首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Consumption of whole-wheat based products is encouraged due to their important nutritional elements that benefit human health. However, the use of whole-wheat flour is limited because of the poor processing and end-product quality. Bran was postulated as the major problem in whole wheat breadmaking. In this study, four major bran components including lipids, extractable phenolics (EP), hydrolysable phenolics (HP), and fiber were evaluated for their specific functionality in flour, dough and bread baking. The experiment was done by reconstitution approach using the 24 factorial experimental layout. Fiber was identified as a main component to have highly significant (P < 0.05) and negative influence on most breadmaking characteristics. Although HP had positive effect on farinograph stability, it was identified as another main factor that negatively impacted the oven spring and bread loaf volume. Bran oil and EP seemed to be detrimental to most breadmaking characteristics. Overall, statistical analysis indicates that influence of the four bran components are highly complex. The bran components demonstrate multi-way interactions in regards to their influence on dough and bread-making characteristics. Particularly, Fiber appeared to have a high degree of interaction with other bran components and notably influenced the functionality of those components in whole wheat bread-making.  相似文献   

2.
Native (NF, 13.5% w.b) and moistened (MF, 27% w.b) wheat flours were treated with superheated steam (SS) at 170 °C for 1, 2 and 4 min, and their protein structure as well as dough rheological properties were analyzed. Confocal laser scanning microscopy (CLSM) and SDS-PAGE patterns indicated the formation of protein aggregates with reduced SDS extractability after treatment. Farinograph and dynamic rheometry measurements showed that the strength as well as elastic and viscous moduli of the dough made from SS-treated flours progressively increased with SS treatment time. And both the improvements were more pronounced for superheated steam-treated moistened flours (SS-MF) than for superheated steam-treated native flours (SS-NF). Size-exclusion high performance liquid chromatography (SE-HPLC) analysis demonstrated that dough rheological parameters have positive correlations with SDS unextractable polymeric proteins (UPP) contents. SS treatment on flours led to a transition of protein secondary structures to more ordered form (α-helix and β-sheet). Additionally, free sulfhydryl (SH) contents decreased after treatment, which implied that disulfide bonds accounted for protein extractability loss and dough rheological properties improvement. Elevated moisture level promoted the modification of both protein structure and dough behaviors of flours during SS treatment.  相似文献   

3.
To acquire a better understanding of whether RS influences the dynamics of in vivo starch digestion and seed vigour, the high-RS rice mutant RS4 (RS ca. 10%) and the wild type R7954 were used to investigate total amylase activity, seedling vigour, starch content and starch granule structure during germination. RS4 exhibited similar seed vigour to R7954. Amylose and amylopectin in R7954 showed synchronous degradation throughout the whole process, while amylopectin was hydrolysed significantly faster than amylose in RS4 during the earlier germination stages. The starch residues of RS4 after germination (GD) lost endotherm peaks and showed a special X-ray diffraction pattern with only two peaks at around 16.90° and 21.62°, probably due to remnants of amylopectin and its tight crosslinking with the cell wall. The remaining starch after 10 GD, primarily amylopectin may make a critical contribution to total resistant starch content. These results indicated that RS had no negative impact on seed vigour in rice lines, although RS cannot be hydrolysed by α-amylase from human and animal in vitro. By appropriately increasing the special amylopectin fraction, a new breeding programme of high RS crops and improvement in the eating quality of high RS rice varieties might be achieved.  相似文献   

4.
The extensigraph is particularly useful in characterizing dough viscoelastic properties; however, testing throughput for standard method is low due to the prerequisite for farinograph water absorption, long dough resting and milling to prepare large amounts of flour. Therefore, a rapid extensigraph method was developed that reduced sample size (165 g wheat) for milling and more than tripled throughput. Wheat is milled in Quadrumat Junior mill with a modified sieving system. The resulting flour (100 g) was mixed with a pin mixer at constant water absorption to allow the evaluation of wheat genotypes at the absorption level they are expected to perform. Dough was subsequently stretched by an extensigraph after 15 min of floor time and 30 min resting. Strong correlations for extensigram Rmax (r > 0.93), extensibility (r > 0.64) and area (r > 0.88) were found for the proposed method compared to the standard method. Mixing parameters (time and energy) obtained during dough preparation provided further information about dough strength and mixing requirement. By significantly reducing sample size requirement and increasing testing throughput, this rapid extensigraph method can be widely adopted in milling and baking industry and meets the need for a fast evaluation of dough strength in breeding trials.  相似文献   

5.
Wheat germ flour (WGF) has been developed as a functional food ingredient with high nutritional value. In this study, WGF was applied in steamed bread-making in order to improve the quality of Chinese steamed bread (CSB). Partial substitution of wheat flour with WGF at levels of 3%, 6%, 9% and 12% (w/w) was carried out to investigate physicochemical properties of blends and their steaming performance. Falling number (FN) values of composite flours ranged from 199 to 223 s. Viscosity analysis results showed that wheat flour mixed with WGF had higher pasting temperature and lower viscosities. Dough rheological properties were also investigated using farinograph and extensograph. The addition of WGF diluted the gluten protein in dough and formed weak and inextensible dough, which can be studied by scanning electron microscope (SEM) analysis. CSB made with WGF had significantly lower volume, specific volume and higher spread ratio. The sensory acceptability and physicochemical quality of CSB were improved with the application of a low level of WGF (3% and 6%). However, results showed that a high level of WGF over 9% is not recommended because of unsatisfactory taste. As a whole, addition of appropriate level of WGF in wheat flour could improve the quality of CSB.  相似文献   

6.
The objective of this study was to examine the influence of flour quality on the properties of bread made from pre-fermented frozen dough. The physicochemical parameters of 8 different wheat flours were determined, especially the protein quality was analysed in detail by a RP-HPLC procedure. A standardized baking experiment was performed with frozen storage periods from 1 to 168 days. Baked bread was characterised for specific loaf volume, crumb firmness and crumb elasticity. The results were compared to none frozen control breads. Duration of frozen storage significantly affected specific loaf volume and crumb firmness. The reduction of specific loaf volume was different among the used flours and its behaviour and intensity was highly influenced by flour properties. For control breads wet gluten, flourgraph E7 maximum resistance and RVA peak viscosity were positively correlated with specific loaf volume. However, after 1–28 days of frozen storage, wet gluten content was not significantly influencing specific loaf volume, while other parameters were still significantly correlated with the final bread properties. After 168 days of frozen storage all breads showed low volume and high crumb firmness, thus no significant correlations between flour properties and bread quality were found. Findings suggest that flours with strong gluten networks, which show high resistance to extension, are most suitable for frozen dough production. Furthermore, starch pasting characteristics were also affecting bread quality in pre-fermented frozen dough.  相似文献   

7.
Arising from work showing that conventionally bred high protein digestibility sorghum types have improved flour and dough functionality, the flour and dough properties of transgenic biofortified sorghum lines with increased protein digestibility and high lysine content (TG-HD) resulting from suppressed synthesis of several kafirin subclasses, especially the cysteine-rich γ-kafirin, were studied. TG-HD sorghums had higher flour water solubility at 30 °C (p < 0.05) and much higher paste viscosity (41% higher) than their null controls (NC). TG-HD doughs were twice as strong as their NC and dynamic rheological analysis indicated that the TG doughs were somewhat more elastic up to 90 °C. CLSM of doughs and pastes indicated that TG-HD had a less compact endosperm protein matrix surround the starch compared to their NC. The improved flour and dough functional properties of the TG-HD sorghums seem to be caused by reduced endosperm compactness resulting from suppression of synthesis of several kafirin subclasses which modifies protein body and protein matrix structure, and to improved protein-starch interaction through hydrogen bonding specifically caused by reduction in the level of the hydrophobic γ-kafirin. The improved flour functionality of these transgenic biofortified sorghums can increase their commercial utility by complementing their improved nutritional quality.  相似文献   

8.
In order to investigate the impact of different yeast strains from the species Saccharomyces cerevisiae on the dough and bread quality parameters, wheat flour was fermented using different beer yeasts. The results show that beer yeast strains could be included in the baking process since S. cerevisiae T-58 and S. cerevisiae s-23 provided adequate gas production and dough formation with superior structural properties like extensibility and stickiness to S. cerevisiae baker's yeast. The resulting breads show the highest specific volume with the highest slice area and the highest number of cells and the lowest hardness over time. The different yeasts had also an impact on the crust colour due to their abilities to ferment different sugars and on shelf life due to the production of a range of different metabolic by-products. According to this study it was possible to produce higher quality bread by using yeast coming from the brewing industry, instead of bread containing standard baker's yeast.  相似文献   

9.
Wheat yield and quality are dependent largely on nitrogen (N) availability. In this study, we performed the first metabolomic analysis of the response to high-N fertilizer during wheat grain development using non-targeted gas chromatography-mass spectrometry (GC–MS). Quality parameter analyses demonstrated that high-N fertilizer application led to a significant increase in grain protein content and improvement in starch and bread-making quality. Comparative metabolomic profiling of six grain developmental stages resulted in identification of 74 metabolites, including amino acids, carbohydrates, organic acids and lipids/alcohol, which are primarily involved in carbon and N metabolism. Under high-N fertilizer treatment, numerous metabolites accumulated significantly during grain development. Principal component analysis revealed two principal components as being responsible for the variances resulting from N-fertilizer treatments. Metabolite–metabolite correlation analysis demonstrated that the high-N treatment group had a greater number of positive correlations among metabolites, suggesting that high-N fertilizer treatment induced a concerted metabolic change that resulted in improved grain development. Particularly, the high-N treatment-mediated significant accumulation of metabolites involved in the TCA cycle, starch and storage protein synthesis could be responsible for the improvement of grain yield and quality. Our results provide new insight into the molecular mechanisms of wheat grain development and yield and quality.  相似文献   

10.
Waxy wheat flour (WWF) was substituted for 10% regular wheat flour (RWF) in frozen doughs and the physicochemical properties of starch and protein isolated from the frozen doughs stored for different time intervals (0, 1, 2, 4 and 8 weeks) were determined to establish the underlying reasons leading to the effects observed in WWF addition on frozen dough quality. Using Nuclear Magnetic Resonance (NMR), Differential Scanning Calorimeter (DSC) and X-ray Diffraction (XRD) among others, the gluten content, water molecular state, glutenin macropolymer content, damaged starch content, starch swelling power, gelatinization properties, starch crystallinity and bread specific volume were measured. Compared to RWF dough at the same frozen storage condition, 10% WWF addition decreased dry gluten and glutenin macropolymer contents and T23 proton density of frozen dough, but increased the wet gluten content, T21 and T22 proton density. 10% WWF addition also decreased damaged starch content, but increased starch swelling power, gelatinization temperature and enthalpy, crystallinity of starch and bread specific volume of frozen dough. Results in the present study showed that the improvement observed due to WWF addition in frozen dough bread quality might be attributed to its inhibition of redistribution of water molecules bound to proteins, increase in damaged starch content and decrease in starch swelling power.  相似文献   

11.
The genotype, environment and their interaction play an important role in the grain yielding and grain quality attributes. The main aim of this study was to determine the contributions of the genotype, environment and their interaction to the variation in bread-making traits. The data that were used for the analyses performed in this study were obtained from 3 locations in Poland from post-registration multi-environment trials with winter wheat in 2009 and 2010. The experimental factors were the cultivar (7 cultivars) and the crop management level (low input and high input). In the multi-environment trials, 17 traits were investigated that characterize grain, flour and dough quality. Most of the traits were affected much more strongly by environmental factors (i.e., year and location) than by genotype. The variance components revealed an especially strong effect of the year on the baking score, loaf volume and water absorption, as well a strong effect of the location on dough development and protein content. The obtained results demonstrate that the grain quality as measured by the parameters based on the protein content and quality may be substantially improved by crop management practices, especially by N fertilization level.  相似文献   

12.
Septoria tritici blotch (STB), caused by Zymoseptoria tritici is a relevant foliar wheat disease worldwide. Several reports show the importance of STB on grain yield, their components and grain protein while little is known about its effect on the rheological properties of the wheat flour. The scarce literature found, only mentions the effect of the complex of foliar diseases on wheat quality, without individualizing the effect of the different pathogens separately. This study analyze the influence of increasing doses of inoculum of Zymoseptoria tritici, on the bread making quality of ten Argentinean wheat cultivars and its possible variation according to their quality group. The increase of inoculum concentration augmented the area under disease progress curve, decreased green flag leaf area duration and green leaf area duration. Cultivars K. Flecha and B.75 Aniversario had the lowest green flag leaf area duration causing higher reduction in grain filling period and higher reductions in P, indicating a lower gliadin/glutenin ratio. STB decreased P/L and E while L, W, D, SV and bread volume increased. Cultivars differed in rheological parameters according to their quality group. Gluten/protein relationship was significant in quality group 1 and non-significant in cultivars belonging to quality group 2 and 3.  相似文献   

13.
Amyloglucosidase (AMG) is an enzyme that hydrolyzes starch into glucose units. AMG activity was tested in a model pie dough during the dough-making process (after mixing and sheeting) and during storage for 4 weeks at 4 °C. The activity was quantified by measuring the glucose content of dough and baked products using HPLC. The consequences of AMG activity on the sweet taste of the baked products (sensory ranking test) and on the rheological properties of the dough were studied and compared with a control dough formulated with sucrose. The results showed a significant production of glucose during the dough-making process and during baking when AMG was used. During the dough-making process, AMG activity was limited by the substrate. During baking, the substrate was no longer a limiting factor and the amount of glucose released was directly proportional to the amount of AMG used. The mixing time was increased and the elastic properties of the dough decreased when AMG was added. However, these impacts of AMG on dough properties were not as significant as those of sucrose addition. Addition of 0.75% AMG (flour basis) developed a sweet taste equivalent to that obtained by addition of 17% sucrose (flour basis).  相似文献   

14.
Ungerminated brown rice (UGBR) and pre-germinated brown rice (PGBR) obtained from different pre-germination durations were studied to investigate the changes in total starch contents of flour, amylopectin molecular structures, crystallinity, and thermal properties of starches as affected by pre-germination. Each paddy of three rice cultivars with different amylose contents (RD6, waxy; KDML105, low amylose; and RD31, high amylose) was soaked in water at 30°C for 12 h and incubated over different periods until the three stages of embryonic growth length (EGL) were achieved. The total starch contents of three-stage PGBR flour from all rice cultivars decreased when pre-germination durations were increased. The three-stage PGBR starches from the three rice cultivars had lower weight-average molecular weight (Mw) and number-average molecular weight (Mn) than UGBR starches. All starches from the three rice cultivars displayed an A-type X-ray diffraction pattern (XRD). Isolated UGBR starch from RD6 had the highest (31.33%) relative crystallinity (RC), while RD31 showed the lowest RC (26.79%). The slight increases in the RC of three-stage PGBR starches from three rice cultivars were found after pre-germination. Isolated PGBR starches from the three rice cultivars had higher gelatinization temperatures and enthalpy, but lower retrogradation enthalpy and %retrogradation than UGBR starches.  相似文献   

15.
The influence of high molecular weight glutenin subunits (HMW-GS) on wheat breadmaking quality has been extensively studied but the effect of different Glu-1 alleles on cookie quality is still poorly understood. This study was conducted to analyze the effect of HMW-GS composition and wheat-rye translocations on physicochemical flour properties and cookie quality of soft wheat flours. Alleles encoded at Glu-A1, Glu-B1 and Glu-D1 locus had a significant effect over physicochemical flour properties and solvent retention capacity (SRC) profile. The null allele for Glu-A1 locus presented the highest cookie factor observed (CF = 7.10), whereas 1BL/1RS and 1AL/1RS rye translocations had a negative influence on CF. The three cultivars that showed the highest CF (19, 44 and 47) had the following combination: Glu-A1 = null, Glu-B1 = 7 + 8, Glu-D1 = 2 + 12 and no secalins. Two prediction equations were developed to estimate soft wheat CF: one using the HMW-GS composition and the other using physicochemical flour parameters, where SRCsuc, SRC carb, water-soluble pentosans, damaged starch and protein turned out to be better CF predictors. This data suggests that grain protein allelic composition and physicochemical flour properties can be useful tools in breeding programs to select soft wheat of good cookie making quality.  相似文献   

16.
Oats (Avena sativa L.) were revaluated in recent years as a promising crop for improving the nutritional quality of foods, due to their richness in many bioactive compounds, including phenols. These plant secondary metabolites are useful as radical scavenging, and also possess positive biochemical effects against cardiovascular diseases, cancer growth and age-related diseases. Twenty oat cultivars were analyzed for their soluble phenol content (SPC, ranging 0.78–1.09 gGAE/kg d.m.) and total antioxidant capacity (TAC, ranging 13.99–18.84 mmol TE/kg d.m.). In another experiment, the kinetics of SPC accumulation and TAC in the immature grains of five oat cultivars revealed a marked decrease of both parameters (−48.9% and −72.1%, respectively) from ten days after anthesis to maturity. These results could suggest a possible use of immature oat grains in human nutrition, as it was already proposed for other cereals.  相似文献   

17.
The effects of thermostable ice structuring proteins (TSISPs) extracted from Chinese privet (Ligustrum vulgare) leaves on water molecular state, dehydration of gluten proteins, secondary structure of proteins, glutenin subunit of glutenin macropolymer (GMP) and rheological properties of gluten doughs during frozen storage were investigated by nuclear magnetic resonance (NMR), attenuated total reflectance-Fourier transform infrared reflectance (ATR-FTIR), reversed phase-high performance liquid chromatography (RP-HPLC) and dynamic rheometry. After frozen storage for 5 weeks, the control sample showed dehydration of gluten proteins and mobility of water molecules in gluten dough increased, significantly indicating ice formation and water redistribution. Secondary structure of gluten proteins changed significantly, α-helix decreased and β-sheet increased. Glutenin subunits depolymerized, indicated by the decrease in high molecular weight glutenins/low molecular weight-glutenins (HMW/LMW) ratio. The decrease in elastic moduli (G′) and viscous moduli (G′') showed the deterioration of rheological properties of gluten dough. The addition of TSISPs inhibited the dehydration of gluten proteins, decrease in α-helix, increase in β-sheet and HMW/LMW ratio, resulting in improved rheological properties of gluten dough.  相似文献   

18.
High quality requirements are set on durum wheat (Triticum durum) from semolina mills and pasta producers. For the production of semolina and pasta with good cooking quality, high grain protein content and vitreosity is required. The dependency of vitreosity on protein content as well as its stability under the influence of humidity was not well investigated up to now. We (1) compared two methods to determine vitreosity, (2) investigated the relationship between vitreosity and protein content, (3) developed a method to analyze vitreosity under humidity, and (4) examined the relationship between protein content and agronomical as well as quality traits in durum wheat. The results showed that the formation of vitreous kernels greatly depends on the protein content. To evaluate the stability of vitreosity under the influence of humidity a new method was elaborated and employed to assess the durum germplasm under study. This revealed that vitreosity of a durum wheat variety depends on the potential to form vitreous kernels but also to maintain this vitreosity under the influence of humidity. Our results further show that protein content is a central trait in durum wheat that strongly influences important traits like grain yield, vitreosity, and b-value.  相似文献   

19.
Two commercial hard red spring wheat cultivars were exposed to high and low temperatures, as well as drought stress when the main tiller kernels were at the soft dough stage. The trial was done in the greenhouse for two consecutive seasons to determine the effects of these stress conditions on protein content, SDS sedimentation and selected Mixsmart characteristics. Heat stress had the largest effect on mixing characteristics. Heat and drought stress caused a significant increase in flour protein content of both cultivars and had similar effects on mixing characteristics. The Mixsmart characteristics associated with dough strength were increased by heat and drought stress. Cold stress caused a slight increase in protein content of the cultivars, but in general caused a reduction in dough strength as measured with Mixsmart characteristics. The reaction of Mixsmart characteristics to heat and drought stress was much larger in Duzi than in Kariega, confirming that there is a large genotype effect in rheological characteristics.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号