首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Improvement of maize populations for resistance to downy mildew   总被引:1,自引:0,他引:1  
Upgrading levels of disease resistance are a primary objective of maize breeding programmes. Efficacy of S1 recurrent selection in improving levels of resistance to downy mildew (DM) infection was assessed in Nigeria from 1997 to 2000 in six maize populations. Improvement procedures consisted of evaluating S1 progenies under artificial infection with DM spores and in disease‐free environments and using a selection index to combine selection for reduced DM infection with appropriate agronomic characters from more than one environment. Three to four cycles of selection were completed in each of the populations. Products from the different cycles of selection were evaluated and data collected on DM infection parameters and agronomic traits. Result obtained showed 3–4 cycles of selection were adequate to reduce DM infection levels significantly and increase grain yield. Downy mildew infection decreased by between 58 and 100% while grain yield increases ranged from 10 to 98% for the 2‐4 cycles of selection relative to the C0 (original). Selection increased grain yield with acceptable changes in plant height while maintaining maturity in disease‐free environments.  相似文献   

2.
Summary The correlation between resistance levels of seedlings with cotyledons only and leaf discs taken from young and old leaves on the one hand and the resistance of adult plants in bicyclic field tests on the other was investigated. Components of resistance were: latent period (LP) the percentage of seedlings (SEED) or the number of cotyledons (COT) infected, the number of sporangiophores (SPOR) per cotyledon or leaf dise and the % of the surface (SURF) per cotyledon or disc covered with sporangiophores.For both cotyledons and leaf discs, significant differences occurred between plant genotypes for LP, SPOR and SURF. The correspondence between results of cotyledon testing and field testing was generally negligible. There was a rather good correlation between the resistance levels of leaf discs, expressed in SPOR and SURF and the resistance of adult plants. On the basis of a smaller coefficient of variation for SPOR this parameter should be preferred to predict the resistance of adult plants by testing leaf discs.  相似文献   

3.
To determine and utilize RAPD markers linked to resistance to downymildew incited by Peronospora manshurica in soybean, a resistantcultivar `AGS129' was crossed to a susceptible cultivar `Nakhon Sawan 1'(NS1). F2 and BC1 populations were advanced from the F1 and evaluatedfor resistance to the disease. 2-test demonstrated that the resistancewas controlled by a single dominant gene (Rpmx). Near-isogenic lines(NILs) and bulked segregant analysis (BSA) were used to identify RAPDmarkers linked to the gene. Six DNA bulks namely F5(R), F5(S),BC6F3(R), BC6F3(S), F2(R) and F2(S) were set up by pooling equalamount of DNA from 8 randomly selected plants of each disease responsetype. A total of 180 random sequence decamer oligonucleotide primerswere used for RAPD analysis. Primer OPH-02 (5 TCGGACGTGA 3 andOPP-10 (5 TCCCGCCTAC 3) generated OPH-021250 and OPP-10831fragments in donor parent and resistant bulks, but not in the recurrentparent and susceptible ones. Co-segregation analysis using 102 segregatingF2 progenies confirmed that both markers were linked to the Rpmxgene controlling downy mildew disease resistance with a genetic distance of4.9 cm and 23.1 cm, respectively. Marker OPH-021250 was presentin 13 of 16 resistant soybean cultivars and absent in susceptible cultivars,thus confirming a potential for MAS outside the mapping population.  相似文献   

4.
This research compared the expression of resistance to downy mildew at cotyledon and adult plant stages in seven Brassica oleracea genotypes against two P. parasitica isolates of different virulence. Seven day old seedlings were dual inoculated under controlled environment by depositing two 10 μl droplets of a spore suspension of a different isolate on each cotyledon and the interaction phenotype (IP) evaluated 7 days later using a 0–5 scale of increasing susceptibility. The seedlings were transplanted to 16 cm pots and grown in the greenhouse for 110 days (15 to 28 leaves). Adult plants were tested using a single leaf inoculation method that allowed the same plant to be simultaneously inoculated with the two P. parasitica isolates. Leaves were scored 10 days after inoculation using a 0–5 scale of increasing susceptibility. The inoculation of the same plant with the two isolates produced different combinations of cotyledon (CT) and adult-plant (AP) interaction-phenotype according to the genotype. CrGC 3.1 was susceptible at CT and AP stages, ‘Algarvia’ resistant at CT and AP stages, and broccoli ‘A’ susceptible at CT and resistant at AP stage against the two isolates. ‘Murciana’ and broccoli ‘B’ were differential at CT and AP stages. Savoy and Shetland cabbages were differential at CT stage and resistant to both isolates as adult plants. Cotyledon resistance could not be used to predict adult-plant resistance since the two types of resistance were very poorly correlated. Resistance can be race specific either at cotyledon or at adult-plant stage. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

5.
6.
Selection for brown stripe downy mildew resistance in maize   总被引:3,自引:0,他引:3  
Summary The maize (Zea mays L.) cultivar Makki Safed 1 (MS1) with susceptibility to brown stripe downy mildew (BSDM) caused by Sclerophthora rayssiae var. zeae Payak & Renfro, was subjected to two cycles of mass selection and one cycle of full-sib family selection. Selection was carried out primarily for BSDM resistance.The mass selection was practised under artificial epiphytotic conditions in a disease nursery. Full-sib progenies and performance trials on MS1 and its improved versions were grown in diseased and disease free environments.Mass selection resulted in a significant improvement for resistance to BSDM. A cycle of full-sib selection resulted in an additional improvement for resistance to the disease. The disease rating of the improved version was 1.5 against 4.5 for the original population (scale: 1, highly resistant to 5, highly susceptible). The yield of the improved populations of MS1 was significantly greater than that of MS1 in the disease nursery. In disease free experiments, the improved populations showed almost no yield advantage over MS1. There were also no significant differences between the original population and the improved population after three selection cycles for ear length, ear girth, number of kernel rows per ear, number of kernels per row, 1000-kernel weight, plant height, ear height and days to silk.  相似文献   

7.
Summary Six inoculation techniques were compared for the artificial promotion of downy mildew (Peronosclerospora sorghi) in sorghum. These were (1) sprouted seeds incubated between sporulating infected leaves, (2) sprouted seeds depped in conidial suspension, (3) sprouted seeds sprayed with conidial suspension, (4) seedlings at plumule stage inoculated with drops of a conidial suspension, (5) seedlings at plumule stage sprayed with a conidial suspension, and (6) seedling showered with conidia falling from infected leaves. Seedlings at the one-leaf stage sprayed with a conidial suspension (6 × 105 ml-1) showed the highest systemic infection (100%) in the susceptible lines IS 643 and IS 18433. This technique is effective, repeatable, and allows the deposition of a conidial suspension as a fine mist on the entire seedling surface. In the greenhouse, the technique was used to test the downy mildew reaction of genotypes previously reported as resistant (< 5% incidence) in 3–4 years of field screenings. Of the 61 genotypes tested, 21 were free from downy mildew, 14 had less than 5% incidence, and the rest showed variable susceptible reactions. Therefore, the technique can be reliably and effectively used in the greenhouse to detect disease escapes and to indentify resistance.  相似文献   

8.
M.W. Farnham  M. Wang  C.E. Thomas 《Euphytica》2002,128(3):405-407
Downy mildew, incited by Peronospora parasitica (Pers.: Fr.) Fr., is a destructive disease of broccoli (Brassica oleraceaL., Italica Group). Resistant cultivars represent a desirable control method to provide a practical, environmentally benign, and long-term means of limiting damage from this disease. Doubled-haploid (DH) lines developed by us exhibit a high level of downy mildew resistance at the cotyledon stage. To determine the mode of inheritance for this resistance, a resistant DH line was crossed to a susceptible DH line to make an F1, from which F2 and backcross (BC) populations were developed. All populations were evaluated for response to artificial inoculation with P. parasitica at the cotyledon stage. All F1 plants (including reciprocals) were as resistant as the resistant parent, indicating no maternal effect for this trait. F2 populations segregated approximately 3resistant to 1 susceptible, BC populations using the resistant parent as the recurrent parent contained all resistant plants, and the BC to the susceptible parent segregated 1 resistant to 1 susceptible. These results indicate that resistance is controlled by a single dominant gene. This gene should be easily incorporated into F1 hybrids and used commercially to prevent downy mildew at the cotyledon stage. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

9.
Rolf Stegmark 《Euphytica》1991,53(2):87-95
Summary A partially downy mildew resistant pea line was back-crossed to a susceptible cultivar with more pods per node and lower seed weight. Breeding lines with different degrees of infection in a greenhouse test were selected. These lines and the two parental lines were investigated in field trials and tested in the greenhouse for four generations. Significant genetic variation among lines was found for infection of seedlings in greenhouse tests, and infection of pods, pod set and seed weight in field-trials. Infection of seedlings in the greenhouse was correlated with infection of pods in the field. In greenhouse tests, the non-genetic variance component was large in comparison with the genetic component and a significant genotype trial interaction was found. Significant repeatability was obtained for downy mildew on seedlings and pods, number of pods per node and seed weight. An unfavourable correlation between susceptibility to downy mildew and number of pods per node was found. No single breeding line showed the ideal combination of good resistance, high number of pods per node and small seeds. However, one line showing better resistance than the susceptible parent, with smaller seeds and more pods per node than the resistant parent was found. The susceptible parent also carries some resistance factor that is not present in the resistant parent.  相似文献   

10.
Summary Inheritance of downy mildew (Peronospora parasitica) resistance in three resistant x susceptible crosses, one susceptible x susceptible and one resistant x resistant cross were studied in Indian cauliflower (Group III) over the two years (1990 and 1991). No significant difference was observed between the years for various estimates and hence pooled data are presented. Downy mildew resistance in crosses cc×HR 5-4 and 3-5-1-1×244 (R×S) is governed by single dominant gene PPA3 but in cross cc×244 (R×S), recessive epistasis was observed. The resistance level was not improved in both the cc×3-5-1-1 (R×R) and 244×267-6-9 (S×S) crosses. Exploitation of downy mildew resistance from cc and 3-5-1-1 in F1 hybrid is explained in detail.  相似文献   

11.
Downy mildew of sunflower, caused by the Oomycete, Plasmopara halstedii is at present controlled by major resistance genes. However, the pathogen has shown a considerable capacity for changes in virulence and these resistance genes are overcome only a few years after they have been introduced into new sunflower varieties. This paper presents research for quantitative, non-race-specific resistance independent of major genes. The reaction of cultivated sunflower genotypes to field attack by downy mildew was studied over 4 years in several environments and in the presence of the two most common races in France: 703 and 710. An experimental protocol with pre-emergence irrigation was developed, making it possible to observe downy mildew reaction whatever the weather conditions. Significant levels of partial resistance were observed in about 50 inbred sunflower lines among the 800 observed. These results suggest that it should be possible to select for non-race-specific downy mildew resistance and to include it in modern varieties. However, since this non-specific resistance is partial, it may be necessary to combine it with major gene resistance. Possible strategies are discussed to obtain durable resistance to downy mildew.  相似文献   

12.
M. Rahim    C. C. Jan  T. J. Gulya 《Plant Breeding》2002,121(1):57-60
Sunflower downy mildew (SDM) caused by Plasmopara halstedii, is a major disease of sunflower. Eleven resistance genes have been identified, but allelic relationships among these genes are not clear. This study examined the inheritance and allelic relationships of genes conferring resistance to SDM races 1, 2 and 3 (virulence phenotypes 100, 300 and 700, respectively) and confirmed a twelfth resistance gene. Three USDA Plant Introductions, AMES 3235, PI 497250, and PI 497938, and three released lines, RHA 266, RHA 274 and DM‐2 were studied. RHA 266 has only the Pl1 gene for race 1 resistance. Digenic inheritance of resistance was found in AMES 3235, PI 497250, and RHA 274. These lines have the Pl1 and Pl12 genes, conferring resistance to race 1, and the Pl2 and Pl11 genes, conferring resistance to race 2. DM‐2 and PI 497938 have Pl12 (but not Pl1 for resistance to race 1, the Pl12 gene (but not the Pl2) for resistance to race 2, and Pl5 for resistance to race 3. These resistance genes will serve as a foundation for future gene designations and genetic diversity studies of resistance to SDM.  相似文献   

13.
The inheritance of the reaction of sunflower to downy mildew was investigated using resistant and susceptible near isogenic lines (NILs) and their F3 families. Resistance to race 730 was evaluated using the whole seedling inoculation technique. Seventy-three F3 families were inoculated, among which 54 families were resistant and 19 susceptible, fitting a 3 : 1 segregation ratio. F3 families were also studied using several PCR markers. Ten markers at the Pl6 locus, specific for the resistant line, also segregated in F3 families with a 3 : 1 ratio. The same segregation ratio occurred for microsatellite haplotypes that resembled the resistant parent, and were amplified with ORS 166 and ORS 1043. The only common fragment that was observed between resistant and susceptible parental lines was one of the TIR-NBS-LRR resistance gene analogue markers, having a restriction site. Two co-dominant cleaved amplified polymorphic sequence (CAPS) markers were obtained. The mapping data indicate that several dominant markers and two CAPS markers, developed here, completely co-segregate with the Pl6 gene conferring resistance to race 730. CAPS markers will facilitate efficient marker-assisted selection for sunflower resistance to downy mildew race 730.  相似文献   

14.
H. Kumar  R. B. Singh 《Euphytica》1981,30(1):147-151
Summary An analysis of adult plant resistance of powdery mildew in 15 F1, F2 and F3 populations of pea derived from crossing 15 diverse and susceptible lines with one resistant line revealed that resistance to powdery mildew is controlled by duplicate recessive genes. The genes were designated as er1 and er2.Disease reaction showed independent segregation with three known markers in the resistant parent, namely, af (afila, chromosome 1), st (stipule reduced, chromosome 3) and tl (clavicula, chromosome 7).Contribution form the Department of Genetics and Plant Breeding Banaras Hindu University, Varanasi-221005, India.  相似文献   

15.
16.
Downy mildews cause considerable damage to maize (Zea mays L.) worldwide, particularly in the tropical Asia. We have evaluated a set of 42 tropical/sub-tropical maize inbred lines developed in different countries in Asia (India, Thailand and Philippines), and Mexico, for analysing the genetic variability for resistance to sorghum downy mildew [Peronosclerospora sorghi; SDM] and Rajasthan downy mildew [P. heteropogoni; RDM]. Experiments were carried out in replicated trials under artificial infection in field conditions against SDM and RDM at Mandya in Karnataka, India, and Udaipur in Rajasthan, India, respectively, during 1999 and 2000. The study resulted in identification of five inbred lines offering consistent and strong resistance to both SDM and RDM, while several inbred lines revealed resistance only to RDM. It was also revealed that the SDM-resistant inbreds are invariably resistant to RDM, while the RDM-resistant inbreds might show differential responses to the SDM. The maize inbred lines identified in this study with broad-spectrum resistance to downy mildews could be potentially useful for basic and applied research work on downy mildews in tropical Asia. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

17.
Downy mildew resistance originating from Allium roylei Stearn provides a complete resistance to onions and is based on one, dominant gene. Since A. roylei can successfully be hybridized with onion (A. cepa L.), a breeding scheme aimed at the introgression of this gene was initiated ca. 20 years ago. Several setbacks in this programme were encountered, firstly the identified molecular marker linked to the downy mildew resistance locus became increasingly difficult to use and finally lost its discriminating power and secondly the final step, making homozygous introgression lines (ILs), turned out to be more difficult then was hoped. GISH analysis showed that the chromosomal region harbouring the resistance locus was the only remaining piece of A. roylei in the nuclear background of onion and it also confirmed that this region was located on the distal end of chromosome 3. It was hypothesized that some factor present in the remaining A. roylei region was lethal when homozygously present in an onion genetic background. The identification of an individual with a smaller and more distally located introgression fragment and homozygous ILs in its progeny validated this hypothesis. With the help of these nearly isogenic lines four AFLP® markers closely linked to the resistance gene were identified, which can be used for marker-aided selection. The introduction of downy mildew resistance caused by Peronospora destructor into onion is a significant step forward in the development of environmentally-friendly onion cultivars.  相似文献   

18.
Summary Eighty-one accessions of three Lactuca species which showed no recognisable race specific resistance to Bremia lactucae when tested in the laboratory as seedlings, exhibited different degrees of susceptibility when exposed to natural field infection. As a group, crisp genotypes had less mildew and a slower rate of disease development than other types of lettuce. Wild forms of Lactuca sativa and Lactuca serriola were particularly susceptible. In a further trial, the low field susceptibility of three lettuce cultivars (Iceberg, Batavia blonde de Paris and Grand Rapids) was confirmed. Disease development on cv. Iceberg was compared to that on the highly susceptible cv. Hilde in experiments where the two cultivars were grown either in close proximity or in isolation. The absolute level of attack on cv. Iceberg depended upon disease pressure and differences between the two types only became apparent approximately 8 wk after sowing.  相似文献   

19.
Genetic diversity of maize inbred lines in relation to downy mildew   总被引:2,自引:0,他引:2  
A major emphasis in maize breeding in Asian countries has been the improvement for resistance to downy mildew, a serious disease that causes significant yield losses. A total of 102 inbred lines, including lines from Asian breeding programs, Mexico, USA and Germany, were analyzed with 76 SSR markers to measure diversity and investigate the effect of selection for downy mildew resistance. A mean polymorphism information content of 0.59, with a range of 0.14 to 0.83, was observed. Diversity at the gene level showed an average of 5.4 alleles per locus and a range of two to 16 alleles per locus, with a total of 409 alleles. About half of the alleles in the Asian lines had frequencies of 0.10 or less, and only 2% had frequencies > 0.80, indicating the presence of many alleles, and thus a high level of diversity. Some of the high-frequency alleles were in chromosomal regions associated with disease resistance. However, the frequencies of alleles in three SSR loci that are linked to a QTL for resistance to downy mildews in Asia were not significantly different in the subtropical/tropical Asian lines as compared to all the lines in the study. Lines from the US, Germany, and China, comprised three clusters of temperate maize(GS = 0.31), while those from India, Indonesia, Philippines, Thailand, Vietnam and CIMMYT comprised seven indistinct clusters of subtropical and subtropical maize (GS = 0.29). We conclude that maize breeding activity in Asia has not caused a decline in the overall amount of diversity in the region. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

20.
Summary Foliar symptom severity of seedlings artificially inoculated with S. nodorum were used to idenify the type of gne action controlling resistance to this pathogen in the early generations of two wheat crosses. In both crosses a resistant spring wheat cultivar was crossed to a susceptible cultivar. Reciprocal crosses were included in the analysis to determine if the cytoplasm contributed in any significant degree to the level of resistance present.Results indicated that resistance was polygenic and that it could be explaned prinerpally by additive gene effects. Some differences in reciprocal crosses were evident, but a significant role for the eytoplasm in resistance is not indicated.Cooperative investigations of the Agricultural Research Service of the U. S. Department of Agriculture and the Montana Agricultural Experiment Station. Journal Paper No. 1210.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号