首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
山西省菜园土壤磷素积累特征及流失风险分析   总被引:4,自引:0,他引:4  
为了解山西省不同区域菜园土壤磷素积累以及流失情况, 本文分析了菜园土壤磷饱和度(DPS)、Mehlich3-P、Olsen-P与水溶性磷(Pw)的积累特征.结果表明: 山西各地菜园土壤4种磷素(土壤全磷、水溶性磷、Olsen-P和 Mehlich3-P)积累明显, 已经远远超过作物需求量; 土壤表层水溶性磷含量随着土壤磷饱和度(DPS)、Olsen-P、Mehlich3-P含量的增加而增加; 且Mehlich3-P与Olsen-P、水溶性磷与Olsen-P、水溶性磷与Mehlich3-P之间具有极显著相关性, 相关系数分别为0.976 6、0.923 2、0.962 0 (P<0.01); 当磷饱和度大于46.64%、Olsen-P大于81.88 mg·kg-1、Mehlich3-P大于164.59 mg·kg-1时, 水溶性磷含量上升幅度迅速增大, 由此将土壤磷饱和度为46.64%、Olsen-P 为81.88 mg·kg-1、Mehlich3-P为164.59 mg·kg-1和水溶性磷为8.05 mg·kg-1初步确定为山西省菜园土壤磷素流失的临界值.该结果将为探讨山西农田土壤磷素的养分管理和环境风险评估提供重要的理论依据.  相似文献   

2.
A wheat seedling rhizobox approach was used to differentiate between the rhizosphere and non-rhizosphere (bulk) soil amended with low and high rates of biochar (20 and 60 t ha−1 vs. control). Nitrate (NO3) was added as the main nitrogen (N) source because emerging biochar research points to reduced NO3 loss through leaching and gaseous loss as nitrous oxide. The rhizosphere under the different treatments were distinct (P = 0.021), with greater soil-NO3 and biochar-NO3 contents in the high biochar treatment. Biochar addition increased wheat root length ratio (P = 0.053) and lowered root N uptake (P = 0.017), yet plant biomass and N content were similar between treatments. The results indicate localisation of NO3 within the rhizosphere of biochar-amended soils which has implications for NO3 loss and improved nitrogen use efficiency.  相似文献   

3.
4.
有机肥对不同母质菜田土壤磷解吸动力学模拟   总被引:1,自引:0,他引:1  
通过室内恒温培养试验研究了华南3种典型母质发育的菜田土壤(玄武岩母质发育、花岗岩母质发育、河流冲积物母质发育)在经过两种有机肥(鸡粪堆肥和商品有机肥)预培养30 d和60 d后其土壤有效磷含量及磷解吸动力学过程的影响。结果表明,添加鸡粪堆肥和商品有机肥后,3种母质发育菜田土壤其有效磷含量均显著增加,且添加鸡粪堆肥处理的土壤其有效磷含量的增加量大于添加商品有机肥处理;3种母质发育土壤在添加两种有机肥处理后其磷解吸动力曲线均是先快速解吸然后缓慢达到平衡的过程;磷解吸量不仅与各处理的土壤初始有效磷含量密切有关,而且与土壤成土母质类型、施入有机肥种类相关;3种母质发育的菜田土壤在经过两种有机肥处理后其磷解吸动力曲线用5种动力学方程进行拟合,发现Elovich方程、抛物线方程和幂函数方程能够取得较好的拟合效果。  相似文献   

5.
Pyrogenic carbon (biochar) amendment is increasingly discussed as a method to increase soil fertility while sequestering atmospheric carbon (C). However, both increased and decreased C mineralization has been observed following biochar additions to soils. In an effort to better understand the interaction of pyrogenic C and soil organic matter (OM), a range of Florida soils were incubated with a range of laboratory-produced biochars and CO2 evolution was measured over more than one year. More C was released from biochar-amended than from non-amended soils and cumulative mineralized C generally increased with decreasing biomass combustion temperature and from hardwood to grass biochars, similar to the pattern of biochar lability previously determined from separate incubations of biochar alone.The interactive effects of biochar addition to soil on CO2 evolution (priming) were evaluated by comparing the additive CO2 release expected from separate incubations of soil and biochar with that actually measured from corresponding biochar and soil mixtures. Priming direction (positive or negative for C mineralization stimulation or suppression, respectively) and magnitude varied with soil and biochar type, ranging from −52 to 89% at the end of 1 year. In general, C mineralization was greater than expected (positive priming) for soils combined with biochars produced at low temperatures (250 and 400 °C) and from grasses, particularly during the early incubation stage (first 90 d) and in soils of lower organic C content. It contrast, C mineralization was generally less than expected (negative priming) for soils combined with biochars produced at high temperatures (525 and 650 °C) and from hard woods, particularly during the later incubation stage (250-500 d). Measurements of the stable isotopic signature of respired CO2 indicated that, for grass biochars at least, it was predominantly pyrogenic C mineralization that was stimulated during early incubation and soil C mineralization that was suppressed during later incubation stages. It is hypothesized that the presence of soil OM stimulated the co-mineralization of the more labile components of biochar over the short term. The data strongly suggests, however, that over the long term, biochar-soil interaction will enhance soil C storage via the processes of OM sorption to biochar and physical protection.  相似文献   

6.
During the past one and a half decades there has been a marked increase in the total amount of mercury applied to the crop for control of agricultural pests particularly rice blight. It seems likely that the accumulation of mercury in agricultural products and soils has been increased. FURUTANI and OSAJIMA (3.4.5) investigated the content of mercury in rice, fruits, and vegetables and inferred that the mercury in fond products is partly the residue of fungicides sprayed on crops, and partly due to absorption from the soil by plant roots.  相似文献   

7.
Journal of Soils and Sediments - Biochars exhibited considerable differences in chemical properties with different feedstocks and pyrolysis conditions. This study was to understand the effects of...  相似文献   

8.
中国蔬菜农业邻苯二甲酸酯污染与人体健康累积风险评估   总被引:4,自引:0,他引:4  
Phthalate esters(PAEs), which can disturb human endocrine system, have been widely detected in vegetable greenhouse agriculture in China. To investigate the effects of environmental factors on PAEs in soils, pollution sources were identified, and the cumulative risks of PAEs to humans through vegetables in the diet were evaluated in this study. Ninety-eight vegetable samples were collected from 10 markets along with 128 vegetable and 111 soil samples from agricultural greenhouses and open field. All soil and vegetable samples were contaminated with PAEs, and the total concentrations of the 5 PAEs, including dimethyl phthalate(DMP), diethyl phthalate(DEP), di-iso-butyl phthalate(DiBP), di-n-butyl phthalate(DnBP), and di-2-ethylhexyl phthalate(DEHP), were in the ranges of 0.26–2.53 mg kg~(-1) for soils and 0.95–8.09 mg kg~(-1) for vegetables. Three components extracted from principle component analysis could explain 51.2%, 19.8%, and 15.3% of the total variance of the 5 PAEs in soils, which may represent three major sources of PAEs, i.e., wastewater irrigation, application of fertilizers and pesticides, and plastic film. Long-term greenhouse cultivation could accumulate DEHP in soils, and a higher soil Fe Ox content reduced the Dn BP concentration. Based on a survey of vegetables in the diet, the hazard index of PAEs was 0.15 for individuals in different cities. The exposure of PAEs through vegetable intake was higher than the total exposure from other food stuffs, inhalation, and dermal absorption. More attention should be given to controlling PAEs in greenhouse vegetables.  相似文献   

9.
Actinomycetes in garden soils of the city of Kirov   总被引:1,自引:0,他引:1  
The population density, diversity, and structure of the actinomycetic complexes were studied in garden soils of the city of Kirov. The relationships between the structure of the complexes and the acidity, the concentrations of the mobile forms of heavy metals, and the soil humus content were analyzed. The specific features of the actinomycetic population in the garden soils of the city in comparison with the transport ecotopes and suburban territories were revealed. It was demonstrated that the actinomycetic complexes in the garden soils preserve their structural similarity with the actinomycetic complexes of the suburban forest parks despite certain changes in the composition of the dominant species and the relative abundance of the separate taxa. The obtained data indicate that the garden plots in the city contribute to the preservation of ecologically balanced ecosystems.  相似文献   

10.
酸性菜园土壤养分限制因子研究   总被引:8,自引:0,他引:8  
Nutrient limiting factors in acidic soils from vegetable fields of the Chongqing suburbs of China were assessed by employing the systematic approach developed by Agro Services International (ASI) including soil testing, nutrient adsorption study, and pot and field experiments to verify the results of soil testing, with a conventional soil test (CST) used for comparison. The ASI method found the moderately acidic soil (W01) to be N and P deficient; the strongly acidic soil (W04) to be N, K and S deficient; and the slightly acidic soil (W09) to be N, K, S, Cu, Mn, and Zn deficient. The CST method showed that W01 had P, B and Cu deficiencies; W04 had N, P and S deficiencies; and W09 had N, P, S, B, Cu, and Zn deficiencies. There were differences between the two methods. Among the two indicator plants selected, the response of sorghum on the three representative acidic soils was more closely related to the ASI results than that of sweet pepper.  相似文献   

11.
Retention capacities were measured in the laboratory for n-hexane and tetrachloroethylene (PCE) in three soils at varying soil water contents. Two experimental techniques were used; 1) saturation/drainage experiments where the soil columns were saturated with the chemical and allowed to drain freely for 24 h, and 2) spill simulations where a known amount of chemical was spilled on the surface of the soil column and allowed to infiltrate for one hour. Results show that the retention capacities on a volume basis were independent of chemical type. However, the retention capacities did decrease with decreasing porosity and increasing soil water content. The decrease of retention capacity with respect to soil water content was significant, with the decreases ranging from 38% to 94%. The implication of this decrease is rapid chemical penetration into the subsurface. Retention capacities obtained from spill simulations were consistently lower than those obtained by the saturation/drainage experiments due to hysteresis.  相似文献   

12.
蔬菜地土壤磷饱和度及其对磷释放和水质的影响   总被引:24,自引:0,他引:24  
为了解蔬菜地土壤磷素的积累对水环境的影响,我们在浙江省选择了33个代表性蔬菜地,采集和分析了土壤、地表水和地下水样的磷素状况,从土壤磷饱和度的角度,研究了浙江省主要蔬菜土壤磷积累状况及其对地表和地下水水质和土壤磷释放潜力的影响。结果表明,半透膜渗析法测得的磷释放量与土壤磷积累呈正相关,磷释放量随土壤磷饱和度的提高而增加。蔬菜地土壤磷饱和度的增加可显著提高地表水体和地下水中磷的浓度,当土壤磷饱和度小于25%左右时,水体中磷浓度随土壤磷饱和度增加较为缓慢;但当磷饱和度大于25%时,水体中磷浓度随土壤磷饱和度提高迅速上升。地表水中磷浓度主要与表层土壤磷饱和度有关;地下水中磷浓度主要受深层土壤磷饱和度的影响,与表层土壤磷饱和度的相关性较小。土壤磷饱和度可很好地表征土壤磷释放和对环境的潜在影响。  相似文献   

13.
北方耕地和蔬菜保护地土壤磷素状况研究   总被引:41,自引:3,他引:38  
以北方一般耕地和蔬菜保护地为供试土壤 ,研究了不同种植条件下土壤磷素状况 ,蔬菜保护地土壤磷素的空间分布特性。结果表明 ,蔬菜保护地土壤全磷、无机磷、有机磷、Olsen-P的平均含量是一般耕地土壤的 2.7~14.0倍 ,土壤Olsen P占全磷的比率 ,Ca2-P ,Ca8-P ,Al-P占土壤无机磷的比率显著高于一般耕地土壤。蔬菜保护地土壤各形态磷素主要积累在 0~20cm土层 ,并随土层深度的增加各形态磷素的含量逐渐降低 ,各土层Olsen-P ,Ca2-P ,Ca8-P ,Al-P含量降低幅度明显高于Fe-P ,O-P ,Ca10-P含量的降低值  相似文献   

14.
北方耕地和蔬菜保护地土壤磷素状况研究   总被引:29,自引:0,他引:29  
以北方一般耕地和蔬菜保护地为供试土壤 ,研究了不同种植条件下土壤磷素状况 ,蔬菜保护地土壤磷素的空间分布特性。结果表明 ,蔬菜保护地土壤全磷、无机磷、有机磷、Olsen-P的平均含量是一般耕地土壤的 2.7~14.0倍 ,土壤Olsen P占全磷的比率 ,Ca2-P ,Ca8-P ,Al-P占土壤无机磷的比率显著高于一般耕地土壤。蔬菜保护地土壤各形态磷素主要积累在 0~20cm土层 ,并随土层深度的增加各形态磷素的含量逐渐降低 ,各土层Olsen-P ,Ca2-P ,Ca8-P ,Al-P含量降低幅度明显高于Fe-P ,O-P ,Ca10-P含量的降低值  相似文献   

15.
四川茶区土壤营养元素背景值研究   总被引:6,自引:0,他引:6  
采用单道扫描等离子发射光谱仪(ICP-AES)对四川茶区72个产茶县422个取样点035.cm土层中P、S、K等17种营养元素含量进行测定,分析了该地区茶园土壤的无机营养元素背景值特征。结果表明,四川茶区土壤中P、K、Ca、Mg、S等5种大、中量元素均相对贫乏;微量元素Mn、B、Zn在大部分地区土壤中相对富集,而Fe、Mo在大部分地区土壤相对贫乏;其他元素中Se和Sb相对富集,其浓集系数K值分别为5.45和22.3。方差分析表明,17种营养元素的含量在不同产茶地区土壤中的差异均显著。土壤中营养元素的背景值因土壤类型的不同而表现出一定的差异,其中棕壤中的营养元素含量相对丰富,而红壤中营养元素的含量相对缺乏。因此应有针对性地增施有机肥及微量元素肥料,以补充相对贫乏的营养元素。  相似文献   

16.
菜田土壤有效氮的动态研究   总被引:4,自引:1,他引:4  
在田间条件下研究了种植莴苣和西葫芦对菜田土壤硝态氮、有机态氮和微生物量氮剖面动态的影响 ,结果表明 ,不同作物对土壤表层硝态氮、有机态氮和微生物量氮影响较大 ,表层有效氮在作物生长期间基本上处于耗竭状态 ;2 0~ 4 0cm土层土壤有效氮除硝态氮以外 ,受作物影响较小 ;而 4 0~ 60cm土层土壤各种形态氮基本不受作物影响  相似文献   

17.
缓控释肥在茶园中应用的研究进展   总被引:2,自引:4,他引:2       下载免费PDF全文
施肥是满足茶树营养需求的关键技术,茶园施肥主要以化肥为主,施用量大且养分流失严重,对茶园环境造成了威胁。为了更好地发挥化肥的作用,生产出了养分利用率高的缓控释肥。近年来,缓控释肥在茶园施用效果表明:(1)可以提高茶园土壤的保水保肥性,增加土壤中铵态氮的含量;(2)减少茶园氮素的流失,将氮素的利用率提高到55%~80%;(3)提高茶叶中氨基酸、咖啡碱的含量,改善茶叶品质,提高茶叶产量。但是,目前缓控释肥应用于茶园方面的研究仍有不足,本文在总结缓控释肥定义、释放机理、分类的基础上,分析了缓控释肥对茶园土壤结构、氮素流失及茶叶的影响,并提出了未来缓控释肥应用研究的4个方向。  相似文献   

18.
Over-fertilization has caused significant phosphorus(P) accumulation in Chinese greenhouse vegetable production(GVP) soils. This study, for the first time, quantified profile P accumulation directly from soil P measurements, as well as subsoil P immobilization, in three alkaline coarse-textured GVP soil profiles with 5(S5), 15(S15), and 30(S30) years of cultivation in Tongshan, Southeast China. For each profile, soil samples were collected at depths of 0–10(topsoil), 10–20, 20–40, 40–60, 60–80, and 80–100 cm. Phosphorus accumulation was estimated from the difference in P contents between topsoil and parent material(60–100 cm subsoil). Phosphorus mobility was assessed from measurements of water-soluble P concentration(PSol). Finally, P sorption isotherms were produced using a batch sorption experiment and fitted using a modified Langmuir model. High total P contents of 1 980(S5), 3 190(S15), and 2 330(S30) mg kg~(-1) were measured in the topsoils versus lower total P content of approximately 600 mg kg~(-1) in the 80–100 cm subsoils. Likewise, topsoil PSol values were very high, varying from 6.4 to 17.0 mg L~(-1). The estimated annual P accumulations in the topsoils were 397(S5), 212(S15), and 78(S30) kg ha~(-1) year~(-1). Sorption isotherms demonstrated the dominance of P desorption in highly P-saturated topsoils, whereas the amount of adsorbed P increased in the 80–100 cm subsoils with slightly larger P adsorption capacity. The total P adsorption capacity of the 80–100 cm subsoils at a solution P concentration of0.5 mg L~(-1) was 15.7(S5), 8.7(S15), and 6.5(S30) kg ha~(-1), demonstrating that subsoils were unable to secure P concentrations in leaching water below 0.5 mg L~(-1) because of their insufficient P-binding capacity.  相似文献   

19.
Recent discoveries of polyhalite (K2SO4.MgSO4.2CaSO4.2H2O) in the UK provide an alternative to conventional fertilizer sources. This work investigated the interaction of polyhalite, commercially known as POLY4, with soil using leaching columns. Different physical forms of polyhalite (powder, crushed rock and granules) were compared to potassium chloride (KCl) for the movement of potassium, calcium, magnesium and sulphur (as sulphate) through the soil profile using 19.7 L of water, equivalent to 4,500 mm rainfall. The nutrients from polyhalite were found to be available at 30 cm depth, with calcium showing signs of interacting with the soil clay particles to release cationic nutrients. Polyhalite granules showed the greatest release of sulphate, magnesium and calcium as a proportion of the additional nutrient with 127%, 71% and 102%, respectively leached. For potassium, all forms of polyhalite had greater release than KCl (powder = 58%; granules = 86%; crushed rock = 57% and KCl 16%). Nutrients from polyhalite and those mobilized from soil interactions are present in soil solution indicating availability for plant growth.  相似文献   

20.
A freshwater wetland at the Experimental Lakes Area in northwestern Ontario stored most of the SO4 2? received annually from precipitation, runoff and experimental additions. The S budget was determined for a small fen spray irrigated with H2SO4 and HNO3. Annual S retention was greatest during the first year of experimental addition of H2SO4 (73% of input in 1983). Retention was lowest (22%) in 1984, a year of lower than average precipitation with a long hot summer. During years with hot, dry summers, SO4 2? was produced from the reoxidation of reduced S compounds in the peat and released to surface waters. The autumn SO4 2? pulse was accompanied by the release of Ca and Mg but was not accompanied by a H+ release as has been detected in eastern Ontario and southern Norway, areas which receive more acidic precipitation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号