首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Wheat is the second major staple crop, after rice, in India and Pakistan and is also gaining similar importance in Nepal and Bangladesh. Wheat production in South Asia has increased from 15 mt in 1960s to 95.5 mt during 2004–2005. It still needs to grow at the rate of 2–2.5% annually until the middle of 21st century. However, for India, recent estimations have shown a growth requirement of about 1.1%. Although the wheat improvement programs in these countries, with the active collaboration of national agricultural research centers (NARS) and CIMMYT, has made a significant progress, it is a matter of significant concern that wheat production has stagnated for last few years. Since there is little scope for increasing land area under wheat, the major challenge will be to break the yield barrier by pragmatic genetic and developmental approaches. The most serious constraints to wheat production in this region are a host of biotic and abiotic stresses. Although India has not faced any rust epidemic in the last decade, rusts continue to occupy the place of most dangerous pathogen for the region. Among the abiotic stresses, unusual warming trends during grain filling period are causing yield declines, especially in eastern and central India. There are other challenges that are specific to the highly productive rice–wheat cropping system predominant in the Indo-Gangetic plains. The total factor productivity of this system is declining due to depletion of soil organic carbon. Addition of organic matter to soil through green manuring and crop residue recycling, balanced fertilization, integrated nutrient management, diversification of rice-wheat system are some of the possible remedial measures to improve total factor productivity. The international linkages with CIMMYT needs to be strengthened more closely for developing more productive wheat genotypes and thus, achieving wheat targets in the South Asian region.  相似文献   

2.
Isolation distance is the main barrier to crop-to-crop gene-flow. A 3-year study assessed the maximum potential outcrossing under field conditions between two wheat cultivars (Triticum aestivum L.) and between wheat and durum wheat (Triticum turgidum L. var. durum). Outcrossing was measured by seed set on emasculated recipient plants placed at four sides with different distances from a 3 m × 3 m T. aestivum (cultivar Chinese Spring) pollen source. Frequencies of seed set at 0 m distance were 45% (37–56%) for T. aestivum cultivars and 18% (5–30%) with T. turgidum. These values agree with hybridization in non-limiting pollen conditions measured by manual crosses in greenhouse. The number of pollen grains and the outcrossing frequencies decreased at increasing distances influenced by the prevailing wind direction. Under semiarid conditions of this assay, viable pollen was found 14 m from the pollen source, with a maximum distance of 8 m at which cross-pollination decreases below 1%. Ambient conditions affect pollen viability, hybridization and pollen dispersal. Data presented in this paper emphasize the major role played by environmental conditions in outcrossing. Data obtained in one area may therefore not coincide with the prevailing situation in different locations and climates.  相似文献   

3.
Wild emmer, Triticum dicoccoides, the progenitor of cultivated wheat, harbors rich genetic resources for wheat improvement. They include many agronomic traits such as abiotic stress tolerances (salt, drought and heat), biotic stress tolerances (powdery mildew, rusts, and Fusarium head blight), grain protein quality and quantity, and micronutrient concentrations (Zn, Fe, and Mn). In this review, we summarize (1) traits and controlling genes identified and mapped in T. dicoccoides; and (2) the genes transferred to cultivated wheat from T. dicoccoides. These genes, controlling important agronomic traits such as disease resistance, high protein and micronutrient content, should contribute to wheat production and food nutrition. However, most of the rich genetic reservoir in wild emmer remains untapped, highlighting the need for further exploration and utilization for long-term wheat breeding programs.  相似文献   

4.
Roy Johnson 《Euphytica》1992,63(1-2):3-22
Summary This introductory chapter contains some general comments about plant breeding and breeding for disease resistance. The use of disease resistant crop plants is an environmentally favourable method of controlling disease but the process of breeding for disease resistance is subject to several constraints. Among them is the variability of pathogens in relation to host resistance. Some parts of this variation can be resolved into gene-for-gene interactions, but the boundaries within which such interactions can be detected are not sharp. The discussion of this variation is illustrated by reference to some important diseases of wheat, especially yellow rust, septoria and eyespot. The objective of obtaining durable resistance is discussed and some contributions of new genetical and molecular techniques to breeding for resistance are considered. It is suggested that new technology will enhance breeding for disease resistance but that established techniques of plant breeding will remain relevant and important.  相似文献   

5.
Summary Embryogenesis was analyzed in wheat × maize hybrids using paraffin sectioning. Embryogenesis in wheat × maize hybrids is different from that in self-pollinated wheat plants. Development of the embryo is not accompanied by the formation of an endosperm. The endosperm nuclei remain free in the cytoplasm, fail to advance into the cellular stage, and degenerate at a later time. The antipodal cells quickly degenerate in the fertilized ovaries of wheat × maize hybrids similar to self-pollinated ovaries. The antipodal cells remain normal in unpollinated ovaries. The pre-embryo will abort if it is allowed to develop on the plant, because of a nutritional shortage in the absence of an endosperm. Therefore, embryo rescue is necessary for haploid production from a wheat × maize hybrids. Haploid polyembryos were obtained from spikelet culture of wheat × maize hybrids. The formation of polyembryos is due to the cleavage of the pre-embryo and the effect of 2,4-D. The frequency of haploid embryo production and plant regeneration is affected significantly by maize genotypes, but not by wheat genotypes. The concentration of 2,4-D affects only the size of the embryo.  相似文献   

6.
Summary Wild relatives of common wheat, Triticum aestivum, and related species are an important source of disease and pest resistance and several useful traits have been transferred from these species to wheat. C-banding and in situ hybridization analyses are powerful cytological techniques allowing the detection of alien chromatin in wheat. C-banding permits identification of the wheat and alien chromosomes involved in wheat-alien translocations, whereas genomic in situ hybridization analysis allows determination of their size and breakpoint positions. The present review summarizes the available data on wheat-alien transfers conferring resistance to diseases and pests. Ten of the 57 spontaneous and induced wheat-alien translocations were identified as whole arm translocations with the breakpoints within the centromeric regions. The majority of transfers (45) were identified as terminal translocations with distal alien segments translocated to wheat chromosome arms. Only two intercalary wheat-alien transloctions were identified, one induced by radiation treatment with a small segment of rye chromosome 6RL (H25) inserted into the long arm of wheat chromosome 4A, and the other probably induced by homoeologous recombination with a segment derived from the long arm of a group 7 Agropyron elongatum chromosome with Lr19 inserted into the long arm of 7D. The presented information should be useful for further directed chromosome engineering aimed at producing superior germplasm.Contribution No. 96-55-J from the Kansas Experimental Station, Kansas State University, Manhattan, KS 66506-5502, USA.  相似文献   

7.
C. Planchon 《Euphytica》1979,28(2):403-408
Summary Net photosynthesis, transpiration, and resistances to CO2 and water vapour transfer of two cultivars of each of four types (Triticum durum, Triticum aestivum. hexaploid Triticale, octaploid Triticale) were analysed. Hexaploid triticales have the highest net photosynthesis and the best water efficiency. Water efficiency was defined by the CER/transpiration ratio measured under saturating irradiance corresponding to full stomatal opening. Cultivated bread and durum wheat cultivars (Capitole, Champlein, Bidi 17) are characterised by a low CER associated with a large flag leaf area and a high mesophyll resistance. There is a close correlation between CER., flag leaf area, mesophyll resistance and total chlorophyll content.  相似文献   

8.
Summary Changes in nitrogen (N) economy and N to dry matter (DM) relationships were studied for six cultivars of bread wheat (Triticum aestivum L.) released in Argentina at different times between 1912 and 1980. Experiments were performed on two successive years.N partitioning to reproductive organs was changed both at anthesis and at maturity. Grain N yield (GNY) was associated to both total N accumulated and N partitioning. Most of the changes produced by genetic improvement on N economy at maturity could be explained by parallel changes at anthesis. Neither biological N yield (BNY) at anthesis nor BNY at maturity showed any trend with the year of release of the cultivars.Grain N concentration (GNC) showed a negative trend with the year of release, and was inversely correlated to both grain yield (GY) and harvest index (HI). However, GNC was positively and significantly associated with NHI to HI ratio, indicating that the main reason for its behaviour along this century was the dilution of N on non N compounds.The N utilization efficiencies (NUE) for both GY and grain number were positively affected by breeding. Moreover, modern Argentinian cultivars are as efficient as the best cultivars showed by other authors.It is suggested that to increase GNC together with GY, breeders should improve N accumulation at anthesis maintaining high remobilization of vegetative N.  相似文献   

9.
Summary The relationships between the F2, F3, F4 and F5 generations for grain yield were determined using random, pedigreed lines derived from each generation. The lines from two crosses were grown in plots at two sites over two years. In the first year, only F2 and F3 derived lines were available, but in the second year the F2 to F5 were grown.Correlations between lines in one generation and the mean of lines derived from them in a following generation increased as the generations were advanced. Correlations between consecutive generations were higher than those between generations two or three apart. Correlations between F2 and F5 derived lines, which indicate the effectiveness of selecting F2 lines, varied from 0.10 ns to o.49** when lines from both generations were grown in the same environment. Correlations between years of lines from the same or different generations were low and often non-significant.Harvest index was measured on the F2 and F3 derived lines at the one site in the first year. Selection for improvement of grain yield using harvest index was no more effective than selection for yield directly, when considered across years.It is conclued that, while gains in yield can be achieved by selecting for yield in early generations, a foremost consideration needs to be the influence of different sites and years on the effectiveness of selection.  相似文献   

10.
Improving the level and stability of grain yield is the primary objective of wheat breeding programs in the Eastern Gangetic Plains (EGP) of South Asia. A regional wheat trial, the Eastern Gangetic Plains Yield Trial (EGPYT), was initiated by CIMMYT in collaboration with national wheat research programs in Bangladesh, Nepal, and India in 1999–2000 to identify wheat genotypes with high and stable grain yield, disease resistance, and superior agronomic traits for the EGP region. A set of 21 wheat experimental genotypes selected from a regional wheat screening nursery in South Asia, three improved widely grown cultivars (Kanchan, PBW343 and Bhrikuti), and one long-term cultivar (Sonalika) were tested at 9–11 sites in six wheat growing seasons (2000–2005) in the EGP. The 21 experimental genotypes were different in each year, whereas the four check cultivars were common. In each year, one or more of the experimental genotypes showed high and stable grain yield and acceptable maturity, plant height, and disease resistance compared to the check cultivars. Three improved cultivars have already been commercially released in the region through EGPYT and many germplasm lines have been used in the breeding programs as parents. Identification of wheat genotypes with high-grain yield in individual sites and high and stable yield across the EGP region underlines their value for regional wheat breeding programs attempting to improve grain yield and agronomic performance.  相似文献   

11.
Summary Aspects of selection for yield and harvest index were investigated by simulating selection using data from random pedigreed F2, F3, F4 and F5 derived lines from two crosses grown in plots at two sites over two years.Improvement in yield through selection was obtained when the response was measured at the same site and in the same year as the selection. Selecting the best 10 per cent of F2 to F4 derived lines gave F5 derived lines that outyielded random selections by 19 to 53 per cent for one cross and 5 to 23 per cent for the second cross. These lines were 41 to 50 per cent better than the mid-parent in one cross, but were less than the mid-parent in the other cross.However, the response to selection when measured in a different year was little better than random selection. The effect of different sites also reduced the effectiveness of selection.Selection of harvest index in early generations for improvement of yield was ineffective when response was measured at the same site in the same year, or in different years.Contrary to some theoretical proposals, the same improvement in yield was obtained by selecting in early or late generations. While high yielding genotypes may be lost by delaying selection, this is counteracted by the better predictive value of late generations due to their greater homozygosity and homogeneity.  相似文献   

12.
Evaluation of wheat cultivars from different eras allows breeders to determine changes in agronomic and end-use quality characteristics associated with grain yield and end-use quality improvement over time. The objective of this research was to examine the trends in agronomic and end-use quality characteristics of hard red winter wheat cultivars grown in Nebraska. Thirty historically important and popular hard red winter wheat cultivars introduced or released between 1874 and 2000 were evaluated at Lincoln, Mead and North Platte, Nebraska in 2002 and 2003. An alpha lattice design with 15 incomplete blocks of two plots and three replications was used at all locations. Agronomic (days to flowering, plant height, spike length, culm length, grain yield and yield components, and grain volume weight) and end-use quality (flour yield, SDS-sedimentation value, flour protein content, and mixograph time and tolerance) traits were measured in each environment. Highly significant differences were observed among environments, genotypes and their interactions for most agronomic and end-use quality characteristics. Unlike modern cultivars, older cultivars were low yielding, and less responsive to favorable environments for grain yield and yield components. Semidwarf cultivars were more stable for plant height than traditional medium to tall cultivars. All cultivars had high grain volume weight since it is part of the grading system and highly selected for in cultivar release. Modern cultivars were less stable than older cultivars for SDS-sedimentation and mixing tolerance. However, the stability of older cultivars was attributed to their having weak mixing tolerance and reduced SDS-sedimentation values. The reduced protein content of modern cultivars was offset by increased functionality, as measured by mixograph and SDS sedimentation. In conclusion, breeders have tailored agronomic and end-use quality traits essential for hard red winter wheat production and marketing in Nebraska.  相似文献   

13.
J. P. Shroyer  T. S. Cox 《Euphytica》1993,70(1-2):27-33
In recent decades, most winter wheat (Triticum aestivum L.) breeding in the United States has been done in field nurseries in which the soil receives ample fertilization. To determine the effects of these breeding efforts on productivity under low-fertility conditions, we evaluated twenty-nine winter wheat genotypes (seven Asian landraces; thirteen standard-height U.S. cultivars released between 1874 and 1971; and nine semidwarf cultivars released between 1977 and 1988) under severe fertility stress at three Kansas, USA locations. Experiments included fertilized and unfertilized treatments. The modern, semidwarf cultivars yielded 18% and 20% more, on average, than landraces and standard-height cultivars under low and high fertility, respectively; however, only the latter difference reached the 5% significance level. At only one location (Hays) was there a significant genotype X fertility interaction: there, 89% of the semidwarf cultivars, only 8% of the standard cultivars, and 57% of the landraces responded to fertilization. The regression coefficient of mean grain yield (unfertilized) on year of introduction or release for standard and semidwarf cultivars was zero, indicating that a century of breeding has produced no genetic improvement in performance under these low-fertility conditions. Although we found that the usual yield advantage of modern cultivars is not expressed under very low fertility, we saw no evidence that older cultivars are superior under those conditions.  相似文献   

14.
Summary Mungbean is an important source of vegetable protein for the growing population in many developing countries of South East Asia. Its production is limited due to its susceptibility to diseases and insect pests besides many other undesirable agronomic traits. Strategies for increasing and stabilising its production have been to develop varieties resistant to diseases, pests and with other desirable agronomic traits. Genetic improvement of this crop by classical breeding has met with limited success due to the lack of sufficient and satisfactory level of genetic variability within germplasm. Recent advances in biotechnology have offered the opportunity to develop new germplasms. The development of such technologies largely depends on efficient regeneration of sexually mature plants from organs, tissues and protoplasts. An overview of plant regeneration by direct or indirect organogenesis and embryogenesis is presented. The use of in vitro and molecular techniques such as somaclonal variation, screening for various desirable traits, interspecific crossing and genetic transformation to supplement conventional breeding, for genetic improvement of this crop is described. The advantages and limitations of these techniques along with directions for future research are discussed.  相似文献   

15.
Earlier studies showed that the ratio of the weight of the wheat ear to stem at anthesis (ear:stem ratio) may give a better indication of potential yield than harvest index because it is determined early in the life cycle and is not affected by post anthesis stress. These studies concluded that selection for high ear:stem ratio at anthesis may lead to further improvement in grain yield of wheat. The present work was undertaken in the field to identify lines varying in ear:stem ratio in breeding populations and to study its implications for yield improvement.At anthesis stem length, ear length, tiller number, dry weight of stem and ear and ear:stem ratio were measured in 14 crosses on F2 single plants and F2 derived lines grown in the F3, F4, and F5 at three locations in Western Australia over four seasons. In addition, biomass, grain yield and yield components were measured on selected crosses at two locations on F2 derived lines grown in the F4 and F5. There was a considerable range of ear:stem ratio between and within the crosses studied. Although ear:stem ratio was strongly correlated with stem length, there was substantial variation within stem length classes. Ear:stem ratio had a high mean broad sense heritability (82%), whereas HI, grain yield and above ground biomass had lower heritabilities, 68, 55 and 35% respectively. Ear:stem ratio was strongly correlated between generations and sites indicating stability of this character. Ear:stem ratio had a significant positive correlation with grain yield, HI, grains per ear and per m2. The correlation of grain yield with HI was equal or slightly higher than that of grain yield with ear:stem ratio.Ear:stem ratio offers promise as a predictor of HI and yield potential where post-anthesis moisture stress can influence HI. Ear:stem ratio measurement is unlikely to be adopted for selection purposes in routine breeding programs, as it is laborious and time consuming. However, ear:stem ratio could be used to identify superior parental genotypes and early generation selections from special crosses in terms of its ability to partition assimilate.  相似文献   

16.
不同品质类型小麦籽粒淀粉粒度的分布特征   总被引:5,自引:0,他引:5  
选用小麦强筋品种德丰3号、德99-3和弱筋品种滨育535和鲁麦21,研究了籽粒中淀粉粒度、淀粉粒的体积、数目和表面积的分布特征,及其与小麦籽粒蛋白质和淀粉含量的相关性。结果表明,成熟期小麦籽粒含有A (>9.8 μm)、B (<9.8 μm)两种类型淀粉粒,其粒径为0.37~52.60 μm。淀粉粒的体积和表面积均表现为双峰分布;淀粉粒的数目表现为单峰分布,其中B型淀粉粒数目占总数的99%以上。在强筋品种中,B型淀粉粒所占体积和表面积百分比相对较高,而弱筋品种中A型淀粉粒体积、表面积百分比相对较高。籽粒直链淀粉和总淀粉含量与2.0~9.8 μm和<9.8 μm的淀粉粒体积百分比分别呈显著和极显著负相关,与9.8~18.8 μm的淀粉粒体积百分比呈极显著正相关。籽粒蛋白质含量与2.0~9.8 μm和<9.8 μm的淀粉粒体积百分比呈显著正相关,而与9.8~18.8 μm的淀粉粒呈极显著负相关。籽粒淀粉和蛋白质含量均与其他粒径范围的淀粉粒体积无显著相关性。  相似文献   

17.
B. Arun  A.K. Joshi  R. Chand  B.D. Singh 《Euphytica》2003,132(3):235-241
Somaclones (R2, R3 and R4generations) were regenerated from immature embryos of two spring wheat varieties,HUW-206 and HUW-234. Many somaclones displayed improved earliness, enhanced resistance to spot blotch disease and increased yield over the parent. The superiority of variants for yield traits and disease resistance was established in R4 generation, confirming the possibility of wheat improvement through somaclonal variation. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

18.
张微  孙鸿  邢莉萍  卫晓静  王华忠 《作物学报》2014,40(8):1392-1402
细胞自噬是一种保守的真核生物细胞内物质分解和循环利用机制, 在植物生长、发育和逆境响应等过程中均扮演了重要角色。自噬相关蛋白ATG10是参与自噬小体形成的关键因子之一。利用同源克隆方法, 从经白粉病菌诱导48 h的小麦材料92R137/扬麦1587中克隆了ATG10基因家族3个成员(TaATG10a、TaATG10b和TaATG10c)。序列特征分析、物种间的比较和进化分析, 以及酵母功能互补实验结果证实, 这3个基因均为酵母ATG10的功能性同源基因。TaATG10a和TaATG10b的基因组序列具有相似的6外显子-5内含子基因结构。RT-PCR分析还发现这2个基因都具有2种可变剪接产物。TaATG10a和TaATG10b的GFP融合蛋白被定位于洋葱表皮细胞的细胞质中。白粉菌侵染能够诱导TaATG10a和TaATG10b表达, 因此推测, 小麦针对白粉菌侵染的免疫反应涉及对TaATG10及其参与的自噬过程的调控, 其调控模式因小麦抗、感白粉病反应、不同类型抗病基因介导的免疫反应和不同遗传背景下的感病反应而差异明显, 说明TaATG10及其参与的自噬过程与小麦-白粉菌互作反应关系的复杂性。从外源激素处理诱导的表达情况还发现, 抗、感白粉病的表型差异可能涉及抗、感材料TaATG10基因对同种激素(SA、乙烯或ABA)信号的不同响应模式。  相似文献   

19.
Summary Fertility alternation normally occurs in a novel type of thermo-photo-sensitive genic male sterile (TGMS) wheat whose recessive genes in the nucleus are expressed as virtually complete sterility under lower temperature and shorter daylight conditions, but as normal fertility under higher temperature and longer daylight conditions during the developmental period from meiosis of pollen mother cells (PMCs) to the early mononucleate stage of microsporogenesis. In order to provide more information about the mechanism(s) of fertility alternation in TGMS wheat, the relationship between fertility alternation and levels of phytohormones was analyzed by endogenous hormone quantification and exogenous hormone treatments in the present research. Sown at an earlier date with a relatively low temperature and short daylight, TGMS wheat was male sterile phenotypically. Pollen abortion mainly occurred at the mononucleate to bi-nucleate stages of microsporogenesis and pollen abortion was mainly of the spherical type. Levels of endogenous indole-3-acetic acid (IAA), abscisic acid (ABA) and gibberellic acid (GA3) in the anthers were at lower levels, and zeatin riboside (ZR) was higher. Sown at a later date, when the temperature during the critical period for fertility alternation was relatively high and the daylight was long, TGMS wheat was almost as fertile as the normal genotype and the contents of endogenous IAA, ABA and GA3 in anthers were at higher levels, and the content of ZR was at a lower level. At the critical period for fertility alternation, treatments with exogenous IAA, ABA, GA3 or aminoethoxy vinylglycine (AVG), an inhibitor of ethylene biosynthesis, decreased the frequency of sterile pollen grains and increased the frequency of self-pollinated fertile florets. Treatment with exogenous 2-chloroethyl phosphonic acid (CEPA), a releaser of ethylene, increased the frequency of sterile pollen grains and decreased the frequency of self-pollinated fertile florets. It was thus suggested that the fertility alternation of TGMS wheat was closely related to levels of phytohormones in the anthers, and changes of endogenous hormone levels were among the important factors responsible for the fertility alternation of TGMS wheat.  相似文献   

20.
采用构建富集磷胁迫特异表达基因cDNA差减文库、序列分析和cDNA-AFLP技术,鉴定了2个应答低磷胁迫的钙依赖蛋白激酶(CDPK)基因的表达序列标签。克隆、测序和比对结果表明,上述基因分别为TaCPK1A和TaCPK10。其cDNA长度分别为2 129 bp和1 696 bp,开放阅读框分别为1 599 bp和1 281 bp,分别编码532和426个氨基酸;具有CDPK的典型结构特征。系统进化分析表明,上述基因的核苷酸序列同源性低,分别来自不同的祖先。在对低磷胁迫的响应上,TaCPK1A在磷胁迫1~24 h范围内根系内的表达水平不断增强,叶内表达水平在1 h内明显被诱导,以后保持稳定;TaCPK10在相应磷胁迫时间范围根叶内的表达水平均呈低—高—低变化,在磷胁迫1 h的表达被诱导,以后又逐渐降至胁迫前水平。TaCPK1A和TaCPK10对氮、钾胁迫没有应答响应。结果表明,CDPK在介导小麦低磷胁迫的信号转导中具有重要作用,小麦中存在两种或多种CDPK介导的磷酸化过程参与低磷信号的转导。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号