首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Objective   We evaluated combinations of two commercial semen extenders and three concentrations of glycerol to determine the combination that yielded the highest post-thaw sperm motility.
Design   A randomised 2 × 3 block design was used.
Procedure   Semen was collected from four stallions (6 collections per stallion). The sample was diluted with either a dried skim-milk glucose extender (EZ Mixin Original Formula) or a chemically defined, milk-free diluent (INRA 96), and each was used in combination with 2%, 3% or 4% glycerol in standard commercial freezing medium. Sperm motility was assessed by microscopy in fresh and post-thaw semen.
Results   There was a significant difference between the two extenders in the motility of spermatozoa after cryopreservation (48.9% for INRA 96; 38.6% for EZ Mixin OF; P < 0.0001). Glycerol at 4% in freezing medium yielded the highest post-thaw motility, significantly better than 2% ( P < 0.05). Three of four stallions had significantly higher post-thaw motility using INRA 96 relative to EZ Mixin OF ( P < 0.01), and two of four stallions had significantly higher post-thaw motility using 4% glycerol ( P < 0.05). The combination of INRA 96 and 4% glycerol in freezing medium gave the highest average post-thaw motility of 51.5%.
Conclusion   In this study, INRA 96 combined with 4% glycerol yielded an average recovery of progressively motile sperm consistently above the 35% target.  相似文献   

2.
The aim of the current study was to verify that stallion spermatozoa could be cooled for 24 hours and then frozen. In experiment I, one ejaculate from each of 13 stallions was used. Semen was collected and split into two parts; one part immediately frozen using standard cryopreservation techniques and the other diluted, stored in an Equitainer for 24 hours, and then frozen. In experiment II, one ejaculate from each of 12 stallions was collected, diluted with Botu-Semen, and split into two parts: one cooled in an Equitainer and the other in Max-Semen Express without prior centrifugation. After 24 hours of cooling, the samples were centrifuged to remove seminal plasma and concentrate the sperm, and resuspended in Botu-Crio® extender containing one of three cryoprotectant treatments (1% glycerol + 4% dimethylformamide, 1% glycerol + 4% dimethylacetamide and 1% glycerol + 4% methylformamide), maintained at 5°C for 20 minutes, then frozen in nitrogen vapor. No difference was observed between the two cooling systems. The association of 1% glycerol and 4% methylformamide provided the best post-thaw progressive motility. For experiment III, two stallions were used for a fertility trial. Forty-three inseminations were performed using 22 mares. No differences were seen in semen parameters and pregnancy rates when comparing the two freezing protocols (conventional and cooled/frozen). Pregnancy rates for conventional and cooled/frozen semen were, respectively, 72.7% and 82.3% (stallion A), and 40.0% and 50.0% (stallion B). We concluded that cooling equine semen for 24 hours before freezing, while maintaining sperm viability and fertility, is possible.  相似文献   

3.
Breeding mares with cryopreserved semen requires specialized equipment for storage and thawing and more intensive mare management. The objectives of this study were (1) evaluate the longevity of frozen stallion semen once it had been thawed, extended, and maintained at 5°C for 48 hours in a passive cooling container, and (2) determine fertility potential of frozen semen that had been thawed, extended, and used to inseminate mares after 24 hours of cooled storage. Eight ejaculates were collected and aliquots were cooled in either INRA96 and CryoMax LE minus cryoprotectant at a concentration of 50 million total sperm/mL. The remainder of the ejaculate was frozen in CryoMax LE extender at a concentration of 200 million total sperm/mL. Semen was thawed using 1 of 3 thawing protocols, and diluted to a concentration of 50 million total sperm/mL in either INRA96 or CryoMax LE minus cryoprotectant and cooled to 5°C. Sperm motility was evaluated at 24 and 48 hours. Eight mares were inseminated over two estrous cycles using frozen semen that had been thawed, extended in INRA96, and cooled for 24 hours. There was no difference in progressive motility at 24 or 48 hours of cooled-storage post-thaw between the 3 thawing protocols. An overall per cycle pregnancy rate of 56% (9/16 cycles) was achieved using frozen-thawed semen that had been extended and cooled for 24 hours. In summary, frozen stallion sperm was thawed, extended, and cooled to 5°C for 24 hours and still maintained adequate (>30%) sperm motility and fertility.  相似文献   

4.
Conception rates for mares bred with transported-cooled and fresh stallion semen were collected over a 4-yr period (1998–2002) for two stallions. Both stallions stood at a commercial breeding farm. Semen from both stallions was used immediately after collection on the farm and after 24 to 48 h of cold storage when transported to locations in the U.S. and Canada. Semen for insemination of mares located on the farm was extended with a commercially available skim milk glucose extender (SKMG). Spermatozoal motility following cold storage for spermatozoa diluted in SKMG extender was unacceptable. Thus, semen from both stallions was centrifuged, and spermatozoa were resuspended in SKMG supplemented with modified PBS. In a previous study, the percentage of motile spermatozoa increased following centrifugation and reconstitution of the sperm pellet in SKMG-PBS as compared with semen dilution in SKMG (Stallion A: 15% vs 47%; Stallion B: 18% vs 43%). In the current study, 22 of 25 (88%) and 3 of 4 (75%) mares conceived with transported-cooled semen from Stallions A and B, respectively. Conception rates for mares inseminated with transported semen did not differ (P>0.05) from those inseminated on the farm with fresh semen. These data illustrate that stallion owners can modify standard cooled semen processing procedures and semen extender composition to improve post-storage spermatozoa motility and to obtain acceptable fertility.  相似文献   

5.
The ability to ship cooled stallion sperm for subsequent freezing at a facility specializing in cryopreservation would be beneficial to the equine industry. Stallion sperm has been centrifuged, cooled to 5 degrees C for 12 h, and frozen without a detrimental effect on motility in a previous study; however, no fertility data were available. Experiment 1 compared the post-thaw motility of sperm cooled for 18 h at 15 or 5 degrees C at either 400 or 200 x 10(6) sperm/mL and then frozen. Storage temperature, sperm concentration, or the interaction of temperature and concentration had no effect on total (TM) and progressive motility (PM) after cooling. Post-thaw TM and PM were higher for control than (P < 0.05) for treated samples. There was no difference in post-thaw TM and PM due to temperature or concentration. Experiment 2 further evaluated procedures for cooling before freezing. Ejaculates were either cooled to 5 degrees C for 18 h and centrifuged, centrifuged at room temperature and then cooled to 5 degrees C for 18 h before freezing, or centrifuged and frozen immediately (control). There was no difference among treatments on post-thaw TM or PM. In Exp. 3, mares were inseminated with semen that had been extended in skim milk-egg yolk without glycerol, centrifuged, resuspended at 200 x 10(6) sperm/mL, cooled to 5 degrees C for 18 h, and then frozen or not cooled for 18 h before freezing (control). Pregnancy rates did not differ for mares receiving semen cooled and then frozen (21 of 30, 70%) or semen frozen directly without prior cooling (16 of 30, 53%). In summary, a procedure was developed for cooling stallion sperm for 18 h before freezing without a resultant decrease in fertility.  相似文献   

6.
Stallion semen cryopreservation is often associated with poor post-thaw sperm quality. Sugars act as nonpermeating cryoprotectants. The aim of the present study was to evaluate the cryoprotective effect of trehalose on stallion sperm quality and field fertility rates subjected to cooling and freeze–thaw process. Semen samples were collected from six Arabian stallions, divided into five different treatments in a final concentration of 100 × 106 sperm/mL by using INRA-82 extender containing 0, 25, 50, 100, and 200 mM of trehalose then subjected to both cold storage and cryopreservation. Sperm motility, acrosome, plasmatic membrane, and DNA integrity were analyzed, and 57 mares were used to evaluate the field fertility of chilled and frozen-thawed semen. Results showed that the extender containing 100 mM trehalose only increased the functional acrosomal, plasma membrane, and DNA integrities. The inclusion of 50 mM trehalose in semen extender resulted in significantly (P < .05) increased post-thaw total motility compared to the control group, and chilled semen achieved higher pregnancy rates compared to the frozen-thawed one. Pregnancy rate of mares inseminated with frozen-thawed semen (P < .05; 46.15% vs. 36.36%, respectively) was lower than those inseminated with chilled semen (76.47% vs. 68.75%, respectively) but higher than control. In conclusion, addition of 50 mM trehalose yielded the highest quality stallion semen after cooling and post-thawing in terms of motility, integrities of acrosome, membrane, and DNA as well as improved field fertility.  相似文献   

7.
Cyclodextrins improve post-thaw viability and motility of semen as well as mediate cholesterol efflux and subsequent acrosome reaction in spermatozoa from several species. The objectives of this study were: (a) to assess the effect of prefreeze addition of 60 mM hydroxypropyl-β-cyclodextrin (β-CD) on post-thaw viability and motility of jack and stallion semen cryopreserved in ethylene glycol-based freezing extenders containing 5% or 20% (v/v) egg yolk (LEY and HEY, respectively), and (b) to evaluate the ability of 1 μM calcium ionophore A23187 and/or 60 mM β-CD to induce acrosome reaction in thawed jack and stallion spermatozoa. Post-thaw motility of spermatozoa cryopreserved in HEY was higher (P < .05) for jack but lower (P < .05) for stallion spermatozoa when compared with LEY. Jack and stallion spermatozoa both exhibited higher (P < .05) motility when cryopreserved in 60 mM β-CD than without β-CD. Curvilinear velocity was faster (P < .05) for jack and stallion spermatozoa cryopreserved in LEY than in HEY. A treatment × time interaction affected (P < .05) the proportion of spermatozoa that underwent acrosome reaction. Post-thaw incubation of jack and stallion spermatozoa with β-CD for 90 minutes induced acrosome reaction in 85% and 22% of viable sperm cells, respectively; however, only 32% of jack and 8% of stallion spermatozoa incubated with calcium ionophore underwent acrosome reaction. This study is the first to evaluate the effect of β-CD (not loaded with cholesterol) on jack semen cryopreservation, and results reveal that β-CD may be a useful tool to enhance semen cryopreservation and to induce post-thaw acrosome reaction in jack spermatozoa.  相似文献   

8.
This study on extended, cooled stallion spermatozoa aimed to compare the ability of three extenders to maintain sperm motility during 24 h of preservation, and to describe pregnancy and foaling rates after artificial insemination (AI) of stallion spermatozoa stored and transported in the extender chosen from the in vitro study. After 6 and 24 h of preservation, motility, both subjective and evaluated by the motility analyzer (total, progressive and rapid), was lower in non-fat, dried skim milk-glucose than in both other extenders: dried skim milk-glucose added to 2% centrifuged egg yolk, and ultra high temperature treated skim milk-sugar-saline solution added to 2% centrifuged egg yolk (INRA82-Y). Rapid spermatozoa and sperm velocity parameters, after 24 h, were significantly higher in INRA82-Y. In the fertility trial, semen collected from three Maremmano stallions, diluted in INRA82-Y, and transported in a refrigerated Styrofoam box, was used to inseminate 56 mares of the same breed. Pregnancy rates after the first cycle and per breeding season were significantly higher for the 31 mares inseminated in three AI centres (54.8 and 80.6%, respectively) than for the 25 mares inseminated at the breeder's facilities (28.0 and 52.0%). Foaling rates were not significantly different between the AI centres mares (54.8%) and the other mares (44.0%). In conclusion, INRA82-Y yielded satisfactory pregnancy and foaling rates, especially when employed in the more controlled situation of an AI centre, and can therefore be included among those available for cooled stallion semen preservation.  相似文献   

9.
With recent large-breed organization acceptance, the use of frozen semen is gaining more attention in the equine industry. However, cryopreserved stallion semen is commonly associated with poor quality and decreased pregnancy rates as compared with those produced during normal mating or with cooled semen techniques. Therefore our objective was to investigate a new unique freezing technique (UFT) with the intent of improving fertility outcomes. A series of experiments tested the UFT compared with traditional liquid nitrogen methodology in combination with influence of the extenders and stallions used. In Experiment 1, post-thaw motility results of UFT variations were compared with those from liquid nitrogen methods. The averaged post-thaw motility percentages of the 4 UFT treatments were similar when compared with the traditional liquid nitrogen control group (P = .845). In Experiment 2, 2 egg-yolk–based freezing extenders, Biladyl AB intended for bovine samples and Freezing Medium Test Yolk Buffer used for human samples, were compared. A significant difference in the average post-thaw motilities was found between Biladyl AB (17%) and Freezing Medium Test Yolk Buffer (25%) (P < .002). In the third experiment, we compared variability among stallions using the UFT with the intention of creating a more consistent outcome. Post-thaw motilities and percent of original motility returns among the 4 stallions were significantly different (P < .001). In a field trial using shipped semen from a regional stallion station, the UFT demonstrated very promising results.In conclusion, the UFT may potentially be used as an alterative freezing method to replace current liquid nitrogen methodology. However, further investigation is needed to refine techniques.  相似文献   

10.
The objective of this experiment was to determine the effects of flow cytometric sorting and freezing on stallion sperm fertility. A 2 x 2 factorial design was used to delineate effects of flow sorting and freezing spermatozoa. Oestrus was synchronised (July-August) in 41 mares by administering 10 ml altrenogest (2.2 mg/ml) per os for 10 consecutive days, followed by 250 microg cloprostenol i.m. on Day 11. Ovulation was induced by administering 3,000 iu hCG i.v. either 6 h (fresh spermatozoa) or 30 h (frozen/thawed spermatozoa) prior to insemination. Mares were assigned randomly to one of 4 sperm treatment groups. Semen was collected from 2 stallions with an artificial vagina and processed for each treatment. Treatment 1 (n = 10 mare cycles) consisted of fresh, nonsorted spermatozoa and Treatment 2 (n = 16 mare cycles) of fresh, flow sorted spermatozoa. Spermatozoa to be sorted were stained with Hoechst 33342 and sorted into X- and Y-chromosome-bearing populations based on DNA content using an SX MoFlo sperm sorter. Treatment 3 (n = 16 mare cycles) consisted of frozen/thawed nonsorted spermatozoa (frozen at 33.5 x 106 sperm/ml in 0.25 ml straws) and Treatment 4 (n = 15 mare cycles) of flow sorted frozen/thawed spermatozoa (frozen at 64.4 x 10(6) sperm/ml). Concentrations of sperm in both cryopreserved treatments were adjusted, based on predetermined average post-thaw motilities, so that each insemination contained approximately 5 x 10(6) motile spermatozoa. Hysteroscopic insemination of 5 x 10(6) motile spermatozoa in a volume of 230 microd was used for all treatments. Pregnancy was determined ultrasonographically 16 days postovulation. No differences were found (P>0.1) in the pregnancy rates for mares inseminated with fresh nonsorted (4/10 = 40.0%), fresh flow sorted (6/16 = 37.5%), frozen/thawed nonsorted (6/16 = 37.5%) and flow sorted frozen/thawed spermatozoa (2/15 = 133%). Pregnancy rates tended (P = 0.12) to be lower following insemination of frozen/thawed flow sorted spermatozoa. Further studies are needed with a larger number of mares to determine if fertility of flow sorted frozen/thawed spermatozoa can be improved.  相似文献   

11.
Sex‐sorted, frozen–thawed stallion spermatozoa remain out of reach of commercial horse breeders because of the low efficiency of the sex‐sorting process and unacceptable fertility rates after insemination. Two experiments were designed to test the effects of alternative staining and freezing media to improve the viability of sex‐sorted frozen–thawed stallion spermatozoa. Experiment 1 compared two freezing media, INRA 82® and a modified lactose‐ethylenediaminetetraacetic acid (EDTA), for the cryopreservation of sex‐sorted stallion spermatozoa. No significant differences between the two freezing media could be identified, suggesting that both cryodiluents would be suitable for incorporation into a sex‐preselection protocol for stallion spermatozoa. Experiment 2 compared Kenney’s modified Tyrode’s (KMT) and Sperm TALP (Sp‐TALP) as the staining and incubation medium for stallion spermatozoa prior to sex‐sorting. A significant increase in the percentage of acrosome‐reacted spermatozoa occurred after staining and incubation in the clarified Sp‐TALP compared with KMT. As no improvements in sorting rates were achieved using Sp‐TALP, it was concluded that stallion sorting protocols could include KMT as the staining and incubation medium while either INRA 82® or lactose‐EDTA could be employed as a cryodiluents.  相似文献   

12.
The effect of addition of glycine betaine to a lactose-EDTA freezing medium on the post-thaw motility of stallion semen was determined. The first three semen-rich fractions of nine stallions were collected with an open-end Krakow artificial vagina on consecutive weekdays. Semen was frozen using the Hannover method with freezing media containing glycine betaine in various concentrations from 0 to 5%. After thawing, sperm motility was analysed both by a light microscope and by a Hamilton-Thorn Motility Analyser. Total and progressive post-thaw motilities of semen containing 0.25-3% glycine betaine did not differ significantly from the total and progressive post-thaw motilities of semen frozen without glycine betaine. The total and progressive post-thaw motilities of semen containing 4 or 5% glycine betaine were significantly lower (P < 0.001) than those of semen without glycine betaine. In conclusion, glycine betaine did not show any beneficial effect on the post-thaw motility of stallion semen when semen was frozen using the Hannover method.  相似文献   

13.
Pregnancy rates reported after artificial insemination with frozen–thawed jack spermatozoa have been relatively low compared with those attained in other species. Cholesterol is known to influence post-thaw fertility of both jack and stallion semen, and altering the amount of cholesterol in the freezing extender may help improve the fertility of frozen–thawed jack semen samples. In this study, we report clinical work that was performed using semen samples collected from a single jack. Samples were extended in EZ Mixin OF and then slowly cooled to 5°C. Extended semen samples were centrifuged at 400 × g for 10 minutes and the supernatant was discarded. Spermatozoa were resuspended in freezing medium to a final concentration of 400 × 106 cells/mL and were later frozen in liquid nitrogen vapor. Freezing extender treatments containing 2% ethylene glycol included the following: (1) 20% egg yolk (EY), (2) 5% EY, and (3) 20% EY + 60 mM hydroxypropyl-β-cyclodextrin (β-CD). For this study, a total of 28 mares aged 2 to 18 years was used over five breeding seasons (82 total cycles). Mares were administered human chorionic gonadotropin to induce ovulation when the dominant follicle was ≥35 mm in diameter. They were inseminated within 6 hours before ovulation and again within 6 hours after ovulation. Pregnancy rates obtained were as follows: (1) 6.25% (one of 15 matings) for 20% EY, (2) 46.5% (20 of 43 matings) for 5% EY, and (3) 58.5% (14 of 24 matings) for 20% EY + 60 mM β-CD. These data suggest that binding of cholesterol with β-CD enhances post-thaw fertility of jack semen samples. We conclude that acceptable pregnancy rates could be achieved with frozen–thawed jack semen samples cryopreserved in 5% EY or 20% EY + 60 mM β-CD using direct post-thaw insemination.  相似文献   

14.
In the present study, we aimed to evaluate the possible protective effects of the nicotinic acid (NA) at three concentrations (10, 20, and 40 mM) on the equine cooled and frozen-thawed spermatozoa quality markers including viability, plasma membrane or acrosome integrity, DNA fragmentation, lipid peroxidation, and total oxidant levels. We also evaluated the effects of NA on preservation of the post-thaw sperm quality after 6 hours of cold storage before freezing. Five stallions were used for semen collections. The current experiment was repeated six times using pooled semen samples from two stallions, each time. We showed that NA at 20 and 40 mM concentrations could significantly improve the stallion sperm quality markers during cold storage. However, the protective effects were not different between 20 mM and 40 mM concentrations in most measures. Nicotinic acid could also improve the post-thaw stallion sperm quality at 10, 20, and 40 mM concentrations. However, the 40 mM concentration showed a negative impact on some post-thaw kinematic sperm parameters. Nicotinic acid at 10 and 20 mM concentrations could preserve the sperm cryo-tolerance to be frozen up to 8 hours after collection without a significant decline in most of the post-thaw sperm quality measures. Nicotinic acid could also decrease the level of the lipid peroxidation and total reactive oxygen/nitrogen species in the cooled and frozen-thawed spermatozoa, in a dose-dependent manner. Therefore, NA at 20 mM concentration could preserve most of the stallion sperm quality measures during cold storage (42 hours, 5°C) and enabled storage of cooled stallion semen for 6 hours before freezing without significant deterioration of the post-thaw sperm quality.  相似文献   

15.
The objective of this study was to compare semen parameters and embryo recovery rates of cooled stallion semen extended with INRA 96 or BotuSemen Gold. In experiment 1, 45 ejaculates from nine mature stallions were collected, assessed, and equally split between both extenders and then extended to 50 million sperm/mL. Then, the extended semen was stored in three passive cooling containers (Equitainer, Equine Express II, and BotuFlex) for 48 hours. In experiment 2, the same ejaculates extended in experiment 1 were cushion-centrifuged, the supernatant was discarded, and the pellets were resuspended at 100 million sperm/mL with their respective extender. Semen was then cooled and stored as in experiment 1. In both experiments, sperm motility parameters, plasma membrane integrity, and high mitochondrial membrane potential were assessed at 0, 24, and 48 hours post cooling. For experiment 3, 12 mares (n = 24 cycles) were bred with 48 hour–cooled semen from one stallion. Semen was processed as described in experiment 1. Mares had embryo flushing performed by 8-day post-ovulation. In experiment 1, BotuSemen Gold displayed superior total and progressive motility relative to INRA 96 (P < .05). There were no significant differences between the types of containers in any experiment. In experiment 2, INRA 96 and BotuSemen Gold extenders had similar total and progressive motility, but BotuSemen Gold had superior sperm velocity parameters at all timepoints. Embryo recovery was identical for both extenders (50%). Finally, the results obtained herein suggest that BotuSemen Gold is a suitable alternative to be included in semen cooling tests against INRA 96 in clinical practice.  相似文献   

16.
Alternative sources of lipoproteins in semen extenders could replace animal by-products. We hypothesized that: (1) post-thaw semen parameters and fertility would not be different in coconut water (CW)–treated samples compared with egg yolk (EY)–treated samples and (2) the use of an oxygen scavenger (Oxyrase) would improve post-thaw sperm motility and membrane integrity and decrease lipid peroxidation. Experiment 1: three ejaculates each from five stallions were split into four treatments: EY, CW, egg yolk with Oxyrase, and coconut water with Oxyrase. Computer-assisted sperm analysis measured progressive and total motility, velocity, and linearity. Membrane integrity, apoptosis, and lipid peroxidation were evaluated using propidium iodide, annexin, and BODIPY fluorescent probes, respectively. Samples were cryopreserved, stored in liquid nitrogen, and then thawed to 37°C and analyzed again. Experiment 2: one ejaculate was divided into two aliquots and cryopreserved using either CW or EY. In a crossover design, 12 mares were bred on two consecutive cycles with either EY or CW. Pregnancy evaluations were at 14-day gestation. No differences were detected in sperm parameters between CW and EY (P > .05). Oxyrase did not improve sperm motility parameters in post-thaw samples, nor did it show protective effects for viability or against membrane damage (P > .05). More mares became pregnant using CW than EY (11/12 vs. 6/12, respectively; P = .013). Use of CW is a viable alternative to animal-based products in the cryopreservation of stallion semen.  相似文献   

17.
Processing stallion semen for assisted reproductive procedures, such as intracytoplasmic sperm injection (ICSI), requires special considerations regarding cooling, concentrating, and handling of sperm. The aim of experiment 1 was to determine whether cooled semen could be frozen without removal of seminal plasma and at a low sperm concentration while maintaining motile sperm for ICSI selection procedures. In experiment 2, five media for holding stallion sperm were compared to evaluate sperm motility for an interval of time sufficient for ICSI sperm selection procedures. In experiment 1, semen samples from eight stallions were cooled for 24 hours in two extenders, CST (E-Z Mixin-CST “Cool-Store/Transport” Animal Reproduction Systems) and INRA96 (Institut National de la Recherche Agronomique, IMV International Corporation), before being frozen in four freezing diluents, and were evaluated at 0, 45, and 75 minutes after thawing. The cooling extender did not significantly affect sperm motility, but modified French and glycerol egg yolk diluents provided the best sperm motility for frozen–thawed groups. In experiment 2, semen samples from seven stallions were used to test five media for holding sperm. Samples were analyzed for total and progressive motility at hourly intervals. Mean total and progressive motility were not different (P > .05) among groups from 1 through 4 hours. At 5 hours, groups differed (P = .004), with sperm held in Tyrode’s with albumin, lactate, and pyruvate having higher (P < .05) total and progressive motility than all other samples. In conclusion, motile stallion sperm can be obtained after the sperm are cooled for 24 hours, frozen, and thawed; various media are available to maintain sperm motility during equine ICSI selection procedures.  相似文献   

18.
The aim of this study was to determine whether there was an increase in pregnancy rates when frozen-thawed stallion semen was processed by single layer centrifugation (SLC) through a colloid before insemination. In addition, changes in semen parameters, including motility, were determined before and after SLC. Twenty light-horse mares (aged 3-16 years) and one Thoroughbred stallion (aged 16 years) having average fertility with fresh and cooled semen (>50% per cycle) and displaying a postthaw motility of >35% were used. Control mares were inseminated using 4- × 0.5-mL straws (200 × 106/mL) of frozen-thawed semen. Treatment mares were inseminated with 4 × 0.5 mL of frozen-thawed semen after processing by SLC. Pregnancy rates were compared using Fisher exact test, and continuous parameters were evaluated by a Student t test. The pregnancy rates at day 14 were not different for the mares inseminated with control versus SLC-processed semen, despite the difference in sperm number (171 × 106 ± 21, 59 × 106 ± 25 progressively motile sperm). After frozen-thawed semen was processed by SLC, the percentage progressively motile sperm improved (P < .05), and SLC processing resulted in a 21.8% recovery of spermatozoa. In summary, centrifugation of frozen-thawed semen through a single layer of colloid increased the percentage of motile spermatozoa, but did not improve pregnancy rates after deep horn insemination.  相似文献   

19.
The aim of this study was to determine the best concentration of low-density lipoproteins (LDL) in a semen extender to improve the percentage of motile spermatozoa in equine sperm after freezing and thawing in comparison with standard extenders. Ten extenders were compared: 1 with 2% egg yolk (EY), 8 with different concentrations of LDL (0.25%, 0.50%, 0.75%, 1%, 2%, 3%, 4%, and 5%), and INRA 96; all of the extenders contained 2.5% glycerol. Fourteen ejaculates were collected from four different stallions. The first dilution was made with equal parts at +37°C, centrifuged (600 × g/10 min), and resuspended in the corresponding extenders to obtain a final concentration of 100 × 106 spermatozoa/ml. The resulting mixture was cooled to 4°C over 1 hour, packed into four 0.5-ml straws, and left for a further 30 minutes at +4°C. Finally, the straws were frozen in nitrogen vapors 4 cm over liquid nitrogen for 10 minutes before being immersed in liquid nitrogen at −196°C and stored. Two straws per extender and per ejaculate were thawed in a water bath at +37°C for 30 seconds. The contents of each straw were recovered into a cryotube and placed in a water bath at +37°C for 10 minutes before being examined with an image analyzer. The best post-thaw motility results were obtained with the extenders made with 0.5%, 2%, and 3% LDL and with the control extender made with egg yolk; no significant difference was observed between these extenders. The last two straws were thawed to perform four sperm function tests. The hypo-osmotic test was used to assess the integrity of the plasma membrane; the 2% and 3% LDL treatments were the most suitable and were comparable to that with whole egg yolk for protecting stallion sperm during cryopreservation (32.3%, 32.4%, and 31.3%, respectively). The Pisum sativum agglutinin-fluorescein isothiocyanate test was used to verify the integrity of the acrosomes; the best results were obtained with the 0.5%, 0.75%, and 3% LDL and INRA96 extenders; no significant differences were observed among the 85.8%, 85.0%, 84.7%, and 84.8% extenders. The acridine orange test was used to assess DNA integrity; there were no significant differences among the various extenders: the DNA was preserved in 98% of the spermatozoa. Finally, spermatozoal morphology was examined using Spermac stain; 78% of the spermatozoa did not present any anomalies in the 0.25% and 2% LDL extenders. In conclusion, the 2% LDL extender gave the best post-thaw percentage of motile spermatozoa. The results of the sperm function test were also superior for this extender.  相似文献   

20.
An Overview of Low Dose Insemination in the Mare   总被引:1,自引:0,他引:1  
The need for relatively high numbers of spermatozoa for artificial insemination limits our application of recently available technologies such as sex‐sorted semen. The fertility of two different methods of low dose insemination using fresh, frozen and sex‐sorted semen are compared in this overview. Satisfactory conception rates are described using very low doses of spermatozoa inseminated by either hysteroscopic or deep uterine insemination methods, proving the stallion is fully fertile. The hysteroscopic method appears to give higher conception rates when inseminating fewer than 5 × 106 spermatozoa and is therefore, the preferred method of insemination for sex‐sorted spermatozoa. However, hysteroscopic deposition of low numbers of spermatozoa from infertile stallions does not appear to improve their fertility.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号