首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Phenol oxidase, peroxidase and organic matter dynamics of soil   总被引:2,自引:0,他引:2  
Extracellular enzymes mediate the degradation, transformation and mineralization of soil organic matter. The activity of cellulases, phosphatases and other hydrolases has received extensive study and in many cases stoichiometric relationships and responses to disturbances are well established. In contrast, phenol oxidase and peroxidase activities, which are often uncorrelated with hydrolase activities, have been measured in only a small subset of soil enzyme studies. These enzymes are expressed for a variety of purposes including ontogeny, defense and the acquisition of carbon and nitrogen. Through excretion or lysis, these enzymes enter the environment where their aggegrate activity mediates key ecosystem functions of lignin degradation, humification, carbon mineralization and dissolved organic carbon export. Phenol oxidases and peroxidases are less stable in the environment than extracellular hydrolases, especially when associated with organic particles. Activities are also affected, positively and negatively, by interaction with mineral surfaces. High spatiotemporal variation obscures their relationships with environmental variables and ecological process. Across ecosystems, phenol oxidase and peroxidase activities generally increase with soil pH, a finding not predicted from the pH optima of purified enzymes. Activities associated with plant litter and particulate organic matter often correlate with decomposition rates and potential activities generally increase with the lignin and secondary compound content of the material. At the ecosystem scale, nitrogen amendment alters the expression of phenol oxidase and peroxidase enzymes more broadly than culture studies imply and these responses correlate with positive and negative changes in litter decomposition rates and soil organic matter content. At the global scale, N amendment of basidiomycete-dominated soils of temperate and boreal forest ecoystems often leads to losses of oxidative enzyme activity, while activities in grassland soils dominated by glomeromycota and ascomycetes show little net response. Land use that leads to loss of soil organic matter tends to increase oxidative activities. Across ecosystems, soil organic matter content is not correlated with mean potential phenol oxidase and peroxidase activities. A multiple regression model that includes soil pH, mean annual temperature, mean annual precipitation and potential phenol oxidase activity accounts for 37% of the variation in soil organic matter (SOM) content across ecosystems (n = 63); a similar model for peroxidase activity describes 32% of SOM variance (n = 43). Analysis of residual variation suggest that suites of interacting factors create both positive and negative feedbacks on soil organic matter storage. Soils with high oxygen availability, pH and mineral activity tend to be substrate limited: high in situ oxidative activities limit soil organic matter accumulation. Soils with opposing characteristics are activity limited: low in situ oxidative activities promote soil organic matter storage.  相似文献   

2.
The heat generated during wildfires often leads to increases in soil water repellency. Above a critical heating threshold, however, its destruction occurs. Although the temperature thresholds for repellency destruction are relatively well established, little is known about the specific changes in the soil organic matter that are responsible for repellency destruction. Here we report on the analysis of initially water repellent surface soil samples (Dystric Cambisol, 0–5 cm depth) by transmission Fourier Transform Infrared (FTIR) spectroscopy analysis before and after destruction of its water repellency by heating to 225 °C in order to investigate heating-induced changes in soil organic matter (SOM) composition. Although assignment of absorption bands is made difficult by overlapping of some bands, it was possible to distinguish bands relevant for hydrophobicity of SOM in the soil before heat treatment. The most significant decrease in absorbance following water repellency destruction took place in the frequency area corresponding to stretching vibrations of aliphatic structures within SOM. The results suggest that besides a general decrease of SOM content during heating, the loss of soil water repellence is primarily caused by the selective degradation of aliphatic structures.  相似文献   

3.
Humic substances [humic acid (HA), fulvic acid (FA), and insoluble humin], particulate organic matter (POM), and glomalin comprise the majority (ca 75%) of operationally defined extractable soil organic matter (SOM). The purpose of this work was to compare amounts of carbon (C) and nitrogen (N) in HA, FA, POM, and glomalin pools in six undisturbed soils. POM, glomalin, HA, and FA in POM, and glomalin, HA, and FA in POM-free soil were extracted in the following sequence: (1) POM fraction separation from the soil, (2) glomalin extraction from the POM fraction and POM-free soil, and (3) co-extraction of HA and FA from the POM fraction and POM-free soil. Only trace amounts of HA and FA were present in the POM fraction, while POM-associated glomalin (POM-glomalin) and POM alone contributed 2 and 12%, respectively, of the total C in the soil. Mean combined weights for chemically extracted pools from POM and from POM-free soil were 9.92 g glomalin, 1.12 g HA, and 0.88 g FA kg−1 soil. Total protein and C, N, and H concentrations showed that glomalin and HA were, for the most part, separate pools, although protein was detected in HA extracts. Even though percentage carbon was higher in HA than in glomalin, glomalin was a larger (almost nine times) operationally defined pool of soil organic C. Glomalin was also the largest pool of soil N of all the pools isolated, but all pools combined only contained 31% of the total N in the soil.  相似文献   

4.
 A detailed size separation of particulate organic matter (POM) from soils amended with straw from Hordeum vulgare or Vicia sativa revealed that the loss of C during the first 56 days of incubation mainly occurred from particles >2,000 μm, without a concomitant reduction in the size of these large particles. Preliminary studies of POM from non-amended soil had shown that the stable heavy (>1.4 g cm–3) POM fraction was mainly (>80%) composed of particles <400 μm, whereas the light fraction was dominated by larger particles (>80%). Therefore we decided to compare the POM <1.4 g cm3 with POM >400 μm. There was a very close relationship between POM>400 μm and POM <1.4 g cm–3 with regard to amounts of C and N, as well as the appearance of these fractions under the microscope. Similarly there was a close relationship between changes in the C content of the POM fractions and the CO2 respired, and this was also the case when comparing changes in POM-N with net N mineralization. This indicated that the biological activity during decomposition was actually localized in the POM. Due to the lighter workload and lower expenditure for reagents in connection with size separation of POM, we recommend the size separation procedure in connection with studies of residue decomposition in arable systems. Received: 23 May 2000  相似文献   

5.
Yield decline or stagnation and its relationship with soil organic matter fractions in soybean (Glycine max L.)–wheat (Triticum aestivum L.) cropping system under long-term fertilizer use are not well understood. To understand this phenomenon, soil organic matter fractions and soil aggregate size distribution were studied in an Alfisol (Typic Haplustalf) at a long-term experiment at Birsa Agricultural University, Ranchi, India. For 30 years, the following fertilizer treatments were compared with undisturbed fallow plots (without crop and fertilizer management): unfertilized (control), 100% recommended rate of N, NP, NPK, NPK+ farmyard manure (FYM) and NPK + lime. Yield declined with time for soybean in control (30 kg ha−1 yr−1) and NP (21 kg ha−1 yr−1) treatments and for wheat in control (46 kg ha−1 yr−1) and N (25 kg ha−1 yr−1) treatments. However, yield increased with time for NPK + FYM and NPK + lime treatments in wheat. At a depth of 0–15 cm, small macroaggregates (0.25–2 mm) dominated soil (43–61%) followed by microaggregates (0.053–0.25 mm) with 13–28%. Soil microbial biomass carbon (SMBC), nitrogen (SMBN) and acid hydrolysable carbohydrates (HCH) were greater in NPK + FYM and NPK + lime as compared to other treatments. With three decades of cultivation, C and N mineralization were greater in microaggregates than in small macroaggregates and relatively resistant mineral associated organic matter (silt + clay fraction). Particulate organic carbon (POC) and nitrogen (PON) decreased significantly in control, N and NP application over fallow. Results suggest that continuous use of NPK + FYM or NPK + lime would sustain yield in a soybean–wheat system without deteriorating soil quality.  相似文献   

6.
Soil physical structure causes differential accessibility of soil organic carbon (SOC) to decomposer organisms and is an important determinant of SOC storage and turnover. Techniques for physical fractionation of soil organic matter in conjunction with isotopic analyses (δ13C, δ15N) of those soil fractions have been used previously to (a) determine where organic C is stored relative to aggregate structure, (b) identify sources of SOC, (c) quantify turnover rates of SOC in specific soil fractions, and (d) evaluate organic matter quality. We used these two complementary approaches to characterize soil C storage and dynamics in the Rio Grande Plains of southern Texas where C3 trees/shrubs (δ13C=−27‰) have largely replaced C4 grasslands (δ13C=−14‰) over the past 100-200 years. Using a chronosequence approach, soils were collected from remnant grasslands (Time 0) and from woody plant stands ranging in age from 10 to 130 years. We separated soil organic matter into specific size/density fractions and determined their C and N concentrations and natural δ13C and δ15N values. Mean residence times (MRTs) of soil fractions were calculated based on changes in their δ13C with time after woody encroachment. The shortest MRTs (average=30 years) were associated with all particulate organic matter (POM) fractions not protected within aggregates. Fine POM (53-250 μm) within macro- and microaggregates was relatively more protected from decay, with an average MRT of 60 years. All silt+clay fractions had the longest MRTs (average=360 years) regardless of whether they were found inside or outside of aggregate structure. δ15N values of soil physical fractions were positively correlated with MRTs of the same fractions, suggesting that higher δ15N values reflect an increased degree of humification. Increased soil C and N pools in wooded areas were due to both the retention of older C4-derived organic matter by protection within microaggregates and association with silt+clay, and the accumulation of new C3-derived organic matter in macroaggregates and POM fractions.  相似文献   

7.
During the first few days after rewetting of an air-dried soil (AD-RW), microbial activity increases compared to that in the original moist soil, causing increased mineralisation (a flush) of soil organic carbon (C) and other nutrients. The AD-RW flush is believed to be derived from the enhanced mineralisation of both non-biomass soil organic matter (due to its physical release and enhanced availability) and microbial biomass killed during drying and rewetting. Our aim was to determine the effects of AD-RW on the mineralisation of soil organic matter and microbial biomass during and after repeated AD-RW cycles and to quantify their proportions in the CO2-C flushes that resulted. To do this, a UK grassland soil was amended with 14C-labelled glucose to label the biomass and then given five AD-RW cycles, each followed by 7 d incubation at 25 °C and 50% water holding capacity. Each AD-RW cycle increased the amount of CO2-C evolved (varying from 83 to 240 μg g−1 soil), compared to the control with, overall, less CO2-C being evolved as the number of AD-RW cycles increased. In the first cycle, the amount of biomass C decreased by 44% and microbial ATP by 70% while concentrations of extractable C nearly doubled. However, all rapidly recovered and within 1.3 d after rewetting, biomass C was 87% and ATP was 78% of the initial concentrations measured prior to air-drying. Similarly, by 2 d, extractable organic C had decreased to a similar concentration to the original. After the five AD-RW cycles, the amounts of total and 14C-labelled biomass C remaining in the soil accounted for 60 and 40% of those in the similarly incubated control soil, respectively. Soil biomass ATP concentrations following the first AD-RW cycle remained remarkably constant (ranging from about 10 to 14 μmol ATP g−1 biomass C) and very similar to the concentration in the fresh soil prior to air-drying. We developed a simple mathematical procedure to estimate the proportion of CO2-C derived from biomass C and non-biomass C during AD-RW. From it, we estimate that, over the five AD-RW cycles, about 60% of the CO2-C evolved came from mineralisation of non-biomass organic C and the remainder from the biomass C itself.  相似文献   

8.
Dissolved organic matter (DOM) plays a fundamental role for many soil processes. For instance, production, transport, and retention of DOM control properties and long-term storage of organic matter in mineral soils. Production of water-soluble compounds during the decomposition of plant litter is a major process providing DOM in soils. Herein, we examine processes causing the commonly observed increase in contribution of aromatic compounds to WSOM during litter decomposition, and unravel the relationship between lignin degradation and the production of aromatic WSOM. We analysed amounts and composition of water-soluble organic matter (WSOM) produced during 27 months of decomposition of leaves and needles (ash, beech, maple, spruce, pine). The contribution of aromatic compounds to WSOM, as indicated by the specific UV absorbance of WSOM, remained constant or increased during decomposition. However, the contribution of lignin-derived compounds to the total phenolic products of 13C-labelled tetramethylammonium hydroxide (13C-TMAH) thermochemolysis increased strongly (by >114%) within 27 months of decomposition. Simultaneous changes in contents of lignin phenols in solid litter residues (cupric oxide method as well as 13C-TMAH thermochemolysis) were comparably small (−39% to +21% within 27 months). This suggests that the increasing contribution of lignin-derived compounds to WSOM during decomposition does not reflect compositional changes of solid litter residues, but rather the course of decomposition processes. In the light of recently published findings, these processes include: (i) progressive oxidative alteration of lignin that results in increasing solubility of lignin, (ii) preferential degradation of soluble, non-lignin compounds that limits their contribution to WSOM during later phases of decomposition.  相似文献   

9.
Soil organic matter (SOM) is the dominant store of nutrients required for plant growth, but the availability of these nutrients is dependent on transformations mediated by the microbial biomass. The addition of labile C to soil is known to alter SOM turnover (priming effect, PE), but understanding of this is limited, particularly with respect to impact on gross nitrogen (N) fluxes. Here we examined relationships between C and N fluxes from SOM under primed and non-primed conditions in two soils. Stable isotopes (13C and 15N) were used to measure gross C and N fluxes from SOM and to differentiate between SOM mineralised due to priming and that from basal mineralisation. 13C-glucose was added daily to simulate the effect of addition of labile C on SOM-C and –N mineralisation within the rhizosphere. Addition of glucose increased both gross N and C mineralisation from SOM. However, the C-to-N ratio of the mineralised flux from ‘primed’ SOM was 5:1, whereas the C-to-N ratio of the basal mineralised flux was 20:1 indicating that priming acted on specific organic matter pools. This result is consistent with the concept that priming is a distinct N-mining response of the microbial biomass, as opposed to an acceleration of the basal flux. Our data suggest that C and N fluxes are not directly linked through their gross stoichiometry in SOM. This is due to the heterogeneity and overall passiveness of OM relative to the dynamic nature of mineralisation fluxes and source pools, and in primed systems the mineralisation of N-rich compounds.  相似文献   

10.
The net annual exchange of carbon between the atmosphere and terrestrial ecosystems is of prime importance in determining the concentration of CO2 ([CO2]) in the atmosphere and consequently future climate. Carbon loss occurs primarily through soil respiration; it is known that respiration is sensitive to the global changes in [CO2] and temperature, suggesting that the net carbon balance may change in the future. However, field manipulations of temperature and [CO2] alter many important environmental factors so it is unclear how much of the observed alterations in soil respiration is due to changes of microbial function itself instead of changes to the physical and chemical environment. Here we focus on resolving the importance of changes in the microbial community in response to warming and elevated [CO2] on carbon mineralisation, something not possible in field measurements. We took plant material and soil inocula from a long running experiment where native grassland had been exposed to both warming and elevated CO2 and constructed a reciprocal transplant experiment. We found that the rate of decomposition (heterotrophic respiration) was strongly determined by the origin of the microbial community. The combined warming + elevated CO2 treatment produced a soil community that gave respiration rates 30% higher when provided with shoot litter and 70% for root litter than elevated CO2 treatment alone, with the treatment source of the litter being unimportant. Warming, especially in the presence of elevated CO2, increased the size of the apparent labile carbon pool when either C3 or C4 litter was added. Thus, the metabolic activity of the soil community was affected by the combination of warming and elevated CO2 such that it had an increased ability to mineralise added organic matter, regardless of its source. Therefore, soil C efflux may be substantially increased in a warmer, high CO2 world. Current ecosystem models mostly drive heterotrophic respiration from plant litter quality, soil moisture and temperature but our findings suggest equal attention will need to be paid to capturing microbial processes if we are to accurately project the future C balance of terrestrial ecosystems and quantify the feedback effect on atmospheric concentrations of CO2.  相似文献   

11.
Tillage has been reported to reduce organic matter concentrations and increase organic matter turnover rates to a variable extent. The change of soil climate and the incorporation of aboveground C inputs within the soil lead to no unique effect on biodegradation rates, because of their strong interaction with the regional climate and the soil physical properties. The periodical perturbation of soil structure by tools and the subsequent drying–rewetting cycles may be the major factor increasing organic matter decomposition rates by exposing the organic matter that is physically protected in microaggregates to biodegradation. This paper reviews the assessed effects of tillage on organic matter, the scale, extent and mechanisms of physical protection of organic matter in soils.  相似文献   

12.
The general consensus is that a warming climate will result in the acceleration of soil organic matter (SOM) decomposition, thus acting as a potential positive feedback mechanism. However, the debate over the relative temperature sensitivity of labile versus recalcitrant SOM has not been fully resolved. We isolated acid hydrolysis residues to represent a recalcitrant pool of SOM and particulate organic matter (POM) to represent a labile pool of SOM, and incubated each at different temperatures to determine temperature sensitivity of decomposition. Short-term incubations of POM generated results consistent with published experiments (i.e., greater proportion of C respired and lower Q10 than whole soil), while incubations of acid hydrolysis residues did not. The contrasting results illustrate the difficulty in assessing temperature sensitivity of labile versus stable SOM decomposition, partly because of the inability to quantitatively isolate labile versus stable SOM pools and to be sufficiently certain that respiration responses to temperature are not masked by processes such as enhanced stabilization or microbial inhibition/adaptation. Further study on the temperature sensitivity of decomposition of isolated SOM fractions is necessary to better explain and predict temperature responses of bulk SOM decomposition.  相似文献   

13.
The abandonment of cultivated wetland soil increased the contents of light fraction organic matter (LFOM), heavy fraction organic matter (HFOM) and soil organic matter (SOM). The LFOM and HFOM content increased to 13.3 g kg−1 and 62.4 g kg−1 after 5 years whereas they were 8.4 and 47.9 g kg−1 after 9 years of cropping, respectively. Fourteen years after abandonment, HFOM content increased to 104.3 g kg−1. LFOM was positively correlated with HFOM (p < 0.001). A Langmuir equation was used to calculate the highest HFOM value. The value for the natural wetland soil was closed to this theoretical value (140.8 g kg−1). After 14 years of abandonment, the HFOM maximum (HFOMMax) value was lower than the equilibrium value suggesting that a further increase in HFOM can occur after abandonment. Assuming a linear accumulation (3.87 Mg C ha−1yr−1), it would take approximately 24 years after the abandonment to reach the HFOMMax value.  相似文献   

14.
Dissolved organic matter enhances the sorption of atrazine by soil   总被引:6,自引:0,他引:6  
The influence of dissolved organic matter (DOM) on the sorption of atrazine (2-chloro-4-ethylamino-6-isopylamino-1,3,5-triazine) by ten soils was investigated. Batch sorption isotherm techniques were used to evaluate the important physiochemical properties of soil determining the sorption of atrazine in the presence of DOM. The sorption of atrazine as a representative of nonionic organic contaminants (NOCs) by soil with and without DOM could be well described by the Linear and Freundlich models. The n values of the Freundlich model were generally near to 1, indicating that linear partitioning was the major mechanism of atrazine sorption by soil samples. The apparent distribution coefficient, value, for atrazine sorption in the presence of DOM initially increased and decreased thereafter as the DOM concentration increased in the equilibrium solution. DOM at relatively lower concentrations significantly enhanced the sorption of atrazine by soil, while it inhibited the atrazine sorption at higher concentrations. For all the soil samples, the maximum of was 1.1~3.1 times higher than its corresponding K d value for the control (without DOM). The maximum enhancement of the distribution coefficient () in the presence of DOM was negatively correlated with the content of soil organic carbon (SOC) and positively correlated with the clay content. The critical concentration of DOM, below which DOM would enhance atrazine sorption, was negatively correlated with SOC. The influence of DOM on atrazine sorption could be approximately considered as the net effect of the cumulative sorption and association of atrazine with DOM in solution. Results of this study provide an insight into the retention and mobility of a NOC in the soil environment.  相似文献   

15.
Abstract

Zinc fractions occurring in five wetland soils as a function of organic matter application and soil redox potential were studied under laboratory conditions. The results indicate that a large portion of native or added Zn is bound to the soil mineral component. Exchangeable and organic complexed Zn and Zn bound to amorphous and crystalline sesquioxides were found to be in dynamic equilibrium. Exchangeable and complexed Zn were positively correlated with both native and/or added organic matter, while Zn bound to the amorphous and crystalline sesquioxides were negatively correlated with added organic matter. As soil redox potential decreased, the amount of exchangeable and organic complexed Zn decreased, while Zn bound to the amorphous and crystalline sesquioxides increased. Zinc fractions examined varied, depending upon soil cation exchange capacity, clay and organic carbon content.  相似文献   

16.
Manure application generally increases soil organic matter (SOM) and particulate organic matter (POM) content in soil. Free and occluded POM (fPOM and oPOM) can be quantified by combining density and ultrasonic dispersion approaches, but it remains unclear which fraction of POM is more responsive to manure application, and whether manure treated soils have a more pronounced effect on POM content than unmanured soils (no or chemical fertilizer treated soils). Because neutral sugars in POM can be attributed to either plant- or microbial-derived compounds, we analyzed the pattern and ratio of different neutral sugars to clarify effects of different fertilizations on quality of POM in a study over two decades. Soil samples (0–20 cm) were collected from six fertilization treatments in a 25-year long fertilization experiment including no fertilizer (CK), low manure (M1), high manure (M2), chemical nitrogen, phosphorus and potassium fertilizers (NPK), and combined manure and chemical fertilizers (M1NPK, M2NPK). Our results showed that manure application generally led to higher organic carbon concentrations in bulk soil (M2NPK > M2 > M1NPK > M1 > CK > NPK), fPOM (M2NPK > M2 > M1 > M1NPK > NPK > CK) and oPOM (M1 > M2 > M1NPK > M2NPK > NPK > CK), respectively. As compared with unmanured treatments, manure amendments induced 48, 21 and 107% greater increases on average in neutral sugar concentrations in bulk soil, fPOM and oPOM, respectively. More plant-derived organic compounds were enriched in fPOM than oPOM and bulk soil, and the enrichment was more pronounced in manure treated soils than the unmanured soils. This study suggests that long-term use of manure enhanced microbial routing of specific monosaccharides into different POM fractions. Clearly, manure amendments improved labile SOM content and SOM quality in the Mollisol thus maintaining soil productivity over decades.  相似文献   

17.
A soil organic matter turnover model has been developed to analyse soil carbon (soil organic-C) loss caused by organic matter decomposition and rainfall erosion in soils used for permanent cultivation. It has been used to build up model profiles of five soils, one occurring in temperate and four in tropical regions, on the basis of estimates for ‘natural’ organic matter input. Organic matter input data for different systems of cultivation were used to model the long-term decomposition of soil organic-C in these model profiles. The modelling results show that soil organic matter decomposition in the tropics is three to four times faster than in temperate regions, and that there is a marked influence of soil type and soil climate. Simulated losses of organic-C in the tropical soils, not accounting for erosion are 31 to 50 per cent after 50 years and 43 to 63 per cent after 100 years of continuous cultivation. The simulated loss of soil organic-C when rainfall erosion is also allowed for is 40 to 80 per cent. Erosion caused an extra loss of at least 7 per cent after 100 years. The initial input of charcoal from forest burning is lost through erosion at a rate of 50 to almost 100 per cent, depending on the severity of erosion. The sensitivity of modelling results to variations in input data was also analysed. The losses of soil carbon were also used to calculate the global flux of CO2 from soils. Soils are probably a small but not negligible source of CO2.  相似文献   

18.
Invertebrate control of soil organic matter stability   总被引:17,自引:0,他引:17  
 The control of soil organic matter (SOM) stability by soil invertebrates is evaluated in terms of their impact on the inherent recalcitrance, accessibility to microorganisms, and interaction with stabilizing substances of organic compounds. Present knowledge on internal (ingestion and associated transformations) and external (defecation, constructions) control mechanisms of soil invertebrates is also reviewed. Soil animals contribute to the stabilization and destabilization of SOM by simultaneously affecting chemical, physical, and microbial processes over several orders of magnitude. A very important aspect of this is that invertebrates at higher trophic levels create feedback mechanisms that modify the spatio-temporal framework in which the micro-food web affects SOM stability. Quantification of non-trophic and indirect effects is thus essential in order to understand the long-term effects of soil biota on SOM turnover. It is hypothesized that the activities of invertebrates which lead to an increase in SOM stability partly evolved as an adaptation to the need for increasing the suitability of their soil habitat. Several gaps in knowledge are identified: food selection and associated changes in C pools, differential effects on SOM turnover, specific associations with microorganisms, effects on dissolution and desorption reactions, humus-forming and humus-degrading processes in gut and faeces, and the modification of invertebrate effects by environmental variables. Future studies must not be confined merely to a mechanistic analysis of invertebrate control of SOM stability, but also pay considerable attention to the functional and evolutionary aspects of animal diversity in soil. This alone will allow an integration of biological expertise in order to develop new strategies of soil management which can be applied under a variety of environmental conditions. Received: 6 April 1999  相似文献   

19.
Crop management practices have potential to enhance subsoil C and N sequestration in the southern U.S., but effects may vary with tillage regime and cropping sequence. The objective of this study was to determine the impacts of tillage and soybean cropping sequence on the depth distribution of soil organic C (SOC), dissolved organic C (DOC), and total N after 20 years of treatment imposition for a silty clay loam soil in central Texas. A continuous soybean monoculture, a wheat–soybean doublecrop, and a sorghum–wheat–soybean rotation were established under both conventional (CT) and no tillage (NT). Soil was sampled after soybean harvest and sectioned into 0–5, 5–15, 15–30, 30–55, 55–80, and 80–105 cm depth intervals. Both tillage and cropping intensity influenced C and N dynamics in surface and subsurface soils. No tillage increased SOC, DOC, and total N compared to CT to a 30 cm depth for continuous soybean, but to 55 cm depths for the more intensive sorghum–wheat–soybean rotation and wheat–soybean doublecrop. Averaged from 0 to 105 cm, NT increased SOC, DOC, and total N by 32, 22, and 34%, respectively, compared to CT. Intensive cropping increased SOC and total N at depths to 55 cm compared to continuous soybean, regardless of tillage regime. Continuous soybean had significantly lower SOC (5.3 g kg−1) than sorghum–wheat–soybean (6.4 g kg−1) and wheat–soybean (6.1 g kg−1), and 19% lower total N than other cropping sequences. Dissolved organic C was also significantly higher for sorghum–wheat–soybean (139 mg C kg−1) than wheat–soybean (92 mg C kg−1) and continuous soybean (100 mg C kg−1). The depth distribution of SOC, DOC, and total N indicated treatment effects below the maximum tillage depth (25 cm), suggesting that roots, or translocation of dissolved organic matter from surface soils, contributed to higher soil organic matter levels under NT than CT in subsurface soils. High-intensity cropping sequences, coupled with NT, resulted in the highest soil organic matter levels, demonstrating potential for C and N sequestration for subsurface soils in the southern U.S.  相似文献   

20.
大别山区江子河流域土壤有机质的空间变异   总被引:1,自引:0,他引:1  
韩丹  程先富  谢金红  邓良 《土壤学报》2012,49(2):403-408
土壤有机质(Soil organic matter,SOM)是土壤的重要组成部分,是反映土壤肥力的重要指标,是全球碳循环的重要源和汇,目前已成为土壤学和环境学的研究热点之一[1]。土壤空间异质性是系统的某种属性在空间上的复杂性和变异性,是土壤重  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号