首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
采用双因素随机试验,在小麦孕穗期、灌浆期和成熟期研究了土壤干旱对两品种小麦根际土壤微生物丰度、多样性及4种酶活性(蔗糖酶、碱性磷酸酶、脲酶和脱氢酶)的影响。试验设4个处理,即分别在土壤干旱和正常水分下种植小麦"矮抗58"(P1)和"泛麦8号"(P2)。结果表明:与正常水分处理(种植P1和P2)相比,孕穗期,土壤干旱处理下小麦P1和P2根际土中普通细菌、革兰氏阴性细菌的丰度显著降低了11.3%和6.9%、8.4%和8.2%;灌浆期,干旱处理下小麦P1和P2根际土中丛枝菌根真菌的丰度明显下降了34.3%和21.8%;成熟期,干旱处理下小麦P1和P2根际土中革兰氏阳性细菌、真菌的丰度显著降低30.9%和8.6%、34.1%和17.3%。土壤干旱对微生物多样性无显著影响,却显著降低了孕穗期和灌浆期的碱性磷酸酶、脱氢酶活性和灌浆期的蔗糖酶活性,提高了成熟期的蔗糖酶活性。"矮抗58"比"泛麦8号"根际微生物多样性更高,但孕穗期其蔗糖酶活性更低。干旱与品种的交互作用对微生物各类群的丰度、多样性和4种酶活性的影响均不显著。综上,土壤干旱主要抑制微生物丰度,而品种间根际微生物多样性差异明显,干旱和品种均...  相似文献   

2.
为明确棘孢木霉Trichoderma asperellum菌肥在防治黄瓜枯萎病的同时对连作黄瓜根际土壤微生物种群的影响,采用实时荧光定量PCR(real-time fluorescence quantitative PCR,RT-qPCR)和磷脂脂肪酸(phospholipid fatty acid,PLFA)分析方法分别测定了棘孢木霉菌肥对连作4年的黄瓜根际棘孢木霉菌和尖孢镰孢菌Fusarium oxysporum DNA拷贝数变化和黄瓜根际微生物种群的影响。结果表明:棘孢木霉菌肥对黄瓜幼苗期和速长期黄瓜枯萎病的防治效果分别为70.24%和76.81%,均与药剂对照的防效差异不显著。棘孢木霉菌的DNA拷贝数出现2个高峰期,即黄瓜苗期和盛果期,其DNA拷贝数分别为235 000.00 ng/μL和80 500.00 ng/μL。黄瓜速长期、盛果期、生长末期的尖孢镰孢菌DNA拷贝数分别为15.41、54.87和18.36 ng/μL,且显著低于同一时期药剂对照和清水对照。黄瓜幼苗期、速长期、开花期和盛果期根际土壤微生物丰度分别为2.24、1.98、2.52和2.12,均高于药剂对照。由此可见,棘孢木霉菌肥在防治黄瓜枯萎病的同时,还可以改善黄瓜连作土壤微生物种群结构。  相似文献   

3.
荒漠草原不同植被类型土壤微生物群落功能多样性   总被引:11,自引:0,他引:11  
利用Biolog EcoplateTM技术通过对荒漠草原生态系统中沙米、白沙蒿、柠条、沙冬青和人工乔木林5种植被类型土壤微生物群落功能多样性分析,以探讨不同植被类型对土壤微生物群落代谢功能多样性的影响.结果表明,5种植被类型土壤微生物群落代谢活性有显著的差异(P<0.01),5种植被类型土壤微生物群落利用碳源的种类也存在差异,氨基酸类、羧酸类和糖类是其主要的碳源利用类型.在Biolog ECO板培养基接种培养96 h后,5种植被类型土壤微生物群落多样性显示,物种丰富度指数(R)和均匀度指数(EH)差异显著,Shannon 指数(H′)差异不显著.  相似文献   

4.
ZHOU Tairan 《干旱区科学》2021,13(10):1015-1025
Soil water content is a key limiting factor for vegetation growth in the semi-arid area of Chinese Loess Plateau and precipitation is the main source of soil water content in this area. To further understand the impact of vegetation types and environmental factors such as precipitation on soil water content, we continuously monitored the seasonal dynamics in soil water content in four plots (natural grassland, Caragana korshinskii, Armeniaca sibirica and Pinus tabulaeformis) in Chinese Loess Plateau. The results show that the amplitude of soil water content fluctuation decreases with an increase in soil depth, showing obvious seasonal variations. Soil water content of artificial vegetation was found to be significantly lower than that of natural grassland, and most precipitation events have difficulty replenishing soil water content below a depth of 40 cm. Spring and autumn are the key seasons for replenishment of soil water by precipitation. Changes in soil water content are affected by precipitation, vegetation types, soil evaporation and other factors. The interception effect of vegetation on precipitation and the demand for water consumption by transpiration are the key factors affecting the efficiency of soil water replenishment by precipitation in this area. Due to artificial vegetation plantation in this area, soil will face a water deficit crisis in the future.  相似文献   

5.
The study of soil microbial populations and diversity is an important way to understanding the soil energy process.In this study we analyzed the characteristics of soil microbial populations of the Tarim Desert Highway shelter-forest,by identifying microbial fatty acids and using methods of conventional cul-tivation.The results illustrated that the amount of soil microbial activity and the diversity of soil microbial fatty acid increased significantly with the plantation age of the shelter-forest;the soil microbial population was dominated by bacteria.The fatty acids of C14︰0,C15︰0,C16︰0,C17︰0,C18︰1ω9,C18︰0,C18︰2ω6 and C21︰0 were found to be dominant soil microbial fatty acids in the shelter-forest soil.Prin-cipal analysis and regression analysis showed that(1) concentrations of fatty acids of C14︰0,C16︰0 and C18︰0 could be used as indicators of total soil microbial population;(2) soil bacteria and actinomycetes populations were closely correlated with the amount of fatty acids of C15︰0 and C17︰0;and(3) soil fungi were closely correlated with the amount of fatty acids of C18︰1ω9 and C18︰2ω6.  相似文献   

6.
Rangeland degradation is a serious problem throughout sub-Saharan Africa and its restoration is a challenge for the management of arid and semi-arid areas. In Lake Baringo Basin of Kenya, communities and individual farmers are restoring indigenous vegetation inside enclosures in an effort to combat severe land degradation and address their livelihood problems. This study evaluated the impact of enclosure management on soil properties and microbial biomass, being key indicators of soil ecosystem health. Six reseeded communal enclosures using soil embankments as water-harvesting structures and strictly regulated access were selected, varying in age from 13 to 23 years. In six private enclosures, ranging from 3 to 17 years in age, individual farmers emulated the communal enclosure strategy and restored areas for their exclusive use. Significant decreases in bulk density, and increases in the soil organic carbon, total nitrogen and microbial biomass contents and stocks were found in the enclosures as compared with the degraded open rangeland. In the private enclosures, the impact of rehabilitation on the soil quality was variable, and soil quality was in general lower than that obtained under communal management. The significant increase of absolute stocks of carbon, nitrogen and microbial biomass compared to the degraded open rangeland indicates the potential for the restoration of soil quality through range rehabilitation. Over-sowing with indigenous legume fodder species could improve total nitrogen content in the soil and nutritional value of the pastures as well.  相似文献   

7.
Soil erosion is a serious issue in the sandy-hilly region of Shanxi Province, Northwest China. There has been gradual improvement due to vegetation restoration, but soil microbial community characteristics in different vegetation plantation types have not been widely investigated. To address this, we analyzed soil bacterial and fungal community structures, diversity, and microbial and soil environmental factors in Caragana korshinskii Kom., Populus tomentosa Carr., Populus simonii Carr., Salix matsudana Koidz, and Pinus tabulaeformis Carr. forests. There were no significant differences in the dominant bacterial community compositions among the five forest types. The alpha diversity of the bacteria and fungi communities showed that ACE (abundance-based coverage estimator), Chao1, and Shannon indices in C. korshinskii forest were significantly higher than those in the other four forest types (P<0.05). Soil organic matter, total nitrogen, and urease had a greater impact on bacterial community composition, while total nitrogen, β-glucosidase, and urease had a greater impact on fungal community composition. The relative abundance of beneficial and pathogenic microorganisms was similar across all forest types. Based on microbial community composition, diversity, and soil fertility, we ranked the plantations from most to least suitable as follows: C. korshinskii, S. matsudana, P. tabulaeformis, P. tomentosa, and P. simonii.  相似文献   

8.
Johnsongrass (Sorghum halepense [L.]Pers.), an exotic invasive weed in China, secretes the phenolic compounds, p‐hydroxybenzoic acid (p‐HBA) and p‐hydroxybenzaldehyde (p‐HBAL), as the dominant allelochemicals in the root exudates. To better understand how these two allelochemicals affect the soil microbial community in the rhizosphere of S. halepense, the fate of these compounds in the invaded soil and the effect of these phytotoxins on the soil bacterial community were evaluated. The concentrations of the allelochemicals in the soil were determined by a high‐performance liquid chromatography‐ultraviolet/photodiode array after 1, 2, 4, 6, 12 and 24 h of treatment. MiSeq sequencing was undertaken to understand how the bacterial populations in the soil were affected by the allelochemicals. The HPLC results indicated that p‐HBA was degraded by the microorganisms that were present in the soil after 1 h and disappeared after 6 h of incubation. The compound, p‐HBAL, initially was converted to p‐HBA and then the p‐HBA broke down, disappearing after 12 h of incubation in non‐sterile soil. Both p‐HBA and p‐HBAL were stable under sterile soil conditions for up to 24 h. The relative abundance of Proteobacteria was significantly inhibited. However, those of Acidobacteria, Chloroflexi, Verrucomicrobia and Cyanobacteria were increased by the p‐HBAL treatment. These findings suggest that allelochemicals from S. halepense might affect the bacterial community composition in the soil.  相似文献   

9.
Bacteria in desert soil have unique phylogeny and important ecological functions, and theirresponses to changes in precipitation need further attention. However, relevant studies have mainlyfocused on the surface soil, and studies on the responses of bacteria at different soil depths to variationsin precipitation are rare. Thus, we used 16S rDNA high-throughput sequencing to investigate the changesin soil bacterial distribution along a mean annual precipitation gradient (50–150 mm) in the Alxa Desert,China, and compared the variation characteristics in the surface soil layer (0–10 cm) and subsurface soillayer (10–20 cm). Results showed that soil bacterial communities significantly changed along theprecipitation gradient in both soil layers. However, the subsurface soil layer could support bacterialcommunities with higher diversity and closer internal relationships but more internal competition than thesurface soil layer. Additionally, compared with the surface soil layer, variations in diversity andco-occurrence patterns in the subsurface soil layer were more in line with the changes in the mean annualprecipitation, while bacterial community structure was less variable in the subsurface soil layer. Comparedwith the mean annual precipitation, soil moisture had little influence on the structure and diversity of soilbacterial community but had a high correlation with intercommunity connectivity. Therefore, soilmoisture might play a complex role in mediating environmental conditions and soil bacterial communitycharacteristics. Due to the different responses of surface and subsurface soil bacteria to the changes inprecipitation, it is necessary to distinguish different soil layers when predicting the trends in desert soilbacterial conditions associated with precipitation, and prediction of subsurface soil bacteria may be moreaccurate.  相似文献   

10.
WANG Kun 《干旱区科学》2022,14(5):561-575
Robinia pseudoacacia L. (RP) restoration has increased vegetation cover in semi-arid regions on the Loess Plateau of China, but ecological problems have also occurred due to RP restoration, such as reduced soil moisture. Further, it is still uncertain how microbial diversity, composition and assembly processes change with RP restoration in semi-arid regions. Therefore, amplicon sequencing of small subunit ribosomal ribonucleic acid (16S rRNA) and internal transcribed spacer (ITS) genes was performed to study soil bacterial and fungal diversity, composition and assembly processes at four study sites with different stand ages of RP plantations (Y10, RP plantation with stand ages less than 10 a; Y15, RP plantation with stand ages approximately 15 a; Y25, RP plantation with stand ages approximately 25 a; and Y40, RP plantation with stand ages approximately 40 a) along a 40-a chronosequence on the Loess Plateau. The diversity of soil bacteria and fungi increased significantly during the restoration period from 10 to 15 a (P<0.05). However, compared with Y15, bacterial diversity was lower at Y25 and Y40, and fungal diversity remained stable during the restoration period between 25 and 40 a. The relative abundances of Proteobacteria and Ascomycota increased during the restoration period from 10 to 15 a. Conversely, after 15 a of restoration, they both decreased, whereas the relative abundances of Actinomycetes, Acidobacteria and Basidiomycota gradually increased. The variations in soil bacterial communities were mainly related to changes in soil total nitrogen, nitrate nitrogen and moisture contents, while soil fungal communities were mainly shaped by soil organic carbon and nitrate nitrogen contents. Bacterial communities were structured by the heterogeneous selection and stochastic process, while fungal communities were structured primarily by the stochastic process. The RP restoration induced an increase in the relative importance of heterogeneous selection on bacterial communities. Overall, this study reveals the changes in microbial diversity, community composition and assembly processes with RP restoration on the Loess Plateau and provides a new perspective on the effects of vegetation restoration on soil microbial communities in semi-arid regions.  相似文献   

11.
Short-term nitrous oxide(N2O) pulse emissions caused by precipitation account for a considerable portion of the annual N2O emissions and are greatly influenced by soil nitrogen(N) dynamics. However, in Chinese semiarid temperate steppes, the response of N2O emissions to the coupling changes of precipitation and soil N availability is not yet fully understood. In this study, we conducted two 7-day field experiments in a semiarid temperate typical steppe of Inner Mongolia, China, to investigate the N2O emission pulses resulting from artificial precipitation events(approximately equivalent to 10.0 mm rainfall) under four N addition levels(0, 5, 10 and 20 g N/(m2·a)) using the static opaque chamber technique. The results show that the simulated rainfall during the dry period in 2010 caused greater short-term emission bursts than that during the relatively rainy observation period in 2011(P〈0.05). No significant increase was observed for either the N2O peak effluxes or the weekly cumulative emissions(P〉0.05) with single water addition. The peak values of N2O efflux increased with the increasing N input. Only the treatments with water and medium(WN10) or high N addition(WN20) significantly increased the cumulative N2O emissions(P〈0.01) in both experimental periods. Under drought condition, the variations in soil N2O effluxes were positively correlated with the soil NH4-N concentrations in the three N input treatments(WN5, WN10, and WN20). Besides, the soil moisture and temperature also greatly influenced the N2O pulse emissions, particularly the N2O pulse under the relatively rainy soil condition or in the treatments without N addition(ZN and ZWN). The responses of the plant metabolism to the varying precipitation distribution and the length of drought period prior to rainfall could greatly affect the soil N dynamics and N2O emission pulses in semiarid grasslands.  相似文献   

12.
Precipitation chemistry analysis is essential to evaluate the atmospheric environmental quality and identify the sources of atmospheric pollutants. In this study, we collected a total of 480 precipitation samples at 6 sampling sites in the northern and southern slopes of Wushaoling Mountain from May 2013 to July 2014 to analyze the chemical characteristics of precipitation and to identify the main sources of ions in precipitation. Furthermore, we also explored the indicative significance for sand dust events in the northern and southern slopes of Wushaoling Mountain based on the precipitation chemistry analysis.During the sampling period(from May 2013 to July 2014), the p H values, EC(electrical conductivity)values and concentrations of cations(Ca~(2+), Mg~(2+), Na~+, K~+ and NH_4~+) and anions(SO_4~(2–), NO_3~–, Cl~–, NO_2~– and F~–) in precipitation were different in the northern and southern slopes at daily and seasonal time scales, with most of the values being higher in the northern slope than in the southern slope. The chemical type of precipitation in the southern and northern slopes was the same, i.e.,SO_4~(2–)-Ca~(2+)-NO_3~–-Na~+. The concentrations of ions in precipitation were mainly controlled by terrigenous material and anthropogenic activities(with an exception of Cl~–). The concentration of Cl~– in precipitation was mainly controlled by the sea salt fraction. The concentrations of Na+ and Cl~– showed an increasing trend after the occurrence of sand dust events both in the northern and southern slopes. In addition, after the occurrence of sand dust events, the concentrations of K~+, Mg~(2+), SO_4~(2–), NO_3~– and Ca~(2+) showed an increasing trend in the southern slope and a decreasing trend in the northern slope. It is our hope that the results may be helpful to further understand the atmospheric pollution caused by sand dust events in the Wushaoling Mountain and can also provide a scientific basis for the effective prevention of atmospheric pollution.  相似文献   

13.
Manipulated precipitation patterns can profoundly influence the metabolism of soil microorganisms. However, the responses of soil organic carbon(SOC) and nutrient turnover to microbial metabolic limitation under changing precipitation conditions remain unclear in semi-arid ecosystems. This study measured the potential activities of enzymes associated with carbon(C: β-1,4-glucosidase(BG) and β-D-cellobiosidase(CBH)), nitrogen(N: β-1,4-N-acetylglucosaminidase(NAG) and L-leucine aminopeptidase(LAP)...  相似文献   

14.
The high resolution satellite precipitation products bear great potential for large-scale drought monitoring, especially for those regions with sparsely or even without gauge coverage. This study focuses on utilizing the latest Version-7 TRMM Multi-satellite Precipitation Analysis(TMPA 3B42V7) data for drought condition monitoring in the Weihe River Basin(0.135×106 km2). The accuracy of the monthly TMPA 3B42V7 satellite precipitation data was firstly evaluated against the ground rain gauge observations. The statistical characteristics between a short period data series(1998–2013) and a long period data series(1961–2013) were then compared. The TMPA 3B42V7-based SPI(Standardized Precipitation Index) sequences were finally validated and analyzed at various temporal scales for assessing the drought conditions. The results indicate that the monthly TMPA 3B42V7 precipitation is in a high agreement with the rain gauge observations and can accurately capture the temporal and spatial characteristics of rainfall within the Weihe River Basin. The short period data can present the characteristics of long period record, and it is thus acceptable to use the short period data series to estimate the cumulative probability function in the SPI calculation. The TMPA 3B42V7-based SPI matches well with that based on the rain gauge observations at multiple time scales(i.e., 1-, 3-, 6-, 9-, and 12-month) and can give an acceptable temporal distribution of drought conditions. It suggests that the TMPA 3B42V7 precipitation data can be used for monitoring the occurrence of drought in the Weihe River Basin.  相似文献   

15.
为探究大空间尺度下灌木昆虫群落的分布规律,于2023年6—9月对额尔齐斯河流域阿勒泰地区7个县(市)44个样地内灌木昆虫群落特征进行调查,确定其发生状态,采用回归分析和典范对应分析(canonical correspondence analysis,CCA)方法探讨灌木昆虫物种丰富度与植物群落特征和环境因子的关系。结果显示,44个样地内共采集昆虫1 245头,经鉴定为9目44科117种,其中鳞翅目和鞘翅目为主优势类群,分别为440头和289头,脉翅目和半翅目为次优势类群,分别为214头和157头,其余目为从属类群。额尔齐斯河流域灌木昆虫物种丰富度与海拔和温度均呈显著的三项式拟合关系,与相对多度呈显著的二项式拟合关系,与Pielou均匀度指数呈显著的线性拟合关系,与Simpson多样性指数呈显著的二项式拟合关系,与Margalef丰富度指数呈显著的二项式拟合关系。CCA分析结果显示,温度、经度和海拔是影响灌木昆虫分布的主要环境因子,灌木植物多样性和均匀程度是影响灌木昆虫分布的主要植物群落特征。表明大空间尺度下灌木昆虫分布存在明显驱动力,在全球环境变化下应更加重视对植被结构的调整和对有害灌木昆虫的监测预防。  相似文献   

16.
为了查明准噶尔盆地东南缘绿洲-荒漠交错带土壤螨类群落特征及其季节动态变化,2010年4月、7月、9月和11月中旬对该区的自然林、人工林、耕地、菜地、荒草原、灌木林及荒漠等7种不同生境进行采样调查研究。结果表明,共获得土壤螨类5200只,隶属于4目41科61属,其中菌甲螨属(Scheloribates)和若合甲螨属(Zygoribatula)为该区的优势类群,分别占总数量的18.21%和12.52%,而懒甲螨属(Nothrus)、扇珠足甲螨属(Licnodamaeus)、盖头甲螨属(Tectocepheus)、尖棱甲螨属(Ceratozetes)大翼甲螨属(Galumna)等15类群为常见类群,占总数量的53.6%。其余的44类群为稀有类群,占总量的15.67%。研究区七种不同生境土壤螨类个体数和类群数均有差异,个体数分别为自然林>菜地>荒草原>人工林>灌木林>耕地>荒漠;类群数分别为自然林>人工林>灌木林>荒草原>菜地>耕地>荒漠。不同季节所获得的土壤螨类总个体数量的大小顺序为9月>11月>7月>4月。垂直分布结果表明土壤螨类主要集中分布于表层土壤,即0~5cm土层最多,其次为5~10cm土层,在10cm以下的土层中土壤螨类数量急剧减少,不同土层间的个体数差异极显著(P<0.01)。  相似文献   

17.
利用NASA提供的MOD IS数据产品和黑河流域的野外实测数据,在充分考虑研究区的下垫面特征、数据的时间特性和遥感反演土壤含水量的模型与算法的基础上,采用了热惯量法,计算了表观热惯量,并与实测数据进行回归分析建模,反演了整个黑河流域的土壤含水量。随后构建了三个区域土壤水分效应评价指标:土壤水分单元权重指数、区域土壤水分单元权重指数和土壤水分效应贡献度,结合黑河流域的土地利用状况,定量评价了不同土地利用类型的土壤水分效应。研究表明:利用MOD IS数据产品,反演参量获取简单,可降低反演土壤含水量的复杂性,有利于大、中尺度的实际应用;利用当地积累的季节标准日变化曲线将温差修正到最大值,使反演的表观热惯量更接近真实,可提高模型精度;用多个地面采样点的土壤含水量均值与一个像元对应建模,能改善因MOD IS数据空间分辨率低而存在大量混合像元致使反演精度降低的问题;在黑河流域,中覆盖度草地、有林地、高覆盖度草地、水田等用地类型的土壤水分效应最为明显,贡献最大。  相似文献   

18.
Soil acidification is a major global issue of sustainable development for ecosystems. The increasing soil acidity induced by excessive nitrogen(N) fertilization in farmlands has profoundly impacted the soil carbon dynamics. However, the way in which changes in soil p H regulating the soil carbon dynamics in a deep soil profile is still not well elucidated. In this study, through a 12-year field N fertilization experiment with three N fertilizer treatments(0, 120, and 240 kg N/(hm~2·a)) in a dryland agroecosystem of China, we explored the soil p H changes over a soil profile up to a depth of 200 cm and determined the responses of soil organic carbon(SOC) and soil inorganic carbon(SIC) to the changed soil p H. Using a generalized additive model, we identified the soil depth intervals with the most powerful statistical relationships between changes in soil p H and soil carbon dynamics. Hierarchical responses of SOC and SIC dynamics to soil acidification were found. The results indicate that the changes in soil p H explained the SOC dynamics well by using a non-linear relationship at the soil depth of 0–80 cm(P=0.006), whereas the changes in soil p H were significantly linearly correlated with SIC dynamics at the 100–180 cm soil depth(P=0.015). After a long-term N fertilization in the experimental field, the soil p H value decreased in all three N fertilizer treatments. Furthermore, the declines in soil p H in the deep soil layer(100–200 cm) were significantly greater(P=0.035) than those in the upper soil layer(0–80 cm). These results indicate that soil acidification in the upper soil layer can transfer excess protons to the deep soil layer, and subsequently, the structural heterogeneous responses of SOC and SIC to soil acidification were identified because of different buffer capacities for the SOC and SIC. To better estimate the effects of soil acidification on soil carbon dynamics, we suggest that future investigations for soil acidification should be extended to a deeper soil depth, e.g., 200 cm.  相似文献   

19.
Caragana microphylla Lam., a leguminous shrub species, plays an important role in revegetation in the degraded ecosystems of the Horqin Sandy Land, Northeastern China. Large areas planted with this shrub have been artificially established as sand binders for soil protection, which might change the composition of soil bacterial communities with the development of sand dune stabilization. In this paper, we investigated the diversity and composition of native soil bacterial communities in the C. microphylla plantation for sand fixation using polymerase chain reaction with denaturing gradient gel electrophoresis(PCR-DGGE) to understand the influence of this plantation on sandy soil ecosystem development. We collected soil samples from plantations with an age sequence of 0, 9, 16, and 26 years, as well as from the natural community, to identify the differences among soil bacterial communities. The result showed that bacterial abundance and community composition in the sandy land were affected by the age of the C. microphylla plantation. Moreover, bacterial diversity decreased with increasing plantation age, and the composition of the bacterial community in the 26-year plantation was similar to that in the natural community. Phylogenetic analysis of bands excised from the DGGE gels showed that members of alpha Proteobacterium, gamma Proteobacterium, Gemmatimonadetes and Chloroflexi were dominant in the sandy land. The stabilization of moving sand dune and development of sand-fixed plantation resulted in an increase of soil fertility, which could drive the structural evolvement of soil bacterial community, and it needs over 20 years for the soil bacterial community to form a stable structure, similar to the case for the natural vegetation.  相似文献   

20.
Ecological restoration by Tamarix plants on semi-arid saline lands affects the accumulation, distribution patterns and related mechanisms of soil water content and salinity. In this study, spatio-temporal variations of soil water content and salinity around natural individual Tamarix ramosissima Ledeb. were invetigated in a semi-arid saline region of the upper Yellow River, Northwest China. Specifically, soil water content, electrical conductivity(EC_e), sodium adsorption ratio(SAR_e), and salt ions(including Na~+, K~+, Ca~(2+), Mg~(2+) and SO_4~(2–)) were measured at different soil depths and at different distances from the trunk of T. ramosissima in May, July, and September 2016. The soil water content at the 20–80 cm depth was significantly lower in July and September than in May, indicating that T. ramosissima plants absorb a large amount of water through the roots during the growing period, leading to the decreasing of soil water content in the deep soil layer. At the 0–20 cm depth, there was a salt island effect around individual T. ramosissima, and the EC_e differed significantly inside and outside the canopy of T. ramosissima in May and July. Salt bioaccumulation and stemflow were two major contributing factors to this difference. The SAR_e at the 0–20 cm depth was significantly different inside and outside the canopy of T. ramosissima in the three sampling months. The values of SAR_e at the 60–80 cm depth in May and July were significantly higher than those at the 0–60 cm depth and higher than that at the corresponding depth in September. The distribution of Na~+ in the soil was similar to that of the SAR_e, while the concentrations of K~+, Ca~(2+), and Mg~(2+) showed significant differences among the sampling months and soil depths. Both season and soil depth had highly significant effects on soil water content, EC_e and SAR_e, whereas distance from the trunk of T. ramosissima only significantly affected EC_e. Based on these results, we recommend co-planting of shallow-rooted salt-tolerant species near the Tamarix plants and avoiding planting herbaceous plants inside the canopy of T. ramosissima for afforestation in this semi-arid saline region. The results of this study may provide a reference for appropriate restoration in the semi-arid saline regions of the upper Yellow River.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号