首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Recent studies have revealed that marine brown seaweeds contain numerous bioactive compounds which exhibit various bioactivities. The present study investigated the effect of low molecular weight fucoidan (SCF) isolated from Sargassum confusum, a brown alga, on inflammatory responses and oxidative stress in HaCaT keratinocytes stimulated by tumor necrosis factor (TNF)-α/interferon (IFN)-γ. SCF significantly increased the cell viability while decreasing the intracellular reactive oxygen species (ROS) production in TNF-α/IFN-γ-stimulated HaCaT keratinocytes. In addition, SCF effectively reduced inflammatory cytokines (interleukin (IL)-1β, IL-6, IL-8, IL-13, TNF-α, and IFN-γ) and chemokines (Eotaxin, macrophage-derived chemokine (MDC), regulated on activation, normal T cell expressed and secreted (RANTES), and thymus and activation-regulated chemokine (TARC)) expression, by down-regulating the expression of epithelial and epidermal innate cytokines (IL-25, IL-33, and thymic stromal lymphopoietin (TSLP)). Furthermore, SCF suppressed the activation of TNF-α/IFN-γ-stimulated mitogen-activated protein kinase (MAPK) and nuclear factor-κB (NF-κB) signaling pathways, while activating the nuclear factor erythroid 2-related factor 2 (Nrf2)/heme oxygenase-1 (HO-1) signaling pathway. The cytoprotective effect of SCF against TNF-α/IFN-γ stimulation was considerably reduced upon inhibition of HO-1 activity by ZnPP. Overall, these results suggest that SCF effectively suppressed inflammatory responses and oxidative stress in TNF-α/IFN-γ-stimulated HaCaT keratinocytes via activating the Nrf2/HO-1 signaling pathway.  相似文献   

2.
Background: Previous studies have shown that some cytokines have protective effects on cartilage in joint diseases. In the current study, effects of IL-4 against morphological changes and tissue degradation induced by IL-1α on bovine nasal cartilage (BNC) explants were investigated. Methods: Fresh BNC samples were prepared from a slaughterhouse under sterile conditions. BNC explants culture was treated with both IL-lα (10 ng/ml) and IL-4 (50 ng/ml) at the same time for 28 days. The morphological characteristics of explants were assessed by using histology techniques and invert microscopy. Matrix metalloproteinase-1 (MMP-1) production was assessed within different days by using Western blotting. Results: IL-lα induced prominent cartilage morphology degradation. The pro and active form of MMP-1 band substantially increased at day 21 of culture. In the presence of both IL-lα and IL-4, chondrocytes preserved their ordinary normal phenotype with intact extracellular matrix. In addition, a significant reduction in pro-MMP-1and inhibition of active MMP-1 was seen. Conclusion: In conclusion, IL-4 could be regarded as a potential candidate in cartilage protecting against the degradation changes of IL-lα. It seems that the preservation effect of IL-4 is associated with significant reduction of MMP-1. Key Words: Chondrocyte, Interleukin-1α, Interleukin-4, Matrix metalloproteinase-1, Bovine nasal cartilage  相似文献   

3.
In the course of studies on bioactive metabolites from marine fungi, a new 10-membered lactone, named penicillinolide A (1) was isolated from the organic extract of Penicillium sp. SF-5292 as a potential anti-inflammatory compound. The structure of penicillinolide A (1) was mainly determined by analysis of NMR and MS data and Mosher’s method. Penicillinolide A (1) inhibited the production of NO and PGE2 due to inhibition of the expression of iNOS and COX-2. Penicillinolide A (1) also reduced TNF-α, IL-1β and IL-6 production, and these anti-inflammatory effects were shown to be correlated with the suppression of the phosphorylation and degradation of IκB-α, NF-κB nuclear translocation, and NF-κB DNA binding activity. In addition, using inhibitor tin protoporphyrin (SnPP), a competitive inhibitor of HO activity, it was verified that the inhibitory effects of compound 1 on the production of pro-inflammatory mediators and NF-κB DNA binding activity were partially associated with HO-1 expression through Nrf2 nuclear translocation.  相似文献   

4.
Previous studies have revealed that excessive exposure to UV irradiation is the main cause of skin photoaging and the signaling pathways of MAPK and NF-κB are involved in this progression. The present study aims to investigate the anti-photoaging effects of low molecular weight hydrolysates from Theragra chalcogramma (TCH) and to clarify the underlying mechanism. The degradation of mechanical barrier functions in photoaged skin was substantially ameliorated after TCH administration; meanwhile, TCH significantly elevated the antioxidant capacity and suppressed the over-production of inflammatory cytokine IL-1β. Moreover, the histopathological deteriorations such as epidermal hyperplasia and dermal loss were significantly alleviated, along with the increase in procollagen type I content and decrease in MMP-1 activity (p < 0.05). Furthermore, TCH effectively blocked the MAPK and NF-κB signaling pathways through inhibition of the phosphorylation of p38, JNK, ERK, iκB, and p65 proteins. Collectively, these data indicate that TCH has potential as a novel ingredient for the development of anti-photoaging foods.  相似文献   

5.
6.
Metastasis, the greatest clinical challenge associated with cancer, is closely connected to multiple biological processes, including invasion and adhesion. The hypoxic environment in tumors is an important factor that causes tumor metastasis by activating HIF-1α. Fucoidan, extracted from brown algae, is a sulfated polysaccharide and, as a novel marine biological material, has been used to treat various disorders in China, Korea, Japan and other countries. In the present study, we demonstrated that fucoidan derived from Undaria pinnatifida sporophylls significantly inhibits the hypoxia-induced expression, nuclear translocation and activity of HIF-1α, the synthesis and secretion of VEGF-C and HGF, cell invasion and lymphatic metastasis in a mouse hepatocarcinoma Hca-F cell line. Fucoidan also suppressed lymphangiogenesis in vitro and in vivo. In addition, accompanied by a reduction in the HIF-1α nuclear translocation and activity, fucoidan significantly reduced the levels of p-PI3K, p-Akt, p-mTOR, p-ERK, NF-κB, MMP-2 and MMP-9, but increased TIMP-1 levels. These results indicate strongly that the anti-metastasis and anti-lymphangiogenesis activities of fucoidan are mediated by suppressing HIF-1α/VEGF-C, which attenuates the PI3K/Akt/mTOR signaling pathways.  相似文献   

7.
By activity-guided fractionation based on inhibition of nitric oxide (NO) and prostaglandin E2 (PGE2), six fistularin compounds (1–6) were isolated from the marine sponge Ecionemia acervus (order Astrophorida). Based on stereochemical structure determination using Mosher’s method, fistularin-3 was assigned as a new stereoisomer. On the basis of the stereochemistry of fistularin-3, the stereochemical homogeneity of all six compounds was established by comparing carbon and proton chemical shifts. For fistularin-1 (1) and -2 (2), quantum calculations were performed to confirm their stereochemistry. In a co-culture system of human epithelial Caco-2 cells and THP-1 macrophages, all six isolated compounds showed potent anti-inflammatory activities. These bioactive fistularins inhibited the production of NO, PGE2, TNF-α, IL-1β, and IL-6 induced by lipopolysaccharide and interferon gamma. Inducible NO synthase and cyclooxygenase-2 expression and MAPK phosphorylation were downregulated in response to the inhibition of NF-κB nuclear translocation. Among the compounds tested, fistularin-1 (1) and 19-deoxyfistularin-3 (4) showed the highest activity. These findings suggest the potential use of the marine sponge E. acervus and its metabolites as pharmaceuticals for the treatment of inflammation-related diseases including inflammatory bowel disease.  相似文献   

8.
The discovery of new bioactive compounds from marine natural sources is very important in pharmacological research. Here we developed a Wnt responsive luciferase reporter assay to screen small molecule inhibitors of cancer associated constitutive Wnt signaling pathway. We identified that gliotoxin (GTX) and some of its analogues, the secondary metabolites from marine fungus Neosartorya pseufofischeri, acted as inhibitors of the Wnt signaling pathway. In addition, we found that GTX downregulated the β-catenin levels in colorectal cancer cells with inactivating mutations of adenomatous polyposis coli (APC) or activating mutations of β-catenin. Furthermore, we demonstrated that GTX induced growth inhibition and apoptosis in multiple colorectal cancer cell lines with mutations of the Wnt signaling pathway. Together, we illustrated a practical approach to identify small-molecule inhibitors of the Wnt signaling pathway and our study indicated that GTX has therapeutic potential for the prevention or treatment of Wnt dependent cancers and other Wnt related diseases.  相似文献   

9.
Associations between different organisms have been extensively described in terrestrial and marine environments. These associations are involved in roles as diverse as nutrient exchanges, shelter or adaptation to adverse conditions. Ascidians are widely dispersed marine invertebrates associated to invasive behaviours. Studying their microbiomes has interested the scientific community, mainly due to its potential for bioactive compounds production—e.g., ET-73 (trabectedin, Yondelis), an anticancer drug. However, these symbiotic interactions embrace several environmental and biological functions with high ecological relevance, inspiring diverse biotechnological applications. We thoroughly reviewed microbiome studies (microscopic to metagenomic approaches) of around 171 hosts, worldwide dispersed, occurring at different domains of life (Archaea, Bacteria, Eukarya), to illuminate the functions and bioactive potential of associated organisms in ascidians. Associations with Bacteria are the most prevalent, namely with Cyanobacteria, Proteobacteria, Bacteroidetes, Actinobacteria and Planctomycetes phyla. The microbiomes of ascidians belonging to Aplousobranchia order have been the most studied. The integration of worldwide studies characterizing ascidians’ microbiome composition revealed several functions including UV protection, bioaccumulation of heavy metals and defense against fouling or predators through production of natural products, chemical signals or competition. The critical assessment and characterization of these communities is extremely valuable to comprehend their biological/ecological role and biotechnological potential.  相似文献   

10.
Background:Alzheimer’s disease is one of the neurodegenerative disorders typified by the aggregate of Aβ and phosphorylated tau protein. Oxidative stress and neuroinflammation, because of Aβ peptides, are strongly involved in the pathophysiology of AD. Linagliptin shows neuroprotective properties against AD pathological processes through alleviation of neural inflammation and AMPK activation. Methods:We assessed the benefits of linagliptin pretreatment (at 10, 20, and 50 nM concentrations), against Aβ1-42 toxicity (20 μM) in SH-SY5Y cells. The concentrations of secreted cytokines, such as TNF-α, IL-6, and IL-1β, and signaling proteins, including pCREB, Wnt1, and PKCε, were quantified by ELISA. Results:We observed that Aβ led to cellular inflammation, which was assessed by measuring inflammatory cytokines (TNF-α, IL-1β, and IL-6). Moreover, Aβ1-42 treatment impaired pCREB, PKCε, and Wnt1 signaling in human SH-SY5Y neuroblastoma cells. Addition of Linagliptin significantly reduced IL-6 levels in the lysates of cells, treated with Aβ1-42. Furthermore, linagliptin prevented the downregulation of Wnt1 in Aβ1-42-treated cells exposed. Conclusion: The current findings reveal that linagliptin alleviates Aβ1-42-induced inflammation in SH-SY5Y cells, probably through the suppression of IL-6 release, and some of its benefits are mediated through the activation of the Wnt1 signaling pathway. Key Words: Alzheimer disease, Interleukin-6, Linagliptin, Wnt1 protein  相似文献   

11.
12.
13.
The marine environment is a generous source of biologically active compounds useful for human health. In 50 years, about 25,000 bioactive marine compounds have been identified, with an increase of 5% per year. Peculiar feature of algae and plants is the production of secondary metabolites, such as polyphenols, synthesized as a form of adaptation to environmental stress. Posidonia oceanica is a Mediterranean endemic and dominant seagrass and represents a biologically, ecologically and geologically important marine ecosystem. Within this study, methanolic and ethanolic extracts were generated from fresh and dried Posidonia oceanica leaves, with the aim to employ and valorize the beach cast leaves. The best yield and antioxidant activity (polyphenols content equal to 19.712 ± 0.496 mg GAE/g and DPPH IC50 of 0.090 µg/µL.) were recorded in 70% ethanol extracts (Gd-E4) obtained from leaves dried for two days at 60 °C and ground four times. HPLC analyses revealed the presence of polyphenols compounds (the most abundant of which was chicoric acid) with antioxidant and beneficial properties. Bioactive properties of the Gd-E4 extracts were evaluated in vitro using fibroblast cells line (HS-68), subjected to UV induced oxidative stress. Pre-treatment of cells with Gd-E4 extracts led to significant protection against oxidative stress and mortality associated with UV exposure, thus highlighting the beneficial properties of antioxidants compounds produced by these marine plants against photo damage, free radicals and associated negative cellular effects. Beach cast leaves selection, processing and extraction procedures, and the in vitro assay results suggested the potentiality of a sustainable approach for the biotechnological exploitation of this resource and could serve a model for other marine resources.  相似文献   

14.
15.
Ultraviolet (UV) B exposure is a prominent cause of skin aging and a contemporary subject of interest. The effects are progressing through the generation of reactive oxygen species (ROS) that alter cell signaling pathways related to inflammatory responses. The present study evaluates the protective effects of (7aR)-6-hydroxy-4,4,7a-trimethyl-6,7-dihydro-5H-1-benzofuran-2-one (HTT) isolated from the edible brown algae Sargassum horneri against UVB protective effects in human dermal fibroblasts (HDFs). HTT treatment dose-dependently suppressed intracellular ROS generation in HDFs with an IC50 of 62.43 ± 3.22 µM. HTT abated UVB-induced mitochondrial hyperpolarization and apoptotic body formation. Furthermore, UVB-induced activation of key nuclear factor (NF)-κB and mitogen-activated protein kinase signaling proteins were suppressed in HTT treated cells while downregulating pro-inflammatory cytokines (interleukin-1β, 6, 8, 33 and tumor necrosis factor-α). Moreover, HTT treatment downregulated matrix metalloproteinase1, 2, 3, 8, 9 and 13 that was further confirmed by the inhibition of collagenase and elastase activity. The evidence implies that HTT delivers protective effects against premature skin aging caused by UVB exposure via suppressing inflammatory responses and degradation of extracellular matrix (ECM) components. Extensive research in this regard will raise perspectives for using HTT as an ingredient in UV protective ointments.  相似文献   

16.
17.
Although human exposure to Gram-negative Vibrio vulnificus (V. vulnificus) lipopolysaccharide (LPS) has been reported to result in septic shock, its impact on the central nervous system’s innate immunity remains undetermined. The purpose of this study was to determine whether V. vulnificus MO6-24/O LPS might activate rat microglia in vitro and stimulate the release of superoxide anion (O2), a reactive oxygen species known to cause oxidative stress and neuronal injury in vivo. Brain microglia were isolated from neonatal rats, and then treated with either V. vulnificus MO6-24/O LPS or Escherichia coli O26:B6 LPS for 17 hours in vitro. O2 was determined by cytochrome C reduction, and matrix metalloproteinase-2 (MMP-2) and MMP-9 by gelatinase zymography. Generation of cytokines tumor necrosis factor alpha (TNF-α), interleukin-1 alpha (IL-1α), IL-6, and transforming growth factor-beta 1 (TGF-β1), chemokines macrophage inflammatory protein (MIP-1α)/chemokine (C-C motif) ligand 3 (CCL3), MIP-2/chemokine (C-X-C motif) ligand 2 (CXCL2), monocyte chemotactic protein-1 (MCP-1)/CCL2, and cytokine-induced neutrophil chemoattractant-2alpha/beta (CINC-2α/β)/CXCL3, and brain-derived neurotrophic factor (BDNF), were determined by specific immunoassays. Priming of rat microglia by V. vulnificus MO6-24/O LPS in vitro yielded a bell-shaped dose-response curve for PMA (phorbol 12-myristate 13-acetate)-stimulated O2 generation: (1) 0.1–1 ng/mL V. vulnificus LPS enhanced O2 generation significantly but with limited inflammatory mediator generation; (2) 10–100 ng/mL V. vulnificus LPS maximized O2 generation with concomitant release of thromboxane B2 (TXB2), matrix metalloproteinase-9 (MMP-9), and several cytokines and chemokines; (3) 1000–100,000 ng/mL V. vulnificus LPS, with the exception of TXB2, yielded both attenuated O2 production, and a progressive decrease in MMP-9, cytokines and chemokines investigated. Thus concentration-dependent treatment of neonatal brain microglia with V. vulnificus MO6-24/O LPS resulted in a significant rise in O2 production, followed by a progressive decrease in O2 release, with concomitant release of lactic dehydrogenase (LDH), and generation of TXB2, MMP-9, cytokines and chemokines. We hypothesize that the inflammatory mediators investigated may be cytotoxic to microglia in vitro, by an as yet undetermined autocrine mechanism. Although V. vulnificus LPS was less potent than E. coli LPS in vitro, inflammatory mediator release by the former was clearly more efficacious. Finally, we hypothesize that should V. vulnificus LPS gain entry into the CNS, it would be possible that microglia might become activated, resulting in high levels of O2 as well as neuroinflammatory TXB2, MMP-9, cytokines and chemokines.  相似文献   

18.
Aphrocallistes vastus lectin (AVL) is a C-type marine lectin derived from sponges. Our previous study demonstrated that oncolytic vaccinia virus carrying AVL (oncoVV-AVL) significantly enhanced the cytotoxicity of oncoVV in cervical cancer, colorectal cancer and hepatocellular carcinoma through the activation of Ras/ERK, MAPK/ERK and PI3K/Akt signaling pathways. In this study, the inflammatory response induced by oncoVV-AVL in a hepatocellular carcinoma cell (HCC) model was investigated. The results showed that oncoVV-AVL increased the levels of inflammatory cytokines including IL-6, IL-8 and TNF-α through activating the AP-1 signaling pathway in HCC. This study provides novel insights into the utilization of lectin AVL in the field of cancer therapy.  相似文献   

19.
In this study, we investigated the anti-allergic effects of 3,4-dihydroxybenzaldehyde (DHB) isolated from the marine red alga, Polysiphonia morrowii, in mouse bone-marrow-derived cultured mast cells (BMCMCs) and passive cutaneous anaphylaxis (PCA) in anti-dinitrophenyl (DNP) immunoglobulin E (IgE)-sensitized mice. DHB inhibited IgE/bovine serum albumin (BSA)-induced BMCMCs degranulation by reducing the release of β-hexosaminidase without inducing cytotoxicity. Further, DHB dose-dependently decreased the IgE binding and high-affinity IgE receptor (FcεRI) expression and FcεRI-IgE binding on the surface of BMCMCs. Moreover, DHB suppressed the secretion and/or the expression of the allergic cytokines, interleukin (IL)-4, IL-5, IL-6, IL-13, and tumor necrosis factor (TNF)-α, and the chemokine, thymus activation-regulated chemokine (TARC), by regulating the phosphorylation of IκBα and the translocation of cytoplasmic NF-κB into the nucleus. Furthermore, DHB attenuated the passive cutaneous anaphylactic (PCA) reaction reducing the exuded Evans blue amount in the mouse ear stimulated by IgE/BSA. These results suggest that DHB is a potential therapeutic candidate for the prevention and treatment of type I allergic disorders.  相似文献   

20.
The marine ecosystem has been a key resource for secondary metabolites with promising biological roles. In the current study, bioassay-guided phytochemical investigations were carried out to assess the presence of enzyme inhibitory chemical constituents from the methanolic extract of marine green alga—Codium dwarkense. The bioactive fractions were further subjected to chromatographic separations, which resulted in the isolation of a new triterpenic acid; dwarkenoic acid (1) and the known sterols; androst-5-en-3β-ol (2), stigmasta-5,25-dien-3β,7α-diol (3), ergosta-5,25-dien-3β-ol (4), 7-hydroxystigmasta-4,25-dien-3-one-7-O-β-d-fucopyranoside (5), 7-hydroxystigmasta-4,25-dien-3-one (6), and stigmasta-5,25-dien-3β-ol (7). The structure elucidation of the new compound was carried out by combined mass spectrometry and 1D (1H and 13C) and 2D (HSQC, HMBC, COSY, and NOESY) NMR spectroscopic data. The sub-fractions and pure constituents were assayed for enzymatic inhibition of alpha-glucosidase. Compound 1 showed significant inhibition at all concentrations. Compounds 2, 3, 5, and 7 exhibited a dose-dependent response, whereas compounds 4–6 showed moderate inhibition. Utilizing such marine-derived biological resources could lead to drug discoveries related to anti-diabetics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号