首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
碘甲磺隆钠盐在水溶液中的光解研究   总被引:1,自引:0,他引:1  
为了解碘甲磺隆钠盐在水溶液中的光降解特性,评价其环境安全性,以太阳光和高压汞灯为光源,进行光解试验,研究了碘甲磺隆钠盐在不同水溶液中的光解行为及水体pH值对其光解的影响.结果表明,碘甲磺隆钠盐在所有试验水体中的降解均符合一级动力学方程,不同水体中碘甲磺隆钠盐的半衰期分别为14.29~21.26 h(太阳光)与2.29~3.76 min(高压汞灯),两种光源下碘甲磺隆钠盐在各自然水体中的降解速率依次为井水>河水>池塘水>稻田水.不同pH值水体中的光解实验表明,碘甲磺隆钠盐在酸性介质中的光解比在碱性介质中快,顺序为pH5>pH7>pH9>pH11.  相似文献   

2.
    通过HPLC测定土壤中甲磺隆残余浓度,研究甲磺隆驯化/未驯化的小麦根际/非根际土壤中甲磺隆的降解规律.结果表明:土壤中甲磺隆的降解遵循一级反应动力学模型.降解速率常数约为0.0370.020 d-1,半衰期约为18.7~34.7 d.种植过小麦的土壤极大地促进了甲磺隆降解,根际与非根际土壤中甲磺隆降解速率常数差异显著,各处理均达到了0.05的差异显著水平.甲磺隆驯化提高了土壤中微生物对甲磺隆的降解能力,第20 d,驯化土壤中甲磺隆去除率高出对照土壤约6%~12%.土壤中甲磺隆浓度越低,其降解速率越快.这为利用植物根际加快土壤中磺酰脲类除草剂的降解研究提供了理论依据.  相似文献   

3.
噻吩磺隆在小麦和土壤中的残留降解动态研究   总被引:1,自引:0,他引:1  
为探明噻吩磺隆在小麦上使用后的残留降解动态,评价其安全性,2005年和2006年分别在湖南省浏阳市城关镇和长沙县黄花镇进行了噻吩磺隆在小麦植株和土壤中的残留降解动态试验.试验结果表明,在施药37.13 g/hm2时,浏阳市城关镇试验点噻吩磺隆在小麦植株和土壤中的降解动态方程分别为y=8.917 2 e-0.195 9 t和y=0.796 2 e-0.317 4 t,半衰期分别为3.54 d和2.18 d;长沙县黄花镇试验点噻吩磺隆在小麦植株和土壤中的降解动态方程分别为y = 0.727 7 e-0.190 9 t和y =0.623 e-0.388 1 t,半衰期分别为3.63 d和1.79 d.噻吩磺隆在小麦植株和土壤中都能迅速降解,在土壤中的降解速率更快,施药7 d后噻吩磺隆的消失率达到90%以上.  相似文献   

4.
环境样品中碘甲磺隆钠盐残留量的高效液相色谱分析   总被引:1,自引:0,他引:1  
采用高效液相色谱仪,研究了环境样品中碘甲磺隆钠盐残留量的分析方法。样品用二氯甲烷提取,液-液分配结合柱层析净化,高效液相色谱法测定。不同浓度水平的添加回收率试验结果表明,当碘甲磺隆钠盐的添加水平在0.01~1.00mg·kg-1时,加标回收率为81.24%~99.77%,变异系数为2.08%~13.41%。给定色谱条件下的线性范围为0.06~6.00μg·mL,对20.00g样品,最小检出浓度为0.003mg·kg-1,且灵敏度、准确度和精密度均符合农药残留分析的要求。  相似文献   

5.
6.
贺红周  刘建兴  李伟 《安徽农业科学》2012,40(3):1483-1484,1486
[目的]建立除草剂甲基二磺隆.甲基碘磺隆钠盐3.6%水分散粒剂的高效液相色谱(HPLC)分析方法。[方法]采用HPLC,用ZORBAX Eclipse XDB-C8柱(4.6 mm×150.0 mm,5μm)和二极管阵列检测器对除草剂甲基二磺隆.甲基碘磺隆钠盐3.6%水分散粒剂中的有效成分同时进行了定性定量分析。[结果]该方法在0.125~2.000 mg/ml范围内测定甲基二磺隆的线性回归方程为:y=14 330x-1 056.5,R2=0.999 2,线性关系良好,标准偏差为0.009 0(n=5),变异系数为0.286%,样品平均加标回收率为99.97%;在0.050~0.800 mg/ml范围内测定甲基碘磺隆钠盐的线性回归方程为:y=20 574x+14.417,R2=0.999 8,线性关系良好,标准偏差为0.002 4(n=5),变异系数为0.371%,样品平均加标回收率为100.19%。[结论]该方法的准确度和精密度能够满足产品质量分析的要求,可用于产品质量的检测分析。  相似文献   

7.
土壤中降解甲磺隆除草剂的微生物的分离与筛选   总被引:11,自引:0,他引:11  
以甲磺隆为唯一碳源,从经甲磺隆驯化的华家池潮土分离到细菌4株,真菌9株和放线菌20株。根据分离微生物的最大忍耐浓度和甲磺隆降解速率,筛选出其中的最优菌株F7(简称优选菌株),并初步鉴定为青霉属(Penicillium sp.)。  相似文献   

8.
高新  杨仁斌  杨周宁  傅强 《现代农业科技》2011,(10):265-266,270
采用高效液相色谱(HPLC)测定了三氟啶磺隆钠盐在甘蔗及土壤中的消解动态和最终残留。样品用甲醇提取,二氯甲烷萃取,弗罗里硅土柱净化,高效液相色谱仪检测定量。结果表明:该方法回收率为81.12%~96.20%;变异系数为2.39%~5.86%。仪器最小检出量为0.4 ng,最小检出浓度:甘汁和甘叶为0.025 mg/kg,土壤为0.012 5 mg/kg。三氟啶磺隆钠盐在甘蔗叶和土壤中消解较快,其半衰期分别为3.26~5.41 d和7.19~8.51 d。药后120 d降解率:植株>99.5%,土壤>97.3%。我国尚未制定三氟啶黄隆钠盐在甘蔗上的MRL值,参照美国规定磺酰脲类除草剂敌草隆在甘蔗中的最大残留限量为0.5 mg/kg,在我国南方蔗区,按照推荐剂量施药1次,药后120 d(成熟时)收获是安全的。  相似文献   

9.
10.
11.
利用气相色谱仪建立了土壤中乙羧氟草醚残留量的分析检测方法,并在实验室条件下研究了其在河南潮土、吉林黑土、江西红壤中的降解动态,为其环境和生态安全性评价提供重要的科学依据。结果表明:①土壤中的乙羧氟草醚残留物用丙酮-乙酸乙酯(1∶2,V/V)混合液提取,经弗罗里硅土SPE柱净化,浓缩后用气相色谱仪(带63Ni-ECD)进行检测;当添加浓度为0.01、0.05、0.5mg.kg-1时,添加回收率为86.9%~98.3%,标准偏差为1.50%~9.99%,最低检出量为1×10-12g,最低检出浓度为0.01mg.kg-1。②乙羧氟草醚在3种不同类型的土壤中降解速率大小依次为河南潮土>吉林黑土>江西红壤,降解速率常数分别为9.92×10-2、6.42×10-2和2.89×10-2,降解半衰期分别为7.0、10.8和24.0h,符合一级动力学方程。土壤pH值对乙羧氟草醚的降解有显著影响,乙羧氟草醚在碱性土壤中降解较快,在酸性土壤中降解较慢。根据国内农药在土壤中的残留性划分标准,乙羧氟草醚为易降解农药。  相似文献   

12.
不同土壤中苯噻草胺的微生物降解   总被引:7,自引:0,他引:7  
研究了除草剂苯噻草胺在不同土壤中的降解。结果表明,有机质含量低的土壤中微生物降解是其消失的主要因素,有机质含量高的黑土中吸附结合是其消失的主要因素。水田条件下苯噻草胺消失速率比旱田条件下快,但消失类型不同。被吸附的农药在解吸前不参与微生物降解,土壤有机质含量影响苯噻草胺的实际降解速率。提出反 S型函数模型更好地拟合农药在土壤中的消失动态。  相似文献   

13.
磺胺类药物在土壤中的微生物降解   总被引:9,自引:1,他引:9  
通过室内模拟降解试验,研究了6种磺胺类药物在砂土中的微生物降解,并考察了土壤类型、浓度和温度对磺胺嘧啶降解的影响。结果表明,实验范围内磺胺嘧啶在土壤中降解的较佳条件为:砂土、308.15K和25mg·kg^-1。6种磺胺类药物在砂土中的微生物降解均较慢,其微生物降解速率常数基本上按磺胺对甲氧嘧啶、磺胺甲恶唑、磺胺二甲氧嘧啶、磺胺间甲氧嘧啶、磺胺嘧啶和磺胺二甲基嘧啶的顺序依次减小。磺胺类药物在砂土中的降解主要是由水解和化学降解等非生物降解作用引起的,而由微生物引起的降解作用则较小,这主要与其较强的抑菌性有关。  相似文献   

14.
壬基酚在土壤中的降解和吸附特性   总被引:3,自引:1,他引:3       下载免费PDF全文
采用室内模拟试验,研究了壬基酚(NP)在3种土壤中的降解和吸附特性。结果表明,NP在土壤中的降解分为快速和慢速降解阶段,半衰期分别为6.74~9.72d和70.02~78.77d。降解前期3种土壤中的降解速率相差较大,依次为黑龙江黑土>北京潮土>广西红壤,与土壤有机质含量相一致,随培养时间推移,降解速率差异减小。NP在土壤中具有不同结合状态及异构体降解性不同可能是出现慢速降解阶段的主要原因。土壤对NP的吸附较为符合Linear等温吸附方程(r≥0.9686),黑龙江黑土、北京潮土和广西红壤中吸附常数Kd值分别为65.52、31.66和32.71,黑龙江黑土对NP的吸附最强,广西红壤和北京潮土的吸附能力较为接近。各土壤理化性质参数中,以土壤有机质含量对NP吸附的影响最大(r=0.9950),阳离子交换量对吸附也有一定影响,粘粒含量和pH对吸附的影响较小。NP在3种土壤中的有机碳吸附常数KOC在3696.22~4334.51之间,移动性很弱,吸附自由能变化均小于40kJ·mol-1,NP在土壤中的吸附以物理吸附为主。  相似文献   

15.
三唑磷农药在土壤中的降解与吸附特性研究   总被引:14,自引:3,他引:11  
采用室内模拟试验方法,研究了三唑磷在3种不同类型土壤中的降解特性、吸附特性及其影响因素,分析了该农药对地下水的污染风险性。结果表明,三唑磷在江西红壤、河南二合土和东北黑土等3种土壤中的降解半衰期分别为28.3、3.75和3.28d,降解速率依次为东北黑土>河南二合土>江西红壤,均具易降解性。3种土壤对三唑磷的吸附常数Kf分别为10.0、2.17、6.70,河南二合土对三唑磷的吸附性最弱。对于三唑磷农药,影响土壤吸附性的主要因素为土壤质地,其次为土壤有机质,此外,水溶解度也是重要因素。综合考虑农药水溶解度、土壤降解与土壤吸附特性,正常施用,三唑磷母体进入地下水造成污染的风险较小。  相似文献   

16.
为了全面系统地了解四螨嗪及其制剂在柑橘园使用后四螨嗪的残留降解情况,于2009~2010年在湖南、浙江和贵州三地通过田间试验,借助HPLC分析技术,研究了四螨嗪在柑橘园的降解动态。结果表明:四螨嗪在柑橘全果和土壤中的降解速度基本相同;四螨嗪在柑橘园土壤中的降解半衰期在7.13 d~8.73 d之间,平均值为7.79 d。四螨嗪在柑橘全果中的降解半衰期在5.74 d~7.83 d之间,平均值为6.95 d。按照《化学农药环境安全评价实验准则》中划分的标准,可知四螨嗪为低残留、易降解的农药,在柑橘园中使用是安全的。  相似文献   

17.
采用HPLC在室内条件下对红黄泥、潮沙泥和紫泥田3种不同类型水稻土中双草醚的残留消解动态进行了研究。结果表明,双草醚在3种水稻土中的降解符合一级动力学方程C=C0e-kt。未灭菌土壤中双草醚的平均降解半衰期分别为9.02、19.52、26.91d。分析认为,土壤微生物和pH值是影响双草醚降解的主要因素。土壤灭菌处理大大降低了双草醚的降解速率,且灭菌土中双草醚的滞留性还受农药浓度的影响,处理浓度高则半衰期长。  相似文献   

18.
乙草胺在土壤环境中的降解及其影响因子的研究   总被引:19,自引:1,他引:19  
采用实验室模拟方法研究了乙草胺在不同土壤中的降解动态。结果表明,在未灭菌的土壤中,乙草胺3种添加浓度(1.25、2.5和5.0mg·kg-1)处理的半衰期为2.8~5.1d,远远小于在灭菌土壤中3种添加浓度处理的半衰期(20.0~25.1d);乙草胺在偏碱的华北褐土中降解较快,2.5mg·kg-1处理的半衰期为4.2d,而在偏酸的东北黑土和湖南红土中降解较慢,半衰期为6.5~10.7d;土壤相对含水量由13%增至27%,乙草胺降解半衰期由7.3d缩短至3.0d;随着环境温度增高(20℃上升至30℃),乙草胺降解速度加快(半衰期由5.7d缩短至3.3d);乙草胺在黑暗条件下降解半衰期为3.8d,而在光照条件下的半衰期为5.2~6.5d。可见,5种试验因子对土壤中乙草胺的降解均有不同程度的影响。其中土壤微生物是影响乙草胺降解的主要因素,有利于土壤中微生物生长的环境因素,如偏碱的土壤、较高的环境温度和土壤湿度等,对土壤中乙草胺的降解有促进作用。  相似文献   

19.
在(28±1)℃条件下,将Bt蛋白添加到黄褐土、红壤、砖红壤、潮土中,利用EIASA检测土壤的Bt蛋白残留动态,探讨土壤理化性质与Bt蛋白降解的关系.结果表明,Bt蛋白在不同土壤中的残留动态基本一致,分为3个阶段:Bt毒素初期大量释放、前期大量快速降解和中后期极少量稳定降解.其中,Bt蛋白的降解速度为黄褐土潮土红壤≈砖红壤.不同含量的Bt蛋白在同一土壤中降解趋势也各有特点,红壤的残留动态与上述3个阶段趋势一致;而黄褐土虽然也有3个阶段,但残留峰值出现时间不完全一样;砖红壤不完全有以上3个阶段,不同Bt蛋白含量的残留曲线走势特点各异.  相似文献   

20.
乙嘧酚在黄瓜和土壤中的消解动态研究   总被引:3,自引:0,他引:3  
利用高效液相色谱仪及田间试验方法,建立了乙嘧酚在黄瓜和土壤中的残留分析方法,研究了乙嘧酚在黄瓜和土壤中的残留消解动态,对影响残留分析方法的主要参数进行了优化.黄瓜和土壤样品分别用乙腈和丙酮提取,硅胶柱净化,高效液相色谱仪二极管阵列检测器检测,外标法定量.结果表明,该方法的最小检出量为3.5×10-10g,在黄瓜和土壤中的最低检测浓度分别为0.010和0.005 mg·kg~(-1).乙嘧酚的平均添加回收率为80.5%~103.1%,变异系数为2.10%~3.74%.消解动态试验表明,乙嘧酚的残留量随时间延长而降低,消解动态曲线符合一级动力学方程,在黄瓜和土壤中的半衰期分别为3.5和9.9 d,属于易降解性农药化合物.乙嘧酚在黄瓜中消解速率高于其在土壤中的消解速率,这可能是由于黄瓜生长稀释作用导致的.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号