared with other extraction methods, ASE produced much higher β-glucan and more environmentally friendly extraction and solvent systems, less extraction discrimination and shorter time, and could be useful to the development of industrial extraction processes.  相似文献   

16.
To develop greener extraction alternatives for microalgae biomass, ultrasound assisted extraction (UAE) and pressurized liquid extraction (PLE) with different biobased solvents were investigated, demonstrating that both techniques are useful alternatives for algal lipid extraction. Specifically, Nannochloropsis gaditana lipids were extracted by UAE and PLE at different temperatures and extraction times with sustainable solvents like 2-Methyltetrahydrofuran (2-MeTHF) and its mixtures with ethanol and other alcohols. The best oil yields for both PLE and UAE of N. gaditana were achieved with the mixture of 2-MeTHF:ethanol (1:3), reaching yields of up to 16.3%, for UAE at 50 °C and up to 46.1% for PLE at 120 °C. Lipid composition of the extracts was analyzed by HPLC-ELSD and by GC-MS to determine lipid species and fatty acid profile, respectively. Different fractionation of lipid species was achieved with PLE and solvent mixtures of different polarity. Thus, for the extraction of glycolipids, ethanolic extracts contained higher amounts of glycolipids and EPA, probably due to the higher polarity of the solvent. The optimized method was applied to microalgae Isochrysis galbana and Tetraselmis chuii showing the potential of mixtures of biobased solvents like 2-methyl-THF and ethanol in different proportions to efficiently extract and fractionate lipids from microalgal biomass.  相似文献   

17.
Amylose and resistant starch (RS) content in rice flour were manipulated. The experiment was conducted using a full factorial design. Rice flour with average amylose content of 20 and RS content of 0.5 g/100 g dry sample was fortified with pure amylose from potato and high RS modified starch to reach the final amylose content of 30, 40 and 50 and RS content of 2, 4 and 6 g/100 g dry sample. The fortified rice flours were examined for their gelatinisation properties, in-vitro enzymatic starch digestion and gel textural properties. It was found that amylose and RS significantly affect all the fortified rice flour properties (p < 0.05). High amylose and RS improved starch digestion properties, reducing the rate of starch digestion and lowering the glycaemic index (GI) values. Amylose had a more pronounced effect on the fortified rice starch properties than RS. In this study, the fortified rice flour which contained amylose and RS of approximately 74 and 9 g/100 g dry sample respectively was used to produce rice noodles. The noodles exhibited low GI values (GI < 55). However, amylose and RS affected the textures of rice noodles providing low tensile strength and break distance (extensibility).  相似文献   

18.
Raw rice bran was treated with or without visible light exposure at room temperature or stored at 40 °C in the dark for 10 days and rice bran oil (RBO) was recovered from each rice bran. Headspace oxygen content from rice bran and conjugated dienoic acid (CDA) value, acid value, content of γ-oryzanol, and fluorescence intensity in RBO were analyzed to determine the effects of visible light on the oxidative stability in rice bran. Headspace oxygen content in visible light irradiated rice bran (RBL) decreased by 12.8% for 10 days while those in the dark (RBD) and stored at 40 °C (RBT) decreased by 5.87 and 5.35%, respectively, implying visible light irradiation accelerates the consumption of oxygen. CDA values in RBO from RBL were significantly higher than those in RBO from RBD and RBT (p < 0.05). However, acid values in RBO were not significantly different among samples (p > 0.05). Both γ-oryzanol content and fluorescence intensity in RBO from RBL were significantly lower than those in RBO from RBD and RBT (p < 0.05). Fluorescence intensity, which is related to the content of chlorophylls, decreased in samples under light only, implying that chlorophyll photosensitization may play important roles in the acceleration of lipid oxidation in rice bran.  相似文献   

19.
Germinated rice is popularly consumed for its high gamma-aminobutyric acid (GABA) and bioactive compounds. Supporting information on how to germinate rice with high GABA content and essential amino acids is lacking. White and colored rough rice were germinated for 0, 24, 48, 72, 96, 120 and 144 h. GABA, GABA substrates and essential amino acids were also investigated using GC-MS and MALDI-MSI. GABA was more concentrated after germination and shifted into the coleoptile. High correlation was recorded between germination time and GABA (0.79–0.83, p ≤ 0.01) and glutamic acid (0.88–0.89, p ≤ 0.01). Highest rates of GABA and glutamic production were observed within 48 h of germination in both rice varieties (26.12 and 34.28 mg/100g) and reached maximum value at 96 h (31.36 and 38.75 mg/100g). Colored rice germination showed higher GABA, GABA substrates and deficient amino acids than white rice. GABA and essential amino acids drastically increased after germination, supporting the consumption of germinated rice as a functional food.  相似文献   

20.
Allele mining in starch synthesis-related genes (SSRGs) has facilitated the discovery of desired natural sequence variations for eating quality in rice. This study investigated the sequence variations from 10 SSRGs, and further evaluated their relationship with the amylose content (AC) and rapid viscosity analysis profiles in a global collection of rice accessions by association mapping (AM). In total, 83 sequence variations were found in 10 sequenced amplicons, including 73 single nucleotide polymorphisms (SNPs), eight insertion-deletions (InDels) and two polymorphic simple sequence repeats (SSRs). Four subpopulations were identified by population structure analysis based on 170 genome-wide SSR genotypes. AM revealed 11 significant associations between three phenotypic indices and three sequence variations. One SNP with a g/c transversion at the 63rd nucleotide downstream of the OsBEIIb gene termination codon on rice chromosome 2 was significantly associated with multiple trait indices in both the general linear and mixed linear models (GLM and MLM), including the final viscosity (p < 0.001, R2 = 23.87%) in both 2009 and 2010, and AC (p < 0.01, R2 = 11.25%) and trough viscosity (p < 0.01, R2 = 20.43) in 2010. This study provides a new perspective of allele mining for breeding strategies based on marker-assisted selection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号