首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
The present experiments were conducted to determine whether improved beef longissimus shear force methodology could be used to assess pork longissimus tenderness. Specifically, three experiments were conducted to: 1) determine the effect of belt grill (BG) cookery on repeatability of pork longissimus Warner-Bratzler shear force (WBSF), 2) compare the correlation of WBSF and slice shear force (SSF) with trained sensory panel tenderness ratings, and 3) estimate the repeatability of pork longissimus SSF for chops cooked with a BG. In Exp. 1 and 2, the longissimus was removed from the left side of each carcass (Exp. 1, n = 25; Exp. 2, n = 23) at 1 d postmortem and immediately frozen to maximize variation in tenderness. In Exp. 1, chops were cooked with either open-hearth electric broilers (OH) or BG, and WBSF was measured. Percentage of cooking loss was lower (P < 0.001) and less variable for chops cooked with a BG (23.2%; SD = 1.7%) vs. OH (27.6%; SD = 3.0%). Estimates of the repeatability of WBSF were similar for chops cooked with OH (0.61) and BG (0.59). Although significant (P < 0.05), differences in WBSF (4.1 vs. 3.9 kg) between cooking methods accounted for less than 5% of the total variation in WBSF. In Exp. 2, the correlation of SSF (r = -0.72; P < 0.001) with trained sensory panel tenderness ratings was slightly stronger than the correlation of WBSF (r = -0.66; P < 0.001) with trained sensory panel tenderness ratings, indicating that the two methods had a similar ability to predict tenderness ratings. In Exp. 3, duplicate samples from 372 carcasses at 2 and 10 d postmortem were obtained, cooked with BG, and SSF was determined. The repeatability of SSF was 0.90, which is comparable to repeatability estimates for beef and lamb. Use of BG cookery and SSF could facilitate the collection of accurate pork longissimus tenderness data. Time and labor savings associated with BG cookery and the SSF technique should help to decrease research costs.  相似文献   

2.
Experiments were conducted to develop an optimal protocol for measurement of slice shear force (SSF) and to evaluate SSF as an objective method of assessing beef longissimus tenderness. Whereas six cylindrical, 1.27-cm-diameter cores are typically removed from each steak for Warner-Bratzler shear force (WBSF) determination, a single 1-cm-thick, 5-cm-long slice is removed from the lateral end of each longissimus steak for SSF. For either technique, samples are removed parallel to the muscle fiber orientation and sheared across the fibers. Whereas WBSF uses a V-shaped blade, SSF uses a flat blade with the same thickness (1.016 mm) and degree of bevel (half-round) on the shearing edge. In Exp. 1, longissimus steaks were acquired from 60 beef carcasses to determine the effects of belt grill cooking rate (very rapid vs. rapid) and conditions of SSF measurement (hot vs cold) on the relationship of SSF with trained sensory panel (TSP) tenderness rating. Slice shear force was more strongly correlated with TSP tenderness rating when SSF measurement was conducted immediately after cooking (r = -.74 to -.76) than when steaks were chilled (24 h, 4 degrees C) before SSF measurement (r = -.57 to -.72). When SSF measurement was conducted immediately after cooking, the relationship of SSF with TSP tenderness rating did not differ among the belt grill cooking protocols used to cook the SSF steak. In Exp. 2, longissimus steaks were acquired from 479 beef carcasses to compare the ability of SSF and WBSF of 1.27-cm-diameter cores to predict TSP tenderness ratings. Slice shear force was more strongly correlated with sensory panel tenderness rating than was WBSF (r = -.82 vs -.77). In Exp. 3, longissimus steaks were acquired from 110 beef carcasses to evaluate the repeatability (.91) of SSF over a broad range of tenderness. Slice shear force is a more rapid, more accurate, and technically less difficult technique than WBSF. Use of the SSF technique could facilitate the collection of more accurate data and should allow the detection of treatment differences with reduced numbers of observations and reduced time requirements, thereby reducing research costs.  相似文献   

3.
The present experiments were conducted to field test a system optimized for online prediction of beef LM tenderness based on visible and near-infrared (VISNIR) spectroscopy and to develop and validate a model for prediction of tenderness that would be unbiased by normal variation in bloom time before application of VISNIR. For both Exp. 1 and 2, slice shear force (SSF) was measured on fresh (never frozen) steaks at 14 d postmortem. Carcasses with VISNIR-predicted SSF ≤15 kg were classified as VISNIR predicted tender and carcasses with VISNIR-predicted SSF >15 kg were classified as VISNIR not predicted tender. In Exp. 1, spectroscopy was conducted online, during carcass grading, at 3 large-scale commercial fed-beef processing facilities. Each carcass (n = 1,155) was evaluated immediately after ribbing and again when the carcass was graded. For model development and validation, carcasses were blocked by plant and observed SSF. One-half of the carcasses (n = 579) were assigned to a calibration data set, which was used to develop regression equations, and one-half of the carcasses (n = 576) were assigned to a prediction data set, which was used to validate the regression equations. Carcasses predicted tender by VISNIR spectroscopy had smaller (P < 10(-19)) mean LM SSF values at 14 d postmortem in the calibration (13.9 vs. 16.5 kg) and prediction (13.8 vs. 16.4 kg) data sets than did carcasses not predicted tender by VISNIR spectroscopy. Relative to carcasses not predicted tender by VISNIR, a decreased percentage of carcasses predicted tender by VISNIR had LM SSF >25 kg in the calibration (2.0 vs. 7.8%) and prediction (0.8 vs. 8.0%) data sets. In Exp. 2, carcasses (n = 4,204) were evaluated with VISNIR online at 6 commercial fed-beef processing facilities on 38 production days. The carcasses predicted tender by VISNIR spectroscopy had decreased mean LM SSF values at 14 d postmortem (16.3 vs. 19.9 kg; P < 10(-87)), longer sarcomere lengths (1.77 vs. 1.72 μm; P < 10(-10)), and a greater percentage of desmin degraded (42 vs. 34%; P < 10(-5)) by 14 d postmortem. Relative to carcasses not predicted tender by VISNIR, a decreased percentage of carcasses predicted tender by VISNIR had LM SSF >25 kg (4.9 vs. 21.3%). The present experiments resulted in development and independent validation of a robust method to noninvasively predict LM tenderness of grain-fed beef carcasses. This technology could facilitate tenderness-based beef merchandising systems.  相似文献   

4.
5.
One hundred beef carcasses were selected at three packing plants and were used to determine the relationship between glycolytic potential (GP) and dark, firm, and dry (DFD) beef and to determine the effects of DFD status and GP on cooked beef palatability. Eight individual muscles were excised from one hindquarter of each carcass at d 7 postmortem: longissimus lumborum, psoas major, gluteus medius, tensor fasciae latae, rectus femoris, semimembranosus, biceps femoris, and semitendinosus. Ultimate pH, colorimeter readings, and Warner-Bratzler shear force were determined for all eight muscles at d 7 postmortem. A nine-member trained sensory panel evaluated cooked longissimus lumborum, gluteus medius, and semimembranosus steaks. Traits determined solely for the longissimus lumborum were GP (2 x [glycogen + glucose + glucose-6-phosphate] + lactate) and ether-extractable fat. A curvilinear relationship existed between GP and ultimate pH within the longissimus muscle. There appeared to be a GP threshold at approximately 100 micromol/g, below which lower GP was associated with higher ultimate pH and above which GP had no effect on ultimate pH. The greatest pH and muscle color differences between normal and DFD carcasses were observed in the longissimus lumborum, gluteus medius, semimembranosus, and semitendinosus muscles. Cooked longissimus from DFD carcasses had higher shear force values (46% greater) and more shear force variation (2.3 times greater variation) than those from normal carcasses. Dark cutting carcasses also had higher shear force values for gluteus medius (33% greater) and semimembranosus (36% greater) than normal carcasses. Sensory panel tenderness of longissimus, gluteus medius, and semimembranosus was lower for DFD carcasses than for normal carcasses. Longissimus and gluteus medius flavor desirability scores were lower for DFD than for normal carcasses. Steaks from DFD carcasses had more off-flavor comments than steaks from normal carcasses, specifically more "peanutty," "sour," and "bitter" flavors. The DFD effect of higher shear force values was approximately five times greater (+3.11 kg vs +0.63 kg) for carcasses with "slight" marbling scores than for carcasses with "small" marbling scores. In general, higher GP was associated with increased tenderness, even among normal carcasses. In conclusion, low GP was associated with DFD beef and resulted in substantially less-palatable cooked steaks.  相似文献   

6.
The objective of this multiple-phase study was to determine the accuracy of an on-line near-infrared (NIR) spectral reflectance system to predict 14-d-aged cooked beef tenderness. In phase I, 292 carcasses (140 US Select, 152 US Choice) were selected (d 2) from 2 commercial beef processing facilities. After carcass selection, longissimus lumborum (LL) muscle sections (ribs 9 to 12) were individually identified, vacuum-packaged, and transported to the Oklahoma State University Meats Laboratory, where a 2.54-cm-thick steak (n = 1) was fabricated and stored in refrigerated conditions (1 degrees C +/- 1). Following a 30-min oxygenation period, a NIR spectral scan was obtained on the 12th-rib LL steak. Steaks (d 3) were individually vacuum-packaged and aged at 4 degrees C for a total of 14 d before cooking slice shear force (SSF) analysis. In phases II and III, 476 carcasses (258 US Select, 218 US Choice) were immediately NIR scanned after carcass presentation to in-plant USDA grading personnel. In a similar fashion, all LL steaks were aged (1 degrees C +/- 1) for 14 d before cooking (70 degrees C) and conducting SSF. Of the phase I and II samples, 39 (6.77%) were categorized as being tough (i.e., >/= 25 kg of SSF after the 14-d postmortem aging period). Of these 39 tough samples, 20 (3.7% error rate) were correctly placed in the 90% certification level. Another 10 tough samples were placed in the 80% certification level (2.0% error rate). The overall NIR certified tender group was 1.67 kg more tender (P < 0.05) than LL samples from the noncertified samples. When the NIR predicted samples to be tough, 10% of the samples were eliminated from the phase I and II LL populations at 90% certification. The population SSF mean improved in excess of 6.5 kg. For phase III, SSF evaluation by an independent third party indicated the NIR system was able to successfully sort tough from tender LL samples to 70% certification levels. It was concluded that NIR scanning offers an in-plant opportunity to sort carcasses into tenderness outcome groups for guaranteed-tender branded beef programs.  相似文献   

7.
The objectives of this experiment were to determine 1) whether end point temperature interacts with tenderness to affect Warner-Bratzler shear force of beef longissimus and 2) if so, what impact that interaction would have on tenderness classification. Warner-Bratzler shear force was determined on longissimus thoracis cooked to either 60, 70, or 80 degrees C after 3 and 14 d of aging from carcasses of 100 steers and heifers. Warner-Bratzler shear force values (3- and 14-d aged steaks pooled) for steaks cooked to 70 degrees C were used to create five tenderness classes. The interaction of tenderness class and end point temperature was significant (P < .05). The increase in Warner-Bratzler shear force as end point temperature increased was greater (P < .05) for less-tender longissimus than more-tender longissimus (Tenderness Class 5 = 5.1, 7.2, and 8.5 kg and Tenderness Class 1 = 2.4, 3.1, and 3.7 kg, respectively, for 60, 70, and 80 degrees C). The slopes of the regressions of Warner-Bratzler shear force of longissimus cooked to 60 or 80 degrees C against Warner-Bratzler shear force of longissimus cooked to 70 degrees C were different (P < .05), providing additional evidence for this interaction. Correlations of Warner-Bratzler shear force of longissimus cooked to 60 or 80 degrees C with Warner-Bratzler shear force of longissimus cooked to 70 degrees C were .90 and .86, respectively. One effect of the interaction of tenderness with end point temperature on tenderness classification was to increase (P < .01) the advantage in shear force of a "Tender" class of beef over "Commodity" beef as end point temperature increased (.24 vs .42 vs .60 kg at 14 d for 60, 70, and 80 degrees C, respectively). When aged 14 d and cooked to 80 degrees C, "Commodity" steaks were six times more likely (P < .01) than "Tender" steaks to have shear force values > or = 5 kg (24 vs 4%). The end point temperature used to conduct tenderness classification did not affect classification accuracy, as long as the criterion for "Tender" was adjusted accordingly. However, cooking steaks to a greater end point temperature than was used for classification may reduce classification accuracy. The beef industry could alleviate the detrimental effects on palatability of consumers cooking beef to elevated degrees of doneness by identifying and marketing "Tender" longissimus.  相似文献   

8.
Four experiments were conducted, using carcasses from cattle identified for anticipated variability in tenderness (Exp. 1, 2, and 3) and carcasses selected for variability in physiological maturity and marbling score (Exp. 4), to evaluate the ability of the Tendertec Mark III Beef Grading Probe (Tendertec) to predict tenderness of steaks from beef carcasses. In Exp. 1, 2, and 3, longissimus steaks were aged for different periods of time, cooked to a medium degree of doneness (70 degrees C), and evaluated for Warner-Bratzler shear force (WBS) and trained sensory panel ratings. In Exp. 4, longissimus steaks were aged 14 d and cooked to 60, 65, 70, 75, or 80 degrees C for WBS tests and to 65 or 75 degrees C for sensory panel evaluations. Tendertec output variables were not correlated with 1) 24-h calpastatin activity, steak WBS (following 1, 4, 7, 14, 21, or 35 d of aging), or d-14 sensory panel tenderness ratings in Exp. 1 (n = 467 carcasses) or 2) 14-d WBS in Exp. 2 (n = 202 carcasses). However, in Exp. 3 (n = 29 carcasses), Tendertec output variables were correlated (P < 0.05) with tenderness of steaks aged 1, 21, 28, or 35 d, and we were able to separate carcasses into groups yielding tough, acceptable, and tender steaks. In Exp. 4 (n = 70), Tendertec output variables were correlated (P < 0.05) with steak WBS at 60 degrees C and with steak ratings for muscle fiber tenderness, connective tissue amount, and overall tenderness at 65 degrees C, but these relationships weakened (P > 0.05) as degree of doneness increased. Consequently, Tendertec output variables only were effective for stratifying carcasses according to tenderness when steaks from those carcasses in Exp. 4 were cooked to a rare or medium-rare degree of doneness. Although Tendertec was able to sort carcasses of older, mature cattle based on tenderness of steaks at some cooked end points, it failed to detect tenderness differences in steaks derived from youthful carcasses consistently, and was thus of limited value as an instrument for use in improving the quality, consistency, and uniformity of the U.S. fed-beef supply.  相似文献   

9.
The objective of this study was to determine the effect of sampling methodology on the relationship between longissimus tenderness and measures of biochemical meat traits. Sampling methodology included measurements of sarcomere length, collagen concentration, and postmortem desmin proteolysis on raw samples and measurements of these same traits on the same cooked meat used for shear force measurement. Twenty crossbred steers and 20 crossbred barrows were used for these studies. The beef longissimus thoracis were vacuum-packaged, stored at 2 degrees C until 14 d postmortem, then frozen and stored at -30 degrees C. The pork longissimus thoracis et lumborum were vacuum-packaged, stored at 2 degrees C until 7 d postmortem, then frozen and stored at -30 degrees C. Trained sensory panel tenderness rating ranged from 3.1 to 7.6 for beef and 4.1 to 7.4 for pork. The coefficient of variation was lower for sarcomere length than for all other traits. Simple correlation coefficients between measurements on raw and cooked samples were 0.58 (beef) and 0.11 (pork) for sarcomere length, 0.66 (beef) and 0.59 (pork) for collagen, and 0.74 (beef) and 0.76 (pork) for desmin degradation. Simple correlation coefficients between biochemical traits and measures of tenderness (Warner-Bratzler shear force and trained sensory tenderness rating) were higher or not different for cooked compared to raw samples. Correlation coefficients between biochemical traits and tenderness rating were 0.38 (raw) and 0.22 (cooked) for sarcomere length, -0.12 (raw) and -0.45 (cooked) for collagen, and 0.48 (raw) and 0.80 (cooked) for desmin degradation in beef longissimus and 0.14 (raw) and 0.15 (cooked) for sarcomere length, -0.38 (raw) and -0.33 (cooked) for collagen, and 0.53 (raw) and 0.67 (cooked) for desmin degradation in pork longissimus. The coefficients of determination for explaining variation in tenderness rating using sarcomere length, collagen concentration, and desmin degradation for raw and cooked samples were 0.43 and 0.73 (beef) and 0.48 and 0.57 (pork), respectively. This study indicates that measurements of biochemical traits on the same cooked meat as used for shear force determination account for more of the variation in measures of tenderness than biochemical measurements made on a separate raw sample.  相似文献   

10.
The present experiment was conducted to provide a validation of a previously developed model for online classification of US Select carcasses for LM tenderness based on visible and near-infrared (VISNIR) spectroscopy and to determine if the accuracy of VISNIR-based tenderness classification could be enhanced by making measurements after postmortem aging. Spectroscopy was conducted online, during carcass grading, at a large-scale commercial fed beef-processing facility, and the strip loin was obtained from the left side of US Select carcasses (n = 467). Slice shear force (SSF) was measured on fresh steaks at 2 and 14 d postmortem. Online VISNIR tenderness classes differed in mean SSF values at both 2 d (29.4 vs. 33.6 kg) and 14 d (18.0 vs. 21.2 kg) postmortem (P < 10(-7)). Online VISNIR tenderness classes differed in both the percentage of carcasses with LM SSF values greater than 40 kg at 2 d postmortem (5.1 vs. 21.0%; P < 10(-6)) and the percentage of carcasses with LM SSF values greater than 25 kg at 14 d postmortem (6.8 vs. 23.2%; P < 10(-5)). Whereas 15.0% of the carcasses sampled for this experiment had LM SSF values greater than 25 kg at 14 d postmortem, only 6.8% of the carcasses classified as tender by VISNIR had LM SSF values greater than 25 kg. All the carcasses sampled that had LM SSF values greater than 35 kg at 14 d postmortem were accurately classified as tough by VISNIR. Before measurement of SSF on d 14, VISNIR spectroscopy was conducted on the SSF steak. Tenderness classes based on d 14 VISNIR spectra differed both in mean SSF value at 14 d postmortem (17.7 vs. 21.6 kg; P < 10(-11)) and the percentage of carcasses with LM SSF values greater than 25 kg at 14 d postmortem (7.3 vs. 22.7%; P < 10(-5)). These data support our previous work showing that VISNIR spectroscopy can be used to classify US Select carcasses noninvasively for LM tenderness, and the results establish that this technology could also be applied to aged US Select strip loins. This technology would allow packing companies and other segments of the beef marketing chain to identify US Select carcasses or strip loins that excel in LM tenderness for use in branded beef programs.  相似文献   

11.
The objective of this study was to determine the accuracy of three objective systems (prototype BeefCam, colorimeter, and slice shear force) for identifying guaranteed tender beef. In Phase I, 308 carcasses (105 Top Choice, 101 Low Choice, and 102 Select) from two commercial plants were tested. In Phase II, 400 carcasses (200 rolled USDA Select and 200 rolled USDA Choice) from one commercial plant were tested. The three systems were evaluated based on progressive certification of the longissimus as "tender" in 10% increments (the best 10, 20, 30%, etc., certified as "tender" by each technology; 100% certification would mean no sorting for tenderness). In Phase I, the error (percentage of carcasses certified as tender that had Warner-Bratzler shear force of > or = 5 kg at 14 d postmortem) for 100% certification using all carcasses was 14.1%. All certification levels up to 80% (slice shear force) and up to 70% (colorimeter) had less error (P < 0.05) than 100% certification. Errors in all levels of certification by prototype BeefCam (13.8 to 9.7%) were not different (P > 0.05) from 100% certification. In Phase I, the error for 100% certification for USDA Select carcasses was 30.7%. For Select carcasses, all slice shear force certification levels up to 60% (0 to 14.8%) had less error (P < 0.05) than 100% certification. For Select carcasses, errors in all levels of certification by colorimeter (20.0 to 29.6%) and by BeefCam (27.5 to 31.4%) were not different (P > 0.05) from 100% certification. In Phase II, the error for 100% certification for all carcasses was 9.3%. For all levels of slice shear force certification less than 90% (for all carcasses) or less than 80% (Select carcasses), errors in tenderness certification were less than (P < 0.05) for 100% certification. In Phase II, for all carcasses or Select carcasses, colorimeter and prototype BeefCam certifications did not significantly reduce errors (P > 0.05) compared to 100% certification. Thus, the direct measure of tenderness provided by slice shear force results in more accurate identification of "tender" beef carcasses than either of the indirect technologies, prototype BeefCam, or colorimeter, particularly for USDA Select carcasses. As tested in this study, slice shear force, but not the prototype BeefCam or colorimeter systems, accurately identified "tender" beef.  相似文献   

12.
Consumer impressions of Tender Select beef.   总被引:14,自引:0,他引:14  
  相似文献   

13.
14.
The objectives of this study were to determine the effectiveness of a visible-near-infrared (VIS-NIR) system to predict the ultimate tenderness rating of various beef muscles and conclude if a relationship exists between predicted LM shear force and tenderness of other subprimal cuts. Carcasses (n = 768) were scanned with the VIS-NIR system in 2 commercial beef-processing facilities. Carcasses were categorized based on their predicted 14-d LM slice shear force value. After carcass scanning, 100 carcasses were randomly selected based on their tenderness classification, and subprimals (ribeye rolls, clods, knuckles, top sirloins, inside rounds, and eye of rounds) were removed, vacuum-packaged, and transported to the Oklahoma State University Food and Agricultural Products Research Center, where 2.54-cm steaks (n = 6) were fabricated and stored in refrigerated conditions (1 degrees C +/- 1) and aged for 14 d. The center steak from right-side subprimals was designated for slice shear force (LM) or Warner-Bratzler shear force (all other subprimals) analysis. The remaining steaks were categorized based on predicted tenderness taken at 2 d postmortem with the VIS-NIR spectrophotometer and used in a consumer taste study. The test population of carcasses (n = 100) scanned in-plant predicted 27 carcasses as tender, 45 carcasses as intermediate, and 28 carcasses as tough. The VIS-NIR system correctly classified 26 of the 28 (92.9% accuracy) tough carcasses. Overall consumer satisfaction was greatest (P < 0.05) for steaks classified as tender and was intermediate compared with the steaks classified as tough. It was concluded that in-plant VIS-NIR scanning can properly identify and sort carcasses into tenderness groups, which may lead to the development of certified not-tough programs.  相似文献   

15.
The objective of this study was to benchmark carcasses and muscles from commercially identified fed (animals that were perceived to have been fed an increased plane of nutrition before slaughter) and nonfed cull beef and dairy cows and A-maturity, USDA Select steers, so that the muscles could be identified from cull cow carcasses that may be used to fill a void of intermediately priced beef steaks. Carcass characteristics were measured at 24 h postmortem for 75 carcasses from 5 populations consisting of cull beef cows commercially identified as fed (B-F, n = 15); cull beef cows commercially identified as nonfed (B-NF, n = 15); cull dairy cows commercially identified as fed (D-F, n = 15); cull dairy cows commercially identified as nonfed (D-NF, n = 15); and A-maturity, USDA Select grade steers (SEL, n = 15). Nine muscles were excised from each carcass [m. infraspinatus, m. triceps brachii (lateral and long heads), m. teres major, m. longissimus dorsi (also termed LM), m. psoas major, m. gluteus medius, m. rectus femoris, and m. tensor fasciae latae] and subjected to Warner-Bratzler shear force testing and objective sensory panel evaluation after 14 d of postmortem aging. Carcass characteristics differed (P < 0.05) among the 5 commercially identified slaughter groups for the traits of lean maturity, bone maturity, muscle score, HCW, fat color, subjective lean color, marbling, ribeye area, 12th-rib fat thickness, and preliminary yield grade. Carcasses from commercially identified, fed cull cows exhibited more (P < 0.01) weight in carcass lean than did commercially identified, nonfed cull cows. There was a group x muscle interaction (P = 0.02) for Warner-Bratzler shear force. Warner-Bratzler shear force and sensory overall tenderness values demonstrates that muscles from the SEL group were the most tender (P < 0.01), whereas muscles from the B-NF group were the least tender (P < 0.01). Sensory, beef flavor intensity was similar (P > 0.20) among cull cow carcass groups and more intense (P < 0.01) than the SEL carcass group. Muscles from the SEL group exhibited less (P < 0.01) detectable off-flavor than the cull cow carcass groups, whereas the B-NF group exhibited the most (P < 0.01) detectable off-flavor. Although carcass and muscle quality from commercially identified, fed, cull beef and dairy cows was not similar to A-maturity, USDA Select beef, they did show improvements when compared with nonfed, cull, beef and dairy cow carcasses and muscles.  相似文献   

16.
Experiments were conducted to compare the effects of two cookery methods, two shear force procedures, and sampling location within non-callipyge and callipyge lamb LM on the magnitude, variance, and repeatability of LM shear force data. In Exp. 1, 15 non-callipyge and 15 callipyge carcasses were sampled, and Warner-Bratzler shear force (WBSF) was determined for both sides of each carcass at three locations along the length (anterior to posterior) of the LM, whereas slice shear force (SSF) was determined for both sides of each carcass at only one location. For approximately half the carcasses within each genotype, LM chops were cooked for a constant amount of time using a belt grill, and chops of the remaining carcasses were cooked to a constant endpoint temperature using open-hearth electric broilers. Regardless of cooking method and sampling location, repeatability estimates were at least 0.8 for LM WBSF and SSF. For WBSF, repeatability estimates were slightly higher at the anterior location (0.93 to 0.98) than the posterior location (0.88 to 0.90). The difference in repeatability between locations was probably a function of a greater level of variation in shear force at the anterior location. For callipyge LM, WBSF was higher (P < 0.001) at the anterior location than at the middle or posterior locations. For non-callipyge LM, WBSF was lower (P < 0.001) at the anterior location than at the middle or posterior locations. Consequently, the difference in WBSF between callipyge and non-callipyge LM was largest at the anterior location. Experiment 2 was conducted to obtain an estimate of the repeatability of SSF for lamb LM chops cooked with the belt grill using a larger number of animals (n = 87). In Exp. 2, LM chops were obtained from matching locations of both sides of 44 non-callipyge and 43 callipyge carcasses. Chops were cooked with a belt grill and SSF was measured, and repeatability was estimated to be 0.95. Repeatable estimates of lamb LM tenderness can be achieved either by cooking to a constant endpoint temperature with electric broilers or cooking for a constant amount of time with a belt grill. Likewise, repeatable estimates of lamb LM tenderness can be achieved with WBSF or SSF. However, use of belt grill cookery and the SSF technique could decrease time requirements which would decrease research costs.  相似文献   

17.
18.
Four experiments were conducted in two commercial packing plants to evaluate the effectiveness of a commercial online video image analysis (VIA) system (the Computer Vision System equipped with a BeefCam module [CVS BeefCam]) to predict tenderness of beef steaks using online measurements obtained at chain speeds. Longissimus muscle (LM) samples from the rib (Exp. 1, 2, and 4) or strip loin (Exp. 3) were obtained from each carcass and Warner-Bratzler shear force (WBSF) was measured after 14 d of aging. The CVS BeefCam output variable for LM area, adjusted for carcass weight (cm2/kg), was correlated (P < 0.05) with WBSF values in all experiments. The CVS BeefCam lean color measurements, a* and b*, were effective (P < 0.05) in all experiments for segregating carcasses into groups that produced LM steaks differing in WBSF values. Fat color measurements by CVS BeefCam were usually ineffective for segregating carcasses into groups differing in WBSF values; however, in Exp. 4, fat b* identified a group of carcasses that produced tough LM steaks. Quality grade factors accounted for 3, 18, 21, and 0% of the variation in WBSF among steaks in Exp. 1 (n = 399), 2 (n = 195), 3 (n = 304), and 4 (n = 184), respectively, whereas CVS BeefCam output variables accounted for 17, 30, 19, and 6% of the variation in WBSF among steaks in Exp. 1, 2, 3, and 4, respectively. A multiple linear regression equation developed with data from Exp. 2 accurately classified carcasses in Exp. 1 and 4 and thereby may be useful for decreasing the likelihood that a consumer would encounter a tough (WBSF > 4.5 kg) LM steak in a group classified as "tender" by CVS BeefCam compared with an unsorted population. Online measurements of beef carcasses by use of CVS BeefCam were useful for predicting the tenderness of beef LM steaks, and sorting carcasses using these measurements could aid in producing groups of beef carcasses with more uniform LM steak tenderness.  相似文献   

19.
20.
Cattle (n = 303) were visually selected from four feed yards to represent six phenotypes (English [EN; n = 50], 3/4 English-1/4 Brahman [ENB; n = 52], 1/2 English-1/2 Exotic [ENEX; n = 56], 1/2 English-1/4 Exotic-1/4 Brahman [ENEXB; n = 47], 3/4 Exotic-1/4 Brahman [EXB; n = 49], and 1/2 Exotic-1/4 English-1/4 Brahman [EXENB; n = 49]). Carcasses were processed at a commercial beef packing facility, and strip loins were collected after 48-h chilling. Strip loins were aged for 14 d at 2 degrees C and frozen at -20 degrees C for 3 to 5 d before three 2.5-cm-thick steaks were cut for Warner-Bratzler shear force (WBSF) determinations and sensory evaluations. Phenotype EN had the highest (P < 0.05) adjusted fat thickness, and EXB had adjusted fat thickness that was lower (P < 0.05) than all other phenotypes except EXENB. Carcasses of EN and ENB had smaller (P < 0.05) longissimus muscle areas than phenotypes ENEX, EXB, and EXENB. Phenotype EN produced carcasses with the highest (P < 0.05) numerical yield grade, whereas carcasses originating from phenotype EXB had lower (P < 0.05) numerical yield grades than all other phenotypes except ENEX. No differences (P > 0.05) were found among phenotypes for mean WBSF values or sensory panel ratings for initial and sustained tenderness, initial and sustained juiciness, beef flavor characteristics, and overall mouthfeel. More than 90% of steaks from carcasses of all phenotypes had WBSF values less than 3.6 kg when cooked to an internal cooked temperature of 70 degrees C. Results from this study indicated that all phenotypes represented in this study could be managed to produce tender beef.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号