首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Poly(ethylene terephthalate) (PET) fibers were grafted with glycidyl methacrylate (GMA) using benzoyl peroxide as initiator. 1,6-diaminohexane (HMDA) was then covalently attached to this GMA grafted PET fibers. Variations of time, temperature, initiator and monomer concentrations were investigated. HMDA-GMA-g-PET fibers were used as a new sorbent for removal of Cr(VI) ions from aqueous solutions through batch adsorption method. Effects of various parameters such as pH, treatment time, and initial ions concentration on the adsorption amount of ions onto reactive fibers were investigated. The adsorption rates of Cr(VI) ions were much higher on the HMDA-GMA-g-PET fiber than on GMA-g-PET and ungrafted PET fiber. Within 60 min, at pH 3, Cr(VI) was removed by 98 % while the initial concentration of ions was at 25 mg/l and by 94 % at 400 mg/l. The Cr(VI) ions adsorbed were easily desorbed by treating with 1M KOH within 10 min.  相似文献   

2.
In this study, amide and amine groups bound to poly(ethylene terephthalate) fibers are used to remove the colored toxic Congo red dye from aqueous solution. The effects of process variables like pH, contact time, graft yield, and initial dye concentration on the adsorption were investigated. The maximum adsorption of Congo red to amide and amine groups was observed at pH 3 and 5 respectively. Equilibrium was attained at approximately 60 min for the amine group. The adsorption capacity of amine group on the poly(ethylene terephthalate) fiber was 46.5 mg g−1 at 25 °C, which was higher than that of the amide group on the poly(ethylene terephthalate) fiber. Desorption was done using 0.1 M NH3, and recovery was measured at 58.2 %. The used adsorbent was regenerated and recycled six times. The results showed that the amine-functionalized fiber could be considered as potential adsorbents for removal of Congo red from aqueous solution.  相似文献   

3.
Natural sawdust of Calabrian pine was explored as low-cost industrial by-product for a hetero-bireactive dye removal from aqueous solution in this study. Batch experiments were carried out to investigate the effects of contact time and dye concentration on biosorption efficiency. Maximum biosorption amounts were achieved almost in the 20-30 min of contact for the studied dye range (50-200 mg l -1). An increase in the dye concentration resulted in decrease in the percent dye removal and increase in the biosorption capacity of biosorbent. Different kinetic and isotherm models were used to examine the biosorption experimental data for elucidating the dye removal mechanism. The equilibrium data were best represented by Freundlich isotherm model confirming multilayer coverage. The kinetics of dye biosorption best obeyed the pseudo-secondorder equation. The negative value of standard Gibbs free energy change (-3.61 kJ mol-1) indicated that physical forces were involved in the spontaneous dye biosorption. Thus, the sawdust as a possible non-conventional biosorbent presented an interesting option for bioremediation of contaminated environments by such unsafe dyes.  相似文献   

4.
The efficient and safe flocculation of colored wastewaters from textile and leather industries is of great significance for natural environment and human health. In this work, an eco-friendly bamboo pulp cellulose grafting ployacrylamide (BPC-g-PAM) flocculant was synthesized and employed to remove organic dyes from dye solutions by flocculation. The flocculation performance of the synthesized BPC-g-PAM was evaluated by chroma and turbidity removals of a series of cationic and disperse dye solutions. A L9(34) orthogonal experiment was designed to optimize the flocculation process of the BPC-g-PAM. The positive results showed that, the BPC-g-PAM exhibited an excellent flocculation performance to organic dye solutions. The average decolorization rate reached 96.7 % and the chroma could be reduced to 5° or even lower for the disperse dye solutions. The mechanism of the BPC-g-PAM flocculation to disperse dyes was investigated and determined as chemical adsorption kinetics. Furthermore, the eco-friendly BPC-g-PAM also held an excellent biodegradability of 66.5 % at 45 d and 67.6 % at 90 d in soil extracting solution, which were far higher than the corresponding data of the commercial PAM.  相似文献   

5.
The present study highlights the effective removal of Cu (II) ions from synthetic solution using bacteria such as B. subtilis, P. aeruginosa and E. cloacae. Batch biosorption studies show that the biosorption of B. subtilis is effective when the concentration ranges from 25-200 mg L(-1). Biomass dosage, pH and the initial metal ion concentration have a profound effect on the biosorption process and this is reported in this study. In order to understand the nature of the biosorption process, Langmuir and Freundlich isotherm models were applied. Pseudo first and second order models were used to study the biosorption kinetics. The results show that these bacterial strains are very much suitable for the removal of Cu (II) ions. Being cost effective and efficient in toxic metal ion removal, these bacteria can be used on a large scale.  相似文献   

6.
This study presents the mechanical and thermal properties of environment-friendly composites made from recycled newspaper fibers reinforced recycled poly(ethylene terephthalate) (rPET) resin with the addition of styrene-ethylene-butylene-styrene grafted maleic anhydride (SEBS-g-MA) as compatibilizer. The effect of SEBS-g-MA addition (i.e., 10 phr) by using a twin-screw extruder to the rPET resin, followed by different fiber content (5, 10 and 15 wt.%) on the tensile, flexural and impact properties of the composites were determined. Stiffness of composites increased significantly compared to those of rPET/SEBS-g-MA blend. Fiber addition resulted in moderate increases in both tensile and flexural strength of the composites. Scanning electron microscope (SEM) photomicrographs of the impact fracture surfaces demonstrate good adhesion at 5 and 10 % fiber content. Differential scanning calorimetry (DSC) showed that the presence of newspaper fibers enhanced the nonisothermal crystallization kinetics and crystallinity. Thermal stability of the composites was improved as indicated by thermogravimetric analysis (TGA).  相似文献   

7.
In this paper, urethane polycarboxylate (UPC) as a novel adsorbent was synthesized and characterized. Dye removal ability of UPC from aqueous solution of single and binary systems was studied. Fourier transform infrared (FTIR) was used to characterize UPC. Basic Blue 41 (BB41), Basic Red 18 (BR18), and Basic Violet 16 (BV16) were used as cationic dyes. Dye removal isotherm and kinetic were evaluated. The effect of UPC dosage, initial dye concentration, and inorganic anions on dye removal was investigated. The capacity of UPC to remove BB41, BR18, and BV16 were 333 mg/g, 278 mg/g, and 222 mg/g, respectively. Dye removal kinetics and isotherm using UPC were fitted with the pseudo-second order and Langmuir model, respectively. The results showed the UPC might be used as a dye adsorbent to treat multicomponent systems containing cationic dyes.  相似文献   

8.
The thermal behavior, morphology, ester-interchange reaction of Poly(trimethylene terephthalate) (PTT)/Poly(ethylene terephthalate) (PET) melt blends were investigated over the whole composition range(xPTT/(1-x)PET) using a twinscrew Brabender. The melt blends were analyzed by differential scanning calorimetry (DSC), nuclear magnetic resonance spectroscopy (13C-NMR), and scanning electron microscopy (SEM). Single glass transition temperature (T g ) and cold crystallization temperature (T cc ) were observed in all melt blends. Melt blends were found to be due to the ester-interchange reaction in PTT/PET blend. Also the randomness of copolymer increases because transesterification between PTT and PET increases with increasing blending time. This reaction increases homogeneity of the blends and decreases the degree of crystallinity of the melt blends. In PTT-rich blends, mechanical properties decrease with increase of PET content compared with that of pure PTT. And, in PET-rich blends, tensile modulus decreases with increase of PTT content, but tensile strength and elongation is similar to that of pure PET.  相似文献   

9.
Two PET wool-type fibres were studied for this research, i.e. a normal wool-type and a low-pilling modification. The structural morphology and crystalline orientation of the fibres were investigated by means of wide-angle x-ray scattering (WAXS), density measurements and infrared (IR) spectroscopy. The degree of crystallinity, crystallite orientation, apparent crystallite dimensions and micro-void system were determined by x-ray scattering. Birefringence measurements were used to study the average molecular orientation and the orientation of macromolecular chain segments in the amorphous regions. In addition, PET samples were conventionally dyed and the effect of the structure on colour was followed using colorimetry. Significant differences between the two PET wool fibre types were observed; i.e. crystallinity is higher for the standard PET wool fibre type, the crystallites are slightly larger and better oriented, long periods are larger, the orientation of molecular segments in non-crystalline phase is higher, and bigger voids are formed. The observed structure gives rise to fibres higher tenacity and higher bending stiffness.  相似文献   

10.
Chemically modified starch nanocrystals were used as adsorbents for the removal of aromatic organic compounds from water. The nanocrystals were chemically modified by grafting with stearate moieties which enhanced the adsorption capacity of the nanometric substrate. Their adsorption capacity ranged between 150 and 900 μmol g−1 of modified nanoparticles and the adsorption isotherms could be described accurately by the Langmuir model. The adsorption kinetics followed a two-step process with first pure adsorption of the aromatic compounds onto the surface of the nanoparticles followed by a diffusion of the compounds into the layer of surface chains grafted onto the nanoparticles. Furthermore, the feasibility of using these nanoparticles in continuous flow mode processes was confirmed using a fixed bed column setup. The fixed bed column could also be regenerated by washing with ethanol and was found not to exhibit any loss in adsorption capacity over multiples adsorption-desorption cycles.  相似文献   

11.
Although madder (Rubia tinctorum) has been used as a well-known natural textile dye source for dyeing of natural fibers such as wool, silk and cotton, 100 % polyester dyeing with madder is not common. In this study, polyester samples were dyed with madder at different dyeing temperatures, from 60 °C to 130 °C, in company with 7 chemical and 5 natural mordants. Color properties and rub, light and wash fastness performances were investigated. Different shades of orange, brown, pink and reddish green colors were obtained. Dyeing at 130 °C exhibited the highest color yield, the highest chroma and the lowest lightness values. Overall, chemical mordants exhibited higher color yields than natural mordants. High wash fatness, moderate light and rub fastness levels were observed. The potassium bitartrate and gallnut, a natural mordant, exhibited the best results. The madder dyeing of polyester should be carried out at hot temperature conditions, 130 °C, in order to obtain the highest achievable color yield and chroma with the highest light and wash fastness properties.  相似文献   

12.
The cross-section shape, longitudinal self-crimping configuration of various PTT (Polytrimethylene terephthalate)/PET (Polyethylene terephthalate) filaments were observed and measured via microscope. The crimp parameters of the filaments, including helixes pitch, crimp radius, crimp curvature and regular crimp proportion were calculated, and the relationship between crimp parameters and self-crimping configurations of PTT/PET filament was analyzed. Various shapes of PTT/PET fiber cross-section were detected such as round, peanut, dog bone and pear like shapes. Crimp configurations were found not always regular spatial helix along the longitudinal direction of filament and had significant difference according to the fact whether the filament was undergone textured process. With the length rate of the long axis to the short axis of cross-section increasing, the crimp curvature of filament will also increase. The helix pitch and radius will increase while the crimp curvature will decrease with the increasing linear density for the same cross-section shape of PTT/PET filament.  相似文献   

13.
Poly(ethylene terephthalate) fabrics were metallized through electroless plating of copper. The copper plating was performed on palladium-decorated polyaniline surfaces, and polyaniline was present as an intermediate layer on fabrics to facilitate palladium formation. Different oxidation states of polyaniline were tested in their efficacy in Pd (II) reduction and subsequent Cu plating. X-ray photoelectron spectroscopy was used to monitor the surface changes along the metallization procedure, and surface resistance was measure to probe the electrical properties of the metallized fabrics.  相似文献   

14.
Unsaturated polyester resin synthesized from glycolyzed product of polyethylene terephthalate (PET) waste was used as a matrix to form coconut fiber/polyester composites. PET wastes were recycled through glycolysis and polyesterification reaction to produce a formulation for unsaturated polyester resin (UPR). FTIR spectra of glycolyzed product and prepared resin revealed that cross-links between unsaturated polyester chain and styrene monomer occurred at the saturated sites which resulted in the forming of cross linking network. To improve the adhesion between coconut fiber and polyester resin, various concentrations of alkali, silane and silane on alkalized fiber were applied and the optimum concentration of treatments was determined. The influence of water uptake on the sorption characteristics of composites was studied via immersion in distilled water at room temperature. Surface treatment of coconut fiber caused a significant increase in the tensile properties with the optimum treatment is 0.5 % silane on the 5 % alkalized coconut fiber/polyester composites. It was also observed that the treated fiber composites showed lower water absorption properties in comparison to those of untreated fiber composites. This observation was well supported by the SEM investigations of the fracture surfaces. From the study, it was concluded that polyester reinforced coconut fiber composites derived from recycling polyethylene terephthalate (PET) waste may have the potential application in the fields of construction and automotive interior substrates.  相似文献   

15.
Poly(trimethylene terephthalate) (PTT)/poly(ethylene naphthalate) (PEN) blends of various compositions were prepared by the solution-blending and melt-blending methods. The changes in miscibility and crystallization behaviors of the blends upon thermal treatment above the melting temperature of the blends at 280°C were investigated by using DSC, DMA,1H NMR, and SAXS analyses. Without any thermal treatment, the blend systems were not miscible, and the thermal transitions, such as glass transition, cold crystallization, and crystal melting of the individual components were observed in the DSC and DMA analyses. With thermal treatment, though, they became miscible as the thermal transitions of each component disappeared and single glass transition peaks were observed in the thermal analysis. The chain randomness determined using1H NMR spectroscopy revealed that thermal treatment at 280°C for more than 30 min brought about transesterification reactions between the PTT and PEN segments resulting in an increase in their miscibility. These results were confirmed by the small angle X-ray analysis conducted to determine the long period (L), the thickness of the crystalline lamella stack (l c ), and the thickness of the amorphous region (l a ). After short thermal treatment, the melt-blended sample followed the values for the individual components. However, with extended thermal treatment, the blend became homogeneous, possessing different crystalline morphologies which resulted in different values ofL, l c , andl a .  相似文献   

16.
Poly(ethylene terephthalate) was annealed at different temperature and pressure of supercritical carbon dioxide (CO2) using samples quenched from the melt. Crystallization and molecular relaxation behavior due to CO2-annealing of samples were investigated using differential scanning calorimetric and dynamic mechanical measurements. The glass transition and crystallization temperatures significantly decreased with increasing temperature and pressure of CO2. The dynamic mechanical measurement of samples annealed at 150 °C in supercritical CO2 showed three relaxation peaks, corresponding to existence of different amorphous regimes such as rigid, intermediate, and mobile domains. As a result, the mobile chains were likely to facilitate crystallization in supercritical state. It also led to the decreased modulus of CO2-annealed samples with increasing pressure.  相似文献   

17.
Poly(ethylene terephthalate) (PET)/CaCO3 and PET/modified-CaCO3 (m-CaCO3) nanocomposites were prepared by melt blending. The morphology indicated that m-CaCO3 produced by reacting sodium oxalate and calcium chloride, was well dispersed in PET matrix and showed good interfacial interaction with PET compared to CaCO3. No significant differences in the thermal properties such as, glass transition, melting and degradation temperatures, of the nanocomposites were observed. The thermal shrinkage of PET at 120 °C was 10.8 %, while those of PET/CaCO3 and PET/m-CaCO3 nanocomposites were 2.9–5.2 % and 1.2–2.8 %, respectively depending on filler content. The tensile strength of PET/CaCO3 nanocomposite decreased with CaCO3 loading, whereas that of PET/m-CaCO3 nanocomposites at 0.5 wt% loading showed a 17 % improvement as compared to neat PET. The storage modulus at 120 °C increased from 1660 MPa for PET to 2350 MPa for PET/CaCO3 nanocomposite at 3 wt% loading, and 3230 MPa for PET/m-CaCO3 nanocomposite at 1 wt% loading.  相似文献   

18.
In this work, the method, in principle of the box complex algorithm was adopted to obtain stress-induced crystallization coefficient C and the strain-optical coefficientA op with the value of 295 and 1.5×10−9, respectively, and some parametersA 1=0.27,A 2=5.06,a=3.5,b=1.8 relative to the elongational viscosity of poly(trimethylene terephthalate)(PTT) fiber. The vitrification distance as a function of the take-up velocity and mass throughput was also gotten. The effects of spinning conditions on filament temperature, velocity gradient, spinning tension, birefringence and crystallinity, and effect of viscoelasticity on take-up velocity had been discussed.  相似文献   

19.
In this study, residual shell biomass of Corylus avellana L. was used as potential biosorbent for biosorption of a model industrial hetero-bireactive dye. The biosorbent was characterized by FTIR and SEM. The batch biosorption studies were performed as a function of dye concentration and contact time. The biosorption of dye was found to be very quick. Various kinetic and isotherm models were used to evaluate the obtained experimental data. The biosorption kinetic was best represented by the pseudo-second-order model while the biosorption equilibrium was best described by Langmuir model. The maximum dye biosorption capacity of biosorbent based on Langmuir isotherm was obtained as 74.527 mg g-1. These results showed that the use of such plant waste biomass in biosorption system could be a feasible method for the removal of such recalcitrant dye from industrial effluents to reduce operating costs.  相似文献   

20.
Functionalized poly(ethylene terephthalate) (PET) fibers were synthesized by grafting of maleic acidmethacrylamide (MAA-MAAm) monomer mixtures by using benzoylperoxide as initiator onto PET fibers in an aqueous medium. The functionalized fibers were characterized by Fourier transform infrared spectroscopy, thermogravimetric analysis, differential scanning calorimeter, and scanning electron microscopy. The effects of reaction conditions, such as monomer mixture ratio, monomer mixture and initiator concentration, polymerization time, and temperature on grafting were investigated. In alone grafting of MAA, grafting was not observed. However, the use of MAAm as a comonomer increased the amount of MAA inserted to the PET fiber up to 40.7 %. An increase in the temperature between 75 and 95 °C and also, increase in monomer mixture concentration between 0.50 and 1.00 M increased the grafting rate and saturation graft yield. The graft yield has shown an increase up to an initiator concentration of 1.0×10−2 M and decreased afterwards. The grafting increased the dyeability with disperse, acidic and basic dyes, and water absorption capacity but decreased the thermal stability of the fibers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号