首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
A one-year influenza A survey was conducted in 10 live bird markets (LBMs) in H5N1 high-risk areas in Thailand from January to December 2009. The result from the survey showed that the occurrence of influenza A virus (IAV) in LBMs was 0.36% (19/5304). Three influenza A subtypes recovered from LBMs were H4N6 (n = 2), H4N9 (n = 1), and H10N3 (n = 16) from Muscovy ducks housed in one LBM in Bangkok. These influenza subtypes had never been reported in Thailand, and therefore such genetic diversity raises concern about potential genetic reassortment of the viruses in avian species in a particular setting. Two influenza A subtypes (H4N6 and H4N9) were isolated from oropharyngeal and cloacal swabs of the same duck, suggesting coinfection with two influenza subtypes and possible genetic reassortment in the bird. In addition, H10N3 infection in ducks housed in the same LBM was observed. These findings further support that LBMs are a potential source of IAV transmission and genetic reassortment.  相似文献   

2.
Suarez DL  Senne DA 《Avian diseases》2000,44(2):356-364
The last highly pathogenic outbreak of avian influenza in the United States was caused by an H5N2 influenza virus in Pennsylvania and New Jersey in 1983-84. Through a combined federal and state eradication effort, the outbreak was controlled. However, in 1986-89, multiple H5N2 viruses were isolated from poultry farms and the live bird markets (LBMs) in the United States. To determine the epidemiologic relationships of these viruses, the complete coding sequence of the nonstructural gene and the hemagglutinin protein subunit 1 of the hemagglutinin gene was determined for 11 H5N2 viruses and compared with previously available influenza sequences. The H5N2 isolates from 1986-89 were all closely related to the isolates from the 1983-84 Pennsylvania outbreak by nucleotide and amino acid sequence analysis for both genes, providing additional evidence that the Pennsylvania/83 (PA/83) virus lineage was not completely eradicated. The PA/83 lineage also had a large number of unique amino acid changes not found in other avian influenza viruses, which was suggestive that this lineage of virus had been circulating in poultry for an extended period of time before the first isolation of virus in 1983. High substitution and evolutionary rates were measured by examining the number of nucleotide or amino acid substitutions over time as compared with the index case, CK/PA/21525/83. These rates, however, were similar to other outbreaks of avian influenza in poultry. This study provides another example of the long-term maintenance and evolution of influenza viruses in the U.S. LBMs and provides further evidence of the connection of the LBMs and the Pennsylvania 1983 H5N2 outbreak.  相似文献   

3.
4.
Over the past two decades, the poultry sector in China went through a phase of tremendous growth as well as rapid intensification and concentration. Highly pathogenic avian influenza virus (HPAIV) subtype H5N1 was first detected in 1996 in Guangdong province, South China and started spreading throughout Asia in early 2004. Since then, control of the disease in China has relied heavily on wide-scale preventive vaccination combined with movement control, quarantine and stamping out. This strategy has been successful in drastically reducing the number of outbreaks during the past 5years. However, HPAIV H5N1 is still circulating and is regularly isolated in traditional live bird markets (LBMs) where viral infection can persist, which represent a public health hazard for people visiting them. The use of social network analysis in combination with epidemiological surveillance in South China has identified areas where the success of current strategies for HPAI control in the poultry production sector may benefit from better knowledge of poultry trading patterns and the LBM network configuration as well as their capacity for maintaining HPAIV H5N1 infection. We produced a set of LBM network maps and estimated the associated risk of HPAIV H5N1 within LBMs and along poultry market chains, providing new insights into how live poultry trade and infection are intertwined. More specifically, our study provides evidence that several biosecurity factors such as daily cage cleaning, daily cage disinfection or manure processing contribute to a reduction in HPAIV H5N1 presence in LBMs. Of significant importance is that the results of our study also show the association between social network indicators and the presence of HPAIV H5N1 in specific network configurations such as the one represented by the counties of origin of the birds traded in LBMs. This new information could be used to develop more targeted and effective control interventions.  相似文献   

5.
Between 1993 and 2000, gallinaceous birds, waterfowl, and environmental specimens from the live bird markets (LBMs) of the northeastern United States and non-LBM premises were tested for the presence of avian influenza virus (AIV), pathogenic properties of AIV subtypes, especially of hemagglutinin (H) subtypes H5 and H7, and a possible association between LBM and non-LBM infections. Ten H subtypes of AIV were isolated from the LBM specimens: H1, H2, H3, H4, H5, H6, H7, H9, H10, and H11. During this period, the 10 subtypes also were isolated from birds in non-LBM premises. In the LBMs, subtypes H2, H3, H4, H6, H7, and H11 were present for 5-8 yr despite efforts to clean and disinfect the premises. The H5 or H7 subtypes present during the same year in both LBMs and non-LBMs within a state or in contiguous states were (subtype/year): H5N2/1993, 1999, and H7N2/1994-99. The AIV subtypes including the H5 and H7 that were evaluated for pathogenicity in chickens were low pathogenic. The deduced amino acid sequence at the H cleavage site of H5 and H7 subtypes was consistent with those of low pathogenic AIV. Although the H5N2 and H7N2 subtypes remained low pathogenic, they did undergo mutations and acquired an additional basic amino acid at the H cleavage site; however, the minimum number of basic amino acids in correct sequence (B-X-B-R, where B = basic amino acid, X = need not be basic amino acid, and R = arginine) required for high pathogenicity was lacking. A low pathogenic H5 or H7 subtype may become highly pathogenic by acquiring additional basic amino acids at the H cleavage site. The LBMs have been and will likely continue to be a source of AIV for commercial poultry.  相似文献   

6.
Influenza A is a respiratory disease common in the swine industry. Three subtypes, H1N1, H1N2 and H3N2 influenza A viruses, are currently co-circulating in swine populations in Korea. An outbreak of the highly pathogenic avian influenza H5N1 virus occurred in domestic bird farms in Korea during the winter season of 2003. Pigs can serve as hosts for avian influenza viruses, enabling passage of the virus to other mammals and recombination of mammalian and avian influenza viruses, which are more readily transmissible to humans. This study reports the current seroprevalence of swine H1 and H3 influenza in swine populations in Korea by hemagglutination inhibition (HI) assay. We also investigated whether avian H5 and H9 influenza transmission occurred in pigs from Korea using both the HI and neutralization (NT) tests. 51.2% (380/742) of serum samples tested were positive against the swine H1 virus and 43.7% (324/742) were positive against the swine H3 virus by HI assay. The incidence of seropositivity against both the swine H1 virus and the swine H3 virus was 25.3% (188/742). On the other hand, none of the samples tested showed seropositivity against either the avian H5 virus or the avian H9 virus by the HI and NT tests. Therefore, we report the high current seroprevalence and co-infectivity of swine H1 and H3 influenza viruses in swine populations and the lack of seroepidemiological evidence of avian H5 and H9 influenza transmission to Korean pigs.  相似文献   

7.
During the past two decades, food safety issues in China not only posed serious threats to Chinese consumers but also damaged the image of Chinese products internationally. In China, food safety is not only about scientific discoveries, advanced laboratories, and sanitation equipment; it is more about the role of different players in the food supply chain. The poultry meat supply chain is instrumental in the spread of the avian influenza A virus (H7N9), raising questions about how policymakers respond to such threats and whether industries need to be restructured to manage and control this epidemic so that it does not recur. As a short-term measure, to prevent the spread of this disease, government authorities enforced the closure of live bird markets (LBM) in disease-affected areas of China. However, in the long term, the poultry meat supply chain needs to be restructured. The aim of the current study was to analyze distribution channels for chicken meat in China and then describe arrangements in poultry meat sectors that incorporate small- and medium-scale producers into the supply chain while responding to shifts in LBMs. We also assessed the role of LBMs in spreading H7N9 and how these interventions affect the poultry meat supply chain in the Chinese market.  相似文献   

8.
旨在提高对禽流感病毒(avian influenza virus,AIV)检测效率,及时发现疫病。本研究通过分析M基因以及H5、H7和H9亚型的HA基因序列保守区域,设计并合成了相关探针和引物,建立了禽流感病毒(AIV)四重荧光RT-PCR检测方法,该方法可在检测禽流感病毒(AIV)的同时,确定病原是否为H5、H7和H9亚型。结果显示,该检测方法耗时短、特异性好、检测下限达到10-5 ng·μL-1。采用该方法检测临床采集的13个活禽交易市场的384份禽咽喉和泄殖腔双拭子样品,经检测,其中有60份样品为流感病毒阳性,且全部是H9亚型,该结果与行业标准方法(NY/T 772—2013)检测结果一致,κ值为1(P<0.001)。本方法能实现对禽流感病毒及H5、H7和H9亚型的高通量快速检测,将在AIV快速检测中发挥重要作用。  相似文献   

9.
Although live bird markets (LBMs) have been associated with outbreaks of avian influenza (AI), there are some LBM systems where AI outbreaks are extremely rare events. The California LBMs have not had any detected avian influenza viruses (AIVs) since December 2005. Responses to a detailed questionnaire on the practices and characteristics of the participants in the California low-pathogenic (LP) AI control program have been described to characterize possible reasons for the lack of AI outbreaks in LBMs. Compliance with an LPAI control program that contains active surveillance, prevention, and rapid response measures by those involved in the LBM system, rendering services to dispose of carcasses, no wholesalers, and few third-party bird deliveries was associated with the lack of LPAIV circulating in the Southern California LBM system.  相似文献   

10.
珠三角地区H7N9禽流感传播途径具有复杂性和特殊性。为进一步明确传播途径,基于家禽产业链视角,在H7N9禽流感最为严重的广州市、深圳市、佛山市,采用分层抽样法选取有代表性且能反映整体情况的养殖场、批发市场、屠宰场、农贸市场,调查H7N9禽流感的动物防疫和个人防护情况。结果显示:养殖场的生物安全隔离仍不完善,存在活禽接触候鸟感染禽流感的风险;批发市场和屠宰场防疫水平高,人感染风险较低;农贸市场的动物防疫条件和个人防护不充分,易扩散病毒;最有可能的传播途径是与候鸟接触后携带病毒的活禽,通过"养殖—批发—零售"产业链蔓延。该结论在明确"禽传人"、"活禽市场环境暴露"观点上深化了产业链各环节间的传播路径。因此,珠三角地区H7N9禽流感的防控重点要加强养殖环节的生物安全隔离,并做好零售环节中活禽与人之间的防控。  相似文献   

11.
通过综述感染人类的H5N1亚型高致病性禽流感病毒起源及演化关系,表明感染人的A/Hongkong/97(H5N1)株及目前流行的高致病性禽流感病毒可能起源于禽源的A型流感病毒株(A/Goose/Guangdong/1/96)。自1996年以来,H5N1亚型禽流感病毒的基因型经Gs/Gd,A,B,C,D,E,V,W,X0-X3,Y,Z和Z 不断的演化为目前流行的基因型Z。高致病性禽流感病毒(H5,H7和H9亚型)在禽,特别是水禽体内的重组或重配而相互传播,并随候鸟的迁徙而传播不易消灭,H5N1亚型的禽流感在不同地区的不断暴发与流行已严重威胁着养禽业的发展及人类的健康,需要进行长期监控。  相似文献   

12.
通过综述感染人类的H5N1亚型高致病性禽流感病毒起源及演化关系,表明感染人的A/Hongkong/97(H5N1)株及目前流行的高致病性禽流感病毒可能起源于禽源的A型流感病毒株(A/Goose/Guangdong/1/96)。自1996年以来,H5N1亚型禽流感病毒的基因型经Gs/Gd,A,B,C,D,E,V,W,)X0—X3,Y,Z和Z^+不断的演化为目前流行的基因型Z。高致病性禽流感病毒(H5,H7和H9亚型)在禽,特别是水禽体内的重组或重配而相互传播,并随候鸟的迁徙而传播不易消灭,H5N1亚型的禽流感在不同地区的不断暴发与流行已严重威胁着养禽业的发展及人类的健康,需要进行长期监控。  相似文献   

13.
以禽流感病毒A/Chicken/Hubei/327/2004(H5N1)免疫Balb/c小鼠,将免疫鼠脾细胞与SP2/0骨髓瘤细胞融合,用血凝抑制试验筛选细胞培养上清,采用有限稀释法对阳性孔进行克隆,3次克隆后获得7株能稳定分泌抗H5亚型禽流感病毒血凝素单克隆抗体的杂交瘤细胞株,分别命名为1C4,1D4,1E12,2E11,4C12,4G2和5E12。细胞培养上清HI效价为24~27,腹水HI效价可达210~218。所有单抗与禽流感H7和H9亚型标准血凝抗原,新城疫病毒和鸡传染性支气管炎病毒无交叉反应。在细胞上的中和试验显示具有较高的中和效价,获得的单克隆抗体可在禽流感流行病学的监测中发挥重要作用。  相似文献   

14.
将200只海兰褐公雏鸡分为4组,每组50只。A组注射H5N2亚型禽流感病毒黄芪多糖油乳剂灭活苗;B组注射H5N2亚型禽流感病毒人参皂苷油乳剂灭活苗;C组注射H5N2亚型禽流感病毒普通油乳剂灭活苗;D组注射生理盐水油乳剂(空白对照)。分别在免疫前随机选取5只鸡心脏采血,EDTA抗凝。于免疫后5、12、19 d每组每次分别随机选取5只鸡心脏采血,EDTA抗凝,检查各阶段各组鸡外周血T淋巴细胞亚群变化情况。结果表明,免疫后第12天,黄芪多糖和人参皂苷可提高CD4+/CD8+淋巴细胞的比值,与普通疫苗和对照组相比,差异极显著(P<0.01);黄芪多糖和人参皂苷可提高CD4+淋巴细胞亚群的百分率,与免疫前相比,差异极显著或显著(P<0.01或P<0.05)。  相似文献   

15.
《Veterinary microbiology》2015,175(2-4):369-373
From January 2010 to January 2012, we collected sera samples from 700 stray cats living in close proximity to poultry farms or poultry markets in 4 provinces in China. A number of cats had evidence of avian and canine influenza virus infection: avian H9N2 [24 by HI ≥1:20 and 16 by microneutralization (MN) assay ≥1:80]; avian H5N1 (9 by HI ≥1:20 and 3 by MN assay ≥1:80) and canine H3N2 (32 by HI ≥1:20 and 18 by MN ≥1:80). Bivariate analyses revealed that cats sampled near live poultry markets and cats with influenza-like-illness were at increased risk of having elevated antibody titers by HI against avian H9N2, avian H5N1, or canine H3N2 viruses. Hence, cats may play a very important role in the ecology of novel influenza viruses and periodic epidemiological surveillance for novel influenza infections among stray cats could serve as an early warning system for human threats.  相似文献   

16.
Sun Y  Pu J  Fan L  Sun H  Wang J  Zhang Y  Liu L  Liu J 《Veterinary microbiology》2012,156(1-2):193-199
Despite the long-term vaccination programs implemented in China, H9N2 avian influenza viruses (AIVs) continue to persist in chicken populations, even in vaccinated flocks. We previously demonstrated that H9N2 AIV isolated from chickens in China also underwent antigenic drift and evolved into distinct antigenic groups (C, D and E). To understand whether antigenic drift of viruses away from the vaccine strain partially contributed to the circulation of H9N2 AIV in China, we evaluated the protective efficacy of a commercial vaccine against different antigenic groups of H9N2 AIV. Challenge experiments using vaccinated chickens indicated that the vaccine prevented shedding of antigenic group C viruses, but not those of the more recent groups D and E. Vaccinated chickens, even those with vaccine-induced HI titers of 1:1024, shed virus after being infected with A/chicken/Shandong/ZB/2007, a representative virus of antigenic group D. Genetic analysis showed that the representative viruses of antigenic groups D and E possessed greater numbers of amino acid substitutions in the hemagglutinin protein compared to the vaccine strain and the antigenic group C virus, and many of which were located in antigenic sites. Our results indicated that the persistence of H9N2 AIV in China might be due to incomplete vaccine protection, and that the avian influenza vaccine should be regularly evaluated and updated to maintain optimal protection. Furthermore, the avian influenza vaccination policy also needs to be re-assessed, and increased veterinary biosecurity on farms, rather than vaccine application alone, should be implemented to prevent and control avian influenza.  相似文献   

17.
The Virology Laboratory of the Central Laboratory of Animal Diseases in Ivory Coast at Bingerville received samples of wild and domestic avian species between February and December 2006. An RT-PCR technique was used to test for avian influenza (AI) and highly pathogenic AI subtype viruses. Among 2125 samples, 16 were type A positive; of which, 12 were later confirmed to be H5N1. Fifteen of these 16 type A positive samples were inoculated into the chorioallantoic cavity of 11-day-old embryonated hens' eggs for virus isolation. Eight produced virus with hemagglutination titres from 1/64 to 1/512. The 4/16 M-RT-PCR positive samples, which were H5N1 negative, were shown to be H7 subtype negative. The diagnostic efficiency of the laboratory for the surveillance of H5N1 in Ivory Coast was demonstrated. The positive cases of H5N1 were from a sparrowhawk (Accipter nisus); live market poultry and in free-range poultry, where the mortality rate was approximately 20% (2/10) and 96.7% (29/30) respectively. Currently, investigations into intensive poultry farms have proved negative for H5N1. No human cases have been reported this time.  相似文献   

18.
在2019年1月-2019年6月对云南出现呼吸道疫病的57个鸡场进行H9亚型禽流感检测的基础上,选取石林和楚雄2个H9亚型禽流感阳性样品进行病毒分离。从分离的H9N2亚型禽流感病毒感染鸡胚尿囊液中提取总RNA,采用特异性引物经反转录PCR分别扩增HANA基因,PCR产物纯化后进行测序。序列比对及系统发育分析结果表明,云南2株H9N2毒株HA基因核苷酸序列同源性为94.2%,NA基因核苷酸序列同源性为93.6%,系统进化分析表明云南H9N2亚型禽流感病毒HANA基因均属于欧亚谱系中的类ADKHKY28097分支(Y280-like),ACKYN12019和ACKYN72019 HA基因之间的同源性为94.3%,与参考毒株ACKJX2448的同源性最高,为95.6%~98.5%,与中国流行的H9N2代表株和疫苗株同源性较低。HA蛋白333-340位裂解位点为PSRSSR↓GLF,具有低致病性禽流感病毒分子特征,受体结合位点均发生E198T和Q234L的突变,具有人样受体结合特征,在29、141、298、305、313、492位氨基酸有6个糖基化位点。ACKYN12019和ACKYN72019 NA基因同源性为93.6%,与Y280-like代表毒株的同源性分别为97.1%~97.5%和93.7%~94.6%,NA蛋白缺失63、64、65位氨基酸,在44、69、86、146、200、234位氨基酸处存在6个潜在的糖基化位点,NA蛋白红细胞结合(HB)位点分析发现,368-369、399-403、432位氨基酸处存在变异。研究结果显示,H9N2亚型禽流感病毒一直处于不断的变异之中,故应加强其监测与防控。  相似文献   

19.
为了解H6N6亚型禽流感病毒(AIV)的生物学特性,本研究对2015年在广东活禽交易市场分离的一株鸭源AIV DK/GD/S1182/2015(H6N6)进行了全基因组测序、遗传演化分析和对BALB/c小鼠的感染性试验。序列分析显示,该病毒的HA蛋白裂解位点处仅有一个碱性氨基酸,符合低致病性AIV的分子特征;HA蛋白的222V和228S,可以增强病毒对α-2,6唾液酸受体的结合能力。NA蛋白颈部有11个氨基酸的缺失,这将会影响NA的神经氨酸酶活性;该病毒可能是2010年广东H6N6猪流感病毒与2014年广西AIV重组产生。小鼠感染性试验表明,该分离株不需要预先适应就能够在小鼠的肺脏内高效复制,提示该分离株具有感染哺乳动物的潜在风险。本研究对H6亚型AIV监测和相关生物学特性研究具有一定的指导作用。  相似文献   

20.
为评价水禽用禽流感灭活疫苗(H5N2亚型,D7株)对2010年以后分离的高致病性禽流感病毒流行毒株的免疫保护效果,将该疫苗免疫3周龄SPF鸭后,21 d采血、分离血清测定HI抗体效价,同时用5株2010年以后分离的高致病性禽流感流行毒进行攻毒保护试验,攻毒后5d采集所有试验鸭喉头和泄殖腔拭子进行病毒分离.结果显示,该疫苗免疫SPF鸭21 d后的HI抗体效价的几何平均滴度达7.4log2,对5株高致病性禽流感病毒的攻击均可产生良好的免疫保护,并有效阻止病毒排泄.该疫苗的推广使用将对我国水禽高致病性禽流感的防控发挥重要作用.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号