首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 140 毫秒
1.
蓄水坑灌下追肥时期对果园土壤氨挥发的影响   总被引:1,自引:0,他引:1  
为探讨蓄水坑灌下不同追肥时期土壤氨挥发规律以及影响氨挥发的因素,2018年4-9月在田间进行试验研究。共设置4个处理:花后期追肥(T1)、果实膨大期追肥(T2)、花后期和果实膨大期平均追施(T3)、对照不追肥处理(T4)。试验分析了追肥后土壤氨挥发速率与表层土壤铵态氮、pH和温度的相关性。结果表明:追肥显著增加土壤氨挥发速率和累积量,蓄水坑灌条件下果园土壤氨挥发损失率为0.80%~1.45%;不同处理之间氨挥发损失率大小关系表现为:T1T2T3。土壤氨挥发速率与表层土壤铵态氮和土壤pH显著或极显著正相关,与土壤温度相关性在花后期不显著,在果实膨大期显著正相关,降雨对土壤氨挥发也有一定的影响。综上,T3处理氨挥发损失最少,因此在蓄水坑灌条件下减少单次追肥量、分次追肥能降低果园土壤氨挥发损失。  相似文献   

2.
利用磷酸甘油-双层海绵通气法,研究了在蓄水坑灌条件下不同肥液浓度对土壤氨挥发速率和氨挥发量的影响.结果表明:蓄水坑灌条件下,地面氨挥发速率在施肥后第2~3天达到最大峰值,蓄水坑内氨挥发速率达到峰值的时间则稍有滞后性,肥液浓度越大,达到峰值的时间越晚.在不同肥液浓度下,肥液浓度越大,氨挥发量占施肥量的比例越大,在5 556 mg/L、3 333 mg/L和0 mg/L肥液浓度条件下的比例分别是1.80%、0.56%、0%.同一肥液浓度不同灌溉方式下,地面灌溉的氨挥发量比蓄水坑灌大14倍左右,氨挥发量占施肥量的比例分别是7.71%、0.56%,体现了蓄水坑灌的节水保肥优势.  相似文献   

3.
【目的】构建蓄水坑灌条件下的土壤水-热-氧三维分布耦合模型,探究蓄水坑灌对土壤水、热、氧分布的影响,揭示蓄水坑灌下的土壤水、热、氧空间分布特征。【方法】基于土壤水分运动方程,土壤热量传输方程和土壤氧传输方程,建立蓄水坑灌下的土壤水-热-氧三维耦合模型,利用COMSOL Multiphysics软件进行数值求解,采用田间实测数据对模型进行验证,基于验证后的模型模拟增设蓄水坑和灌水对果园土壤水、热、氧分布状况的影响。【结果】三维耦合模型具有较高的精度,模型模拟土壤含水率、土壤温度和土壤氧浓度的RMSE分别为0.0367、1.6099和0.0138。增设蓄水坑后,坑壁土壤水、热、氧状况发生较大改变;随着时间的推移,蓄水坑周围的土壤含水率降低,土壤含氧量升高,坑壁与地表土壤温度呈相同的变化规律,均随着气温的降低而降低。蓄水坑灌水后,水分通过坑壁渗入土壤,形成以坑底为中心的椭球状含水率高值区和土壤温度、含氧量低值区,三者分布随着时间推移趋于均匀,但灌水对土壤温度的影响时间远低于对土壤含水率和含氧量的影响时间。灌水对土壤氧浓度影响较小,氧浓度在地表和坑壁处较高;距地表和坑壁处越远,土壤氧浓度越低。...  相似文献   

4.
为探讨蓄水坑灌条件下不同肥液浓度(施氮量)对果园土壤呼吸速率的影响,共设置0,0.749,1.248g/L3个不同的肥液浓度水平,分析不同肥液浓度水平下土壤呼吸速率动态变化规律及其与土壤温度和土壤水分之间的关系。结果表明:蓄水坑灌条件下果园果树生育期内土壤呼吸速率呈不对称单峰变化曲线,土壤呼吸速率会随肥液浓度的增加而增加,在7月左右达到最大值,成熟收获期时降到最低;肥液浓度为1.248g/L时,蓄水坑灌条件下坑壁的土壤呼吸速率比地面灌溉条件下的土壤呼吸速率高;土壤温度和土壤水分是土壤呼吸速率的主要影响因素,10cm处土壤温度与土壤呼吸速率呈显著正相关,在一定范围内,土壤呼吸速率随土壤温度升高呈指数增加;土壤呼吸是土壤温度和土壤水分共同作用的结果。  相似文献   

5.
蓄水坑灌肥液入渗下土壤水氮运移特性试验研究   总被引:2,自引:1,他引:2  
为探讨蓄水坑灌肥液入渗下土壤水氮运移特性,通过室内试验对湿润体内土壤水分、NH+4-N和NO3--N的运移分布规律及氨挥发特性进行了系统研究。结果表明,蓄水坑灌肥液入渗下土壤水分主要分布在20~80 cm深层范围,表层土壤含水率较低,土壤水分的扩散分布主要集中在前9 d,再分布过程中,深层土壤含水率的增幅大于表层;氨挥发主要发生在蓄水坑边壁界面,占氨挥发总量的72.41%,且最大日均氨挥发量出现在第7天,达34.08 mg/(m~2·d);NH+4-N主要分布在地表以下30~60 cm范围,再分布10 d内NH+4-N质量分数随时间的延长逐渐增加,且第7天增加较快,15 d后减小;NO3--N主要分布在土壤湿润锋边缘,再分布15 d内,土壤NO3--N质量分数均随时间的延长逐渐增加。蓄水坑灌肥液入渗下,可提高地表以下30~60 cm土壤水分和NH+4-N质量分数,减小土壤表层氨挥发损失,增强90~100 cm深层土壤的硝化作用。  相似文献   

6.
以蓄水坑灌冬季土壤温度实测资料为基础,建立了以距离蓄水坑壁径向5 cm处的分层土壤最低温度、坑内平均温度、地表温度和沿坑壁的径向距离输入,以距蓄水坑坑壁15、25和35 cm处分层土壤最低温度为输出,拓扑关系为11-13-8的BP-WSPI-T模型,对蓄水坑灌果园冬季土壤最低温度分布特征进行定量预测,并采用田间实测数据对模型进行率定和验证。结果表明:BP-WSPI-T模型在对距离蓄水坑壁径向15、25和35 cm处分层土壤最低温度预测时的平均相对误差分别为8.7%、9.4%、7.3%;土壤温度整体预测的平均相对误差为8.5%,模型预测精度较好。模型可以较好对蓄水坑灌冬季土壤温度分布进行预测。  相似文献   

7.
【目的】寻求灌水方式和施加硝化抑制剂3,4-二甲基吡唑磷酸(DMPP)对施肥后夏玉米田土壤氨挥发影响和土壤氮素转化过程的关键驱动因子。【方法】采用通气法,设置常规浅埋滴灌施加DMPP(DI+DMPP)、浅埋交替滴灌施加DMPP(ADI+DMPP)、常规浅埋滴灌不施加DMPP(DI+NO)、浅埋交替滴灌不施加DMPP(ADI+NO)共4个处理,研究灌水方式与添加硝化抑制剂对玉米生育期内氨挥发速率、氨挥发累积量和土壤酶活性的影响。【结果】(1)在玉米不同生育阶段,灌水方式和施加DMPP对氨挥发速率的影响不同,其中,施加DMPP可显著提高拔节期、抽雄期、灌浆期的土壤氨挥发速率;交替滴灌只对大喇叭口期的土壤氨挥发速率有显著降低作用。(2)交替滴灌较常规滴灌显著降低了12.70%~45.45%的氨挥发累积量,然而,施加DMPP处理对玉米土壤氨挥发累积量有显著促进作用。【结论】交替滴灌灌水而不施加硝化抑制剂DMPP的组合处理(ADI+NO)在氨挥发减排方面效果最优。  相似文献   

8.
蓄水坑灌条件下不同土温对土壤水氮运移规律的影响   总被引:1,自引:0,他引:1  
为了明确不同土壤温度对土壤中水氮分布的影响以及选择合理的灌施方式,通过室内模型试验,研究了在蓄水单坑肥灌条件下不同土壤温度(20,25,30℃)所对应单坑灌水量(7L)和灌后不同时间(灌后1,5,10,15d)对土壤水氮运移的影响。研究结果表明:在径向距离r=25cm处,土壤温度分别为20,25,30℃,含水率空间分布基本一致,变化幅度不大;土壤温度为20,25℃时,土壤铵态氮含量随分布时间的延长先增大后减小,20℃时第10d土壤铵态氮含量达到最大值,25℃时第5d土壤铵态氮含量达到最大值,土壤温度为30℃时,随着时间的延长,土壤铵态氮含量逐渐减小;在同一分布时刻,土壤硝态氮含量随土壤温度的升高而增大。  相似文献   

9.
通过研究体系温度对蓄水坑灌施条件下土壤水分及氮素运移转化的影响,明确蓄水坑灌土壤水氮时空分布特征,探究土壤水氮运移迁移转化机理,以期为水肥合理灌施提供理论基础。通过模拟构建蓄水坑灌模型,以大型控温箱精确控制土壤温度,采用克里克空间插值法分析了蓄水坑灌条件不同体系温度下的水分、硝态氮、铵态氮时空分布特征,结果显示7 h左右土壤水分、养分完成入渗进入再分布阶段,土壤水分随着时间的推移其垂向和径向迁移距离均逐渐增大,同一时刻,温度越高其横向与径向迁移距离越大,且靠近蓄水坑壁区域的土壤含水率相对越低;土壤中铵态氮含量在不同温度下随时间推移均呈现先增后减的现象,低温下第15 d时土壤养分再分布核心区出现下降趋势,中、高温第10 d时已出现下降趋势,且其迁移距离远低于水分、硝态氮的迁移距离;土壤中硝态氮含量在10℃下第10 d时出现增高现象,而20、25、35℃下第5 d时已出现增高现象,由蓄水坑周边至湿润体边缘呈现"低-高-低"的分布态势。表明再分布阶段温度升高能提高水分的再分布速率,提高脲酶活性加快尿素水解转化为铵态氮,同时促进硝化反应进程抑制铵态氮在土壤中的积累,当土壤含水量过高时,会抑制土壤中氮素的硝化作用。  相似文献   

10.
为提高蓄水多坑灌施尿素条件下土壤氮素利用率和保护生态环境,通过室内蓄水多坑(土箱半径40 cm,高120 cm,蓄水坑半径16 cm,深度60 cm)物理模型试验,研究了蓄水多坑灌施下尿素在土壤中的运移转化特性。结果表明,土壤水分主要分布在地表以下20~80 cm,0~10 cm土层土壤含水率较小,同一土壤深度处蓄水坑壁附近土壤含水率大于0通量面处土壤含水率;同一土壤深度蓄水坑壁附近土壤尿素态氮量大于0通量面处的尿素态氮量,尿素的水解在9 d内基本完成,第7天水解最快,尿素水解与时间存在良好的对数函数关系;土壤铵态氮主要集中在40~60 cm土层土壤中,且r=20 cm处的量高于0通量面处的;而土壤硝态氮的分布趋势与铵态氮相反,随时间的延长,0通量面和r=20 cm处的土壤铵态氮质量分数均在40~60 cm和60~80 cm增幅较大,而土壤硝态氮质量分数表现出在90~100 cm湿润锋处增幅最大。  相似文献   

11.
【目的】进一步揭示寒地黑土区稻作节水灌溉模式下水稻对基肥氮素的吸收分配情况,以明确不同水氮管理模式下水稻对基肥氮素的吸收利用率。【方法】在田间小区中原位设置15N示踪微区,并施用带有15N标记的基肥,对比分析了淹水灌溉模式和控制灌溉模式下水稻对基肥氮素的吸收及分配以及被水稻吸收的基肥氮素在水稻地上部各器官的累积情况。【结果】与淹水灌溉相比,虽然稻作控制灌溉模式可以有效提高水稻地上部干物质及氮素积累量,但水稻内对基肥氮素的吸收利用量较低。控制灌溉模式下,水稻分蘖期基肥回收率为0.86%~2.60%;拔节孕穗期基肥回收率为1.17%~3.27%;抽穗开花期基肥回收率为15.18%~33.50%;成熟期基肥回收率为10.91%~24.39%,除水稻抽穗开花期和成熟期施氮量为85 kg/hm~2处理外,不同施氮量下控制灌溉模式水稻生育期内地上部植株的基肥氮素积累量和回收率均低于淹水灌溉,基肥氮素的损失量较大。不同施氮量下控制灌溉水稻成熟期时地上部植株吸收的基肥氮素总量的63.99%~72.95%存在于水稻穗部,高于淹水灌溉模式。【结论】稻作控制灌溉模式可以有效提高水稻吸收的基肥氮素,向水稻穗部的运移量,保证了基肥氮素的高效利用。  相似文献   

12.
【目的】明确再生水灌溉土壤氮素矿化过程及其特征。【方法】采集再生水和清水灌溉年限为5 a的常规施氮设施土壤,风干过2 mm筛备用。采用室内常温培养的方法,分别添加不同质量浓度外源氮肥,分析不同外源施氮量对设施土壤氮素矿化特征的影响;并利用Matlab构建矿化时间、外源施氮量与氮素矿化量的耦合模型。【结果】与清水灌溉土壤相比,再生水灌溉土壤矿质氮量提高了1.85~2.64倍;与再生水对照土壤相比,外源施氮200、160、140、100 mg/kg处理土壤矿质氮量分别提高了3.43、3.34、2.85、2.38倍;土壤氮素矿化速率大致可划分为2个阶段,第1阶段,0~14 d为矿化激发阶段,第2阶段,14 d以后为稳定矿化阶段;构建了土壤氮素矿化量与外源施氮量、矿化时间的二元二次函数模型,该模型决定系数达到0.9以上,运用该模型预测最佳外源施氮量为212.83 mg/kg,土壤氮素矿化量的最大值为233.23 mg/kg,而对应的矿化时间为26.75 d。【结论】外源施氮对再生水灌溉设施土壤氮素矿化具有正激发效应,外源施氮量为160 mg/kg时,土壤氮素净矿化量最大,达到85.89 mg/kg,土壤氮素矿化量与外源施氮量、矿化时间的关系可表达为二元二次函数。  相似文献   

13.
【目的】探明外施多胺与减缓小麦花后高温伤害的关系并阐明其生理机制。【方法】于2018年3—7月春小麦生长期间,选用新春6号和新春31号为试验材料,在田间增温棚中进行花后8~12 d的高温胁迫处理,比较了常温对照(CK)、高温处理(HT)、高温处理下外施精胺(HT+Spm)和高温处理下外施亚精胺(HT+Spd)4种处理下干物质的积累与转运、抗氧化酶活性及渗透调节物质的差异。【结果】HT处理2个品种穗下1节花前贮藏同化物对籽粒贡献率显著升高,花后同化物对籽粒贡献率显著降低,外源喷施Spm和Spd能显著提高花后同化物对籽粒的贡献率;HT处理导致籽粒超氧化物歧化酶(SOD)和过氧化氢酶(CAT)活性、丙二醛(MDA)和可溶性糖量升高,过氧化物酶(POD)活性和脯氨酸量降低,外源Spm和Spd使HT处理下MDA和可溶性糖量降低、SOD、POD和CAT活性和脯氨酸量升高。【结论】新春6号和新春31号结果基本一致。外源Spm缓解小麦花后高温伤害的效果优于Spd。  相似文献   

14.
【目的】探究痕量灌溉条件下适合温室黄瓜的施肥规律。【方法】采用对照试验方法,设3种总施肥量(高肥、中肥、低肥)和3种底肥与追肥比(K=0、1/3、1),共9个处理,分析了温室黄瓜产量和品质的变化。【结果】(1)在总肥量一定时,K=1/3有利于黄瓜增产;而K值一定时,高肥处理产量最高,中肥处理产量较低于高肥处理,但差距不大。(2)K值一定时,随着总肥量的增加,果实内可溶性糖和Vc量呈现先增后减的趋势,硝酸盐量一直增加,而可溶性固形物量在施中肥后增加趋势减缓;果实内可溶性糖、可溶性固形物和还原型Vc量在施中肥(T5)时基本达到峰值,且显著高于高肥(T8)处理;果实内硝酸盐量在施高肥(T8)时达到峰值;K=1/3时果实内可溶性糖、可溶性固形物和还原型Vc、硝酸盐积累量均高于K=1的。【结论】综合产量与品质各指标,施中肥且K=1/3为更适合痕量灌溉条件下温室黄瓜的施肥模式。  相似文献   

15.
施灌沼肥对土壤氨挥发和氮素下渗规律的影响   总被引:2,自引:0,他引:2  
为探讨施灌沼肥对土壤氨挥发和氮素下渗的影响,在室温条件下,采用土柱模拟试验,系统研究沼肥不同施用量和不同施用深度对土壤表面的NH3挥发及土壤垂直剖面上的总氮、NH+4-N、NO-3-N下渗的影响规律。结果表明:表施沼肥时,土壤表面的NH3挥发累积量和挥发的延续时间均随沼肥施用量的增加而增加;土壤垂直剖面上的含水率、总氮和NH+4-N均主要集中在表层土壤,而NO-3-N可迁移至较深层土壤。底施沼肥时,NH3挥发累积量随着沼肥施用深度的增加而减少,施用深度为10 cm时便可有效减少沼肥的NH3挥发损失;同时土壤垂直剖面上的含水率和总氮、NH+4-N、NO-3-N质量比的最高点均与沼肥施用深度呈显著正相关。  相似文献   

16.
不同氮肥对不同种植方式稻田径流氮流失与氨挥发的影响   总被引:5,自引:0,他引:5  
【目的】减少稻田氮径流流失和氨挥发。【方法】设置当地常规施肥(FFP)、缓控肥与尿素配施(CRF)、海藻多糖氮肥替代(HTN)及不施氮对照(CK)共4个氮肥管理措施,观察不同种植方式(机插稻、直播稻)下稻田径流水中氮的流失量及氨挥发特征。【结果】直播稻稻田径流氮素损失以铵态氮(NH4+-N)为主,播种前排水导致的氮素径流流失占总氮径流损失量的52%左右;不同氮肥方案下径流氮总流失量呈现为FFP处理>HTN处理>CRF处理,机插稻、直播稻全生育期氨挥发损失量、损失率和氨挥发强度也有同样趋势;与FFP处理相比,CRF处理和HTN处理的机插稻全生育期氨挥发损失率分别降低了12.5%和4.3%,氨挥发强度分别降低了43.1%和17.8%,直播稻氨挥发损失率分别降低了23.2%和12.2%,氨挥发强度分别降低了53.3%和26.8%;与FFP相比,在CRF、HTN处理下机插稻分别增产9.31%和4.70%,直播稻分别增产9.25%和4.91%。【结论】在水稻全生育期内,直播稻的氨挥发通量、损失率和氨挥发强度均大于机插稻,在施肥总量控制和磷、钾肥施用相同的情况下,选择适当种类的氮肥进行基肥、分蘖肥合理配施,既能减少氮素田间损失、提高氮素利用率,还可以增加水稻产量。  相似文献   

17.
【目的】制定拱棚辣椒水肥一体化施肥制度。【方法】设置3个施肥量和3个灌水量,按生育期进行调整,完全随机设计试验,旨在研究不同灌水量与施肥量对拱棚辣椒土壤酶活性、土壤硝酸盐量、果实品质等指标的影响。【结果】苗期—开花期灌水量和施肥量分别为201 m3/hm2和60 kg/hm2,开花—果实膨大期灌水量和施肥量226.5m3/hm2和119.7 kg/hm2,果实膨大期—拉秧期灌水量和施肥量分别为300 m3/hm2和180.0 kg/hm2,辣椒植株根系活力最强,为18.905μg/h;土壤脲酶、蔗糖酶、过氧化氢酶、纤维素酶活性最强,分别为182.59、874.1 mg/(g·24h)、7.5 mg/(g·min)、0.15 mg/(g·72h);土壤硝态氮量最低,为5.91 mg/kg;辣椒根干质量、根冠比最大,为20.2 g、0.22;辣椒可溶性蛋白量、可溶性糖量、维生素C量最高,分别为32.24、37.9、130.42 mg/g。【结论】苗期—开花期、开花—果实膨大期、果实膨大期—拉秧期3个时期,灌水量是201、226.5、300 m3/hm2,施肥量是60、119.7、180 kg/hm2,拱棚辣椒土壤酶活性,辣椒品质均比其他处理高。  相似文献   

18.
【目的】湖北平原湖区6—7月降雨较多,因此,需合理利用降雨资源,确定雨后田间适宜蓄水深度。【方法】结合湖北平原湖区生产实际,针对中稻机插秧和直播2种播种方式,在中稻分蘖期进行了不同蓄水深度(4、8、12和16cm)测坑试验。【结果】当模拟机插稻蓄水深度4 cm、直播稻蓄水深度8 cm时,水稻叶片的光合速率最高,10~20 cm土层的根系干质量最大,产量最高;对模拟机插稻,蓄水深度8、12、16 cm的处理,产量较4 cm处理分别降低3.75%、9.49%和11.97%;对直播稻,蓄水深度4、12、16 cm的处理,其产量较8 cm处理分别降低5.03%、12.87%和16.45%。【结论】在本试验所研究的蓄水深度下,模拟机插稻与直播稻在分蘖期适宜的蓄水深度分别为4 cm和8 cm。当遭遇大暴雨导致农田排水不畅时,在允许水稻减产12%左右的情况下,分蘖期机插稻蓄水上限为16 cm,直播稻蓄水上限为12 cm。  相似文献   

19.
【目的】通过水肥管理达到减少温室土壤硝态氮残留、维持土壤质量的目的,探求温室土壤硝态氮残留与水肥用量的关系。【方法】在滴灌施肥条件下,以灌水量和氮、磷、钾及有机肥用量为试验因素,根据当地日光温室番茄长季节栽培实际中的水肥用量,设计各试验因子的水肥水平,采用五元二次通用旋转组合设计进行试验。拉秧后测定耕层土壤硝态氮量,建立土壤硝态氮量与水肥因子间的数学模型,据此分析了各单因子效应及二因素的耦合效应。【结果】施氮量对土壤硝态氮残留量影响最大,施磷量、灌水量和施钾量次之,有机肥用量最小。当其他因子为0水平时,土壤硝态氮残留量随氮肥用量的增多而增加,随施磷量呈开口向上的抛物线变化,随灌水量、施钾量以及有机肥用量呈开口向下的抛物线变化。灌水量及氮、磷、钾和有机肥用量对土壤硝态氮残留产生的影响程度随其他因子的水平而变,存在明显交互作用。模型寻优显示:灌水量455.1~471.5 mm,施氮量532.3~586.5 kg/hm2,施磷量420.8~466.4 kg/hm2,施钾量646.1~723.5 kg/hm2,有机肥用量25.6~27.9 t/hm2,耕层土壤硝态氮量可维持在100~150 mg/kg的较低水平。【结论】温室菜地土壤硝态氮残留量相对较大,可以通过优化水肥用量来减少土壤硝态氮的残留,故在滴灌施肥条件下仍需严格控制水肥用量。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号