首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
为了解决沙粒掩埋挡沙墙造成挡沙墙防护效果降低,文中基于k-ε湍流模型的RANS方法和多孔介质模型对不同参数的吸沙式挡沙墙进行数值模拟计算,并采用风洞试验验证文中所选湍流模型和网格划分策略的正确性。研究结果表明:风沙流经过挡沙墙会形成速度分区,分别为墙前减速区、墙后墙体结构导致的局部加速区、墙体正上方加速区、墙后涡流区以及恢复区。随着挡沙墙孔隙率减小,背风侧有效遮蔽区域越大,背风侧积沙位置离墙体越近,吸沙式挡沙墙的最优孔隙率在25%~35%,考虑到制造工艺,孔隙率选35%为宜;文中所设计挡沙墙的吸沙功能良好,吸沙量的大小正相关于孔隙率和来流风速;吸沙式挡沙墙周围的水平风速随高度增加逐渐从“U”型转变为“V”型分布,风速廓线在垂直方向上呈现倒“S”形分布。当风速一定时,有效防护距离随着挡沙墙高度的增加而增大,积沙范围增大;当高度一定时,积沙位置随着来流风速的增大逐渐向下风向转移。挡沙墙高度越高,承受的风压越大,工程造价上升,从防护距离和工程造价两方面考虑,四块挡沙板是吸沙式挡沙墙最合理阻沙高度。  相似文献   

2.
研究典型株型沙生灌丛周围的流场分布,旨在为干旱、半干旱地区合理选择不同株型的防风沙植被提供理论依据。本文利用FLUENT软件对3类典型株型(坛形、梭形、帚形)灌丛周围的流场进行数值模拟,分析不同植株形态对风沙流的影响,并加以风洞试验验证,结果表明:(1)3类株型周围流场可分为5个区,且株后均存在3个涡流。受涡流强度的影响,在积沙初始阶段,梭形、帚形植株主要在株后6~7 H处积沙,而坛形植株在3 H附近积沙。(2)受植株最大侧影面积高度层的影响,3类株型灌丛株后1 H处的风速极小值依次出现在0.3 m、0.4 m、0.8 m高度处,最优防护高度依次为0.2~0.4 m、0.3~0.6 m、0.8~1 m。3类株型株后的空气动力学粗糙度逐渐减小,且坛形的粗糙度明显高于其他株型。(3)3类株型在-2~10 H范围内均可有效降低风速,株后近地表区防风效益表现为坛形>梭形>帚形,而中高空区防风效益均随株距增加而减小。(4)在T=10 s时,3类植株周围总积沙长度分别为8.5 H、6H、4.5 H,梭梭、沙拐枣分别在距入口5~5.5 m、4.5~6 m处存在不同程度的风蚀现象。对比其他...  相似文献   

3.
《干旱区研究》2021,38(4):1184-1191
基于CFD(Computational Fluid Dynamics)数值模拟,以青海省中灶火省道303公路为研究区域,对流动沙丘区公路路基风沙流场进行了模拟分析,揭示了流动沙丘区路面沙害的形成机制,以期为流动沙丘区路面沙害的防治提供理论依据。数值模拟结果表明:当气流经过流动沙丘和路基时,气流速度产生分区;当存在流动沙丘时,路基周边的减速区范围明显增大,路基坡面和背风坡全部处于气流低速区的范围,沙丘高度以上,在沙丘顶部气流速度急剧增大,受障碍物自身形状的影响,风速变化由"Ω"型分布变为"M"型分布。当沙丘表面的原有防护体系疏于维护、更新,沙粒在沙丘附近大量堆积,沙丘会慢慢沿主风向移动,成为沙源,掩埋路基而形成沙害。数值模拟结果与现场实际相吻合,证实了数值模拟的准确性。对于流动沙丘区公路的沙害防治,应详细考察当地的地貌形态及风沙流运动规律,定期检查维护原有防护体系,及时清理积沙,既要阻止风沙流对沙丘进行沙源供给,又要防止沙丘本身成为沙源。  相似文献   

4.
论沙漠-绿洲过渡带的风沙防护效应   总被引:1,自引:0,他引:1  
以敦煌黑山嘴为例,从局地环流、梯度风、表层沙粒粒度特征等方面探讨沙漠-绿洲过渡带的防护效应。结果表明:由于沙漠与绿洲的物质组成、空间结构和水热特性不同,造成绿洲的"冷岛效应",形成局地环流,继而在一定程度上对过渡带的防护效应产生影响。自沙漠向绿洲内部,表层沙粒平均粒径逐渐减小,偏度、峰态和分选系数呈一定程度的规律性变化,由此判断自沙漠向绿洲内部平均风速减小,风沙活动减弱。过渡带防护效应与初始风速、距离和粗糙度呈线性关系,其中,防护效应与初始风速呈反比关系,初始风速越大,防护效应越差;与距离和粗糙度呈正比关系,距离越长,粗糙度越大,防护效应越好。  相似文献   

5.
新疆和田河流域单株柽柳灌丛流场的实验研究   总被引:4,自引:4,他引:0  
柽柳是新疆和田河流域广泛分布的一种灌木,是影响柽柳灌丛沙堆发育的主要因素之一.依据风沙运动实验相似理论,以新疆和田河流域的柽柳灌丛为原型,用塑料制作成高(h)10 cm、冠幅10 cm×10 cm单株柽柳灌丛实验模型,在风洞中选用6,8,10,12 m/s和14 m/s5组不同风速,分别对单株柽柳灌丛模型作纯气流流场的模拟实验和在风沙流作用条件下单株柽柳灌丛周围沙粒蚀积特征的观测.模拟实验表明:在不同动力条件作用下,单株柽柳灌丛迎风侧的"足部"为一明显的气流减速区,但沙粒的蚀积特征表现为风蚀;在单株柽柳灌丛的上方一倍植株高度的范围内为气流加速区;在单株柽柳灌丛的背风侧顺风向为弱涡流区,表现为积沙、气流恢复区、风蚀;而在单株柽柳灌丛的两侧为气流的加速区,表现为强烈的风蚀;随着实验风速的增加,单株柽柳灌丛后涡流区内,积沙形成的沙条长短轴的长度经历了一个先减小后增大的变化过程;柽柳灌丛引发的风沙流流场结构的变化,干扰了风沙流的运行,对于维持柽柳灌丛沙堆的形态,促进柽柳灌丛沙堆的增长具有重要的作用.  相似文献   

6.
以新疆S214省道沙害防治区段为背景,应用CFD(computational fluid dynamics)数值模拟方法分析了高立式芦苇沙障周围的风沙流场,结果表明:高立式芦苇沙障周围流场可分为迎风侧减速区,上方加速区和背风侧恢复区,背风侧无明显涡流区生成,沙障间的合理间距与风速呈负相关。现场布置模式对20 m·s~(-1)的风沙流有较好防护效果,低于此风速时,第二道沙障背风侧基本无恢复区生成,后两道沙障迎风侧积沙较多且紧贴沙障分布,压埋沙障速度较快。通过相贴原理优化沙障间距,可以充分发挥各道沙障的防护作用,有效抵御风沙流侵袭,适当延长沙障使用年限。根据前人观测数据、现场调查和数值模拟结果,建议研究区内高立式芦苇沙障间距宜为20~25 m。该研究结果可为研究区内高立式芦苇沙障的合理布置提供理论依据,也可为其他风沙防护工程的建设提供参考。  相似文献   

7.
内蒙古高原小叶锦鸡儿灌丛沙堆对气流结构与风蚀的影响   总被引:1,自引:0,他引:1  
安晶  哈斯  杜会石  杨一  张萍 《干旱区研究》2015,32(2):304-312
小叶锦鸡儿(Caragana microphylla)灌丛沙堆是内蒙古高原东南部农牧交错区的主要风沙堆积类型。通过对该区典型灌丛沙堆周围风沙气流的野外观测,结果表明,气流方向与强度和输沙率,随沙堆不同位置而发生变化。绕过沙堆两侧的气流和越过沙堆上部的气流在背风侧汇集,并在同等沙堆高度的范围内和1.5倍沙堆高度的水平范围内出现涡流。从灌丛沙堆迎风坡脚经南北两侧至背风坡脚以及背风侧5倍沙堆高度的水平距离间,风速依次出现逐渐增大—最大—逐渐减小—最小—回増至旷野风速的变化过程。在不同风向条件下,灌丛沙堆背风侧气流的风速廓线,并不完全遵循对数变化规律,沙堆南侧气流在0.3~0.6 m高度处出现变异。另外,沙堆周围输沙率在迎风侧和南北两侧与风速变化基本一致,但在背风侧因气流方向紊乱而出现变异。输沙率随高度增加,在沙堆迎风侧至两侧各部位呈有规律递减,但在背风侧无规律。  相似文献   

8.
《干旱区研究》2021,38(3):882-891
高立式沙障在线性工程风沙灾害防护中被广泛应用,布置模式直接影响工程防风阻沙效率和成本效益。在乌兰布和沙漠穿沙公路迎风侧,选择上疏下密式尼龙阻沙网分别设计4种高度单行、4种高度3种间距双行沙障来模拟风沙灾害防治观测场,使用阶梯式集沙仪与HOBO风速采集仪对不同风速下防风阻沙效率参数进行观测。结果表明:(1)低风速(12 m·s-1)背景下,高立式尼龙阻沙网沙障障后有效防护距离单行为3H(相同沙障高度的距离)以内,双行为12H。(2)单行高立式尼龙阻沙网沙障的障后3H沙障截留率平均为85.14%,障后5H平均为91.23%;双行障后3H平均为93.53%。(3)在中低风能地区线性工程防护中配置尼龙阻沙网时,不建议使用0.6 m及以下高度沙障;8 m·s~(-1)风速及以下可配置1 m高度单行尼龙阻沙网沙障;8~12 m·s~(-1)风速可配置间距8H、高度0.8~1.0 m双行尼龙阻沙网;在大风速区(12 m·s~(-1))选择拓宽间距至10H、高度1.2 m尼龙网沙障多条带复式配置。此模式可优化治沙工程设计,完善线路工程沙害防治体系。  相似文献   

9.
来流风速廓线是控制与影响风沙流场变化的关键因素。基于CFD欧拉非定常模型,通过对不同来流廓线形式在特定粗糙度下垫面的数值分析,探究来流廓线对流场风速与积沙形态的影响。结果表明:2种来流廓线形式均在挡沙墙周围形成速度分区。其中,在背风侧,均匀流时回流区不明显,对数流时则回流区较明显;在迎风侧,均匀流时速度发生突变,对数流时则呈对数规律递增;不同来流形式下挡沙墙积沙分布不同,均匀流时只在背风侧形成积沙,而对数流时两侧均有积沙,且迎风侧积沙多于背风侧,来流速度越大,迎风侧积沙减小,而背风侧增多。  相似文献   

10.
草原灌木带空气动力学粗糙度研究   总被引:1,自引:0,他引:1  
为了定量研究灌木带修复退化草原的机理,采用集沙仪和风速廓线仪野外采集了不同高度灌木带及退化草原的风蚀物及风速廓线,利用最小二乘法对风速廓线数据进行计算得到了相应的空气动力学粗糙度。结果表明:灌木带对草地的防护机理在于提升了地表的空气动力学粗糙度,降低了近地表的风速,从而导致灌木带相对退化草原的抗风蚀能力增强,大量风蚀物集中在近地表30 cm范围内;距灌木带的距离越远,空气动力学粗糙度呈现下降趋势;同时对不同高度灌木带的研究发现,0.3 m、0.7 m和1.5 m高的灌木带分别在距背风面3 m、5 m和6 m处的空气动力学粗糙度与退化草原的值趋于一致,此距离为该灌木带的有效防风蚀范围,空气动力学粗糙度及有效防护范围均随灌木高度的增加而增大。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号