共查询到17条相似文献,搜索用时 62 毫秒
1.
基于大涡模拟数值仿真的喷射泵喉 总被引:1,自引:0,他引:1
采用弱可压缩流体理论,大涡模拟数值方法,有限体积离散法,贴体坐标变换等理论和方法,研究了喷射泵内部流动状态。通过数值仿真,分别计算了具有不同喉管长度的喷射泵内部流场,并经过分析确定了喷射泵的最优喉管尺寸,计算数据和试验数据对比非常接近,证明了数值仿真结果是合理的、可信的。 相似文献
2.
基于雷诺时均Navier-Stokes方程和标准k-ε湍流模型,利用Fluent软件对文丘里施肥器的内部流动进行了数值模拟,并对数值计算方法的正确性进行了验证.模拟分析了喉管进口直径为4,5,6 mm,以及出口直径与进口直径之比λ为1.0,1.1,1.2,1.3和1.4时15种结构方案的吸肥性能.结果表明:喉管直径对喉管及扩散段内流动特性、吸肥性能和效率均有一定影响,但出口直径与进口直径之比λ对文丘里施肥器性能的影响要明显甚于喉管进口直径.根据效率最高原则,喉管直径比应为1.2~1.3.建立了λ=1.2或1.3时文丘里施肥器吸肥效率与流量比之间的回归模型,并应用回归模型预测了吸肥效率最大值.喉管进口直径4 mm的文丘里施肥器当直径比为1.3时吸肥效率可达到15.5%,与直径比为1.0相比,前者的扩散段内部流动平顺、无漩涡出现,且相同横截面的平均湍动能值要小.该研究结果为文丘里施肥器的优化设计提供了一定的理论参考. 相似文献
3.
喉管长度对环形射流泵性能影响的数值模拟 总被引:5,自引:0,他引:5
基于有限体积法和Realizablek-ε紊流模型,应用Fluent软件对环形射流泵内部流场进行数值模拟,并对计算的可靠性进行验证.由射流泵内部流场可以看出,环形射流泵射流的扩展混合在喉管和扩散管中均存在.针对不同喉管长度下环形射流泵内部射流扩展和壁面压力分布情况,模拟分析了不同喉管长度对环形射流泵性能和效率的影响.结果表明,喉管长度对喉管内射流扩展、环形射流泵性能和效率均有一定影响.喉管越长,射流扩展混合程度越好,但过长的喉管会带来较大的摩阻损失.根据效率最高原则,环形射流泵喉管长度Lt应符合Lt/Dt=2.17-2.89,其中当喉管长度为喉管直径2.69倍时效率最高,可达到35.6%. 相似文献
4.
基于CFD的汽车外流场数值模拟的发展概述 总被引:1,自引:0,他引:1
介绍了国内外在应用计算流体力学(Calculation Fluid Dynamics)对车身外流场数值模拟的研究发展状况:如今,国外CFD软件正朝全自动划分网格、高速高精歧的计算方面发展,而国内对CFD的研究发展还处于一个初级水平.归纳了可用于汽车外流场数值模拟的方法及特点,最后指出了汽车外流场数值模拟目前面临的主要问题和发展趋势. 相似文献
5.
为了达到有效分离地膜的目的,研究了场地膜秆分离装置内流场的压力分布和速度分布,获得适合场地膜秆分离装置的进料口的尺寸,为场地膜秆分离装置的结构设计和优化提供了比较重要的理论依据。建立场地膜秆分离装置初始模型,采用Ansys里的Fluent模块对其腔体内流场的压力分布和速度分布进行了数值模拟,并对比分析所得的结果。结果表明:当进料口为无角度送料、腔体横截面长度为1 300 mm、腔体横截面宽度为1 0 0 0 mm时,腔体流场的压力分布总体均匀,下落粗棉杆和细棉杆的范围相对较大;当进料口为无角度送料、腔体横截面长度为1 300mm、腔体横截面宽度为1 000mm时,为合理工况,利于分离出地膜。 相似文献
6.
7.
液体射流泵内部三维流场的数值模拟 总被引:4,自引:6,他引:4
应用FLUENT6.0软件对液体射流泵三维流场进行了计算分析。在前处理软件GAMBIT2.1.6中将泵内的流场划分为71153个计算单元。计算中采用可实现K-6双方程模型,边界条件为压力进口、压力出口,速度、压力采用SIMPLEC算法。计算得出了射流泵内部的流场分布,其结果可以为射流泵的设计提供依据。 相似文献
8.
液体射流泵内部三维流场的数值模拟 总被引:3,自引:0,他引:3
应用FLUENT6.1软件对液体射流泵三维流场进行了计算分析。在前处理软件GAMBIT2.1.6中将泵内研究的流场划分为71153个计算单元。计算中采用可实现κ-ε双方程模型,边界条件为压力进口、压力出口.同时采用Segregated算法。计算结果表明,液体射流泵内部流动分布均匀,未出现涡流和回流的现象。 相似文献
9.
为研究射流式离心泵喉管长度对泵自吸性能的影响规律,运用CFX软件提供的Eulerian-Eulerian多相流模型,对不同喉管圆柱段长度的射流式离心泵内部气液两相流动进行定常数值模拟,得到泵内部压力、气相速度以及的气相体积分数的变化规律,分析其对自吸性能的性影响,并通过试验进行验证.模拟结果表明:当喉管圆柱段长度为10 mm时,喉管处静压值将降低,卷吸作用得到加强,且其轴线上的气相过流速度进一步提高,整体增强了气相分离能力,泵的自吸性能明显提高;当喉管圆柱段长度为15 mm时,其对射流器内部静压值以及气相速度影响甚微,由于流动损失增加导致做功能力减弱,泵的水力性能降低.试验发现:当喉管圆柱段为10 mm时,自吸高度由原来的7.45 m提高至9.15 m,自吸时间也由原来的148.5 s缩短至90.0 s左右,自吸性能得到明显提高,且满足设计运行要求. 相似文献
10.
应用计算流体动力学软件Fluent对带导流器的射流式自吸离心泵内部流场进行了定常数值模拟,对泵内部流场的速度矢量、静压、总压分布及流动规律进行分析,预测了泵的效率,并与试验结果比较.数值模拟结果表明:带导流器的射流式自吸离心泵的内部流场速度矢量分布趋于平稳,新型导流器的两个出口压力分布均匀,各流道内的压力近似对称分布,泵在设计点数值模拟计算扬程比试验扬程提高6.9%,数值模拟计算效率比试验效率提高0.5%,数值模拟预测的性能曲线与试验性能曲线趋势一致.试验结果表明:带导流器的射流式自吸离心泵的性能曲线稳定、平坦,高效率区范围宽,各项技术指标满足设计要求,该泵的效率比国外同类型相同参数泵的效率提高了16.34%,同时泵体采用铝合金压铸,大幅度减轻了泵的重量,降低了泵的成本,设计合理,结构新颖,体积小,重量轻,运行可靠,操作方便. 相似文献
11.
多喷嘴射流泵流场的数值模拟与PIV测量 总被引:1,自引:0,他引:1
为研究多喷嘴射流泵性能和内部流场特征,设计了不同结构的多喷嘴射流泵试验模型.采用k-ε湍流模型和壁面函数法对不同参数下的多喷嘴射流泵进行了数值模拟,模拟结果表明,喷嘴数和喷嘴角度及喉嘴距对射流泵工作性能影响较大;在吸入室及喉管入口处湍动能较大.利用PIV系统对不同结构射流泵内部流场进行了三维测量,获得了射流泵对称面流场的速度矢量和湍动能等值线图.试验结果表明,其速度梯度衰减得愈快,工作流体和被吸流体混合距离越短.验证了多喷嘴射流泵可缩短喉管长度.测量结果证明数值模拟的正确性,为多喷嘴射流泵理论研究和合理设计提供了理论依据. 相似文献
12.
为揭示单叶片离心泵效率偏低的主要原因,采用数值模拟的方法对单叶片泵的能量损失进行了详细分析,建立了单叶片离心泵水力损失模型.基于SIMPLEC算法和标准k-ε湍流模型,利用ANSYS CFX软件求解三维N-S方程,分析单叶片离心泵在不同流量工况下的湍流耗散损失和壁面摩擦损失,并搭建单叶片离心泵的外性能试验台,验证了数值模拟的准确性.结果表明:单叶片离心泵的能量损失形式主要为耗散损失和摩擦损失,并且泵内的耗散损失明显大于叶片摩擦损失;效率偏低的主要原因是耗散损失较大,具体表现为单叶片离心泵叶轮流道内存在明显的低速区及流动分离区,且压力呈圆周非对称分布;单叶片离心泵从其叶片进口处到出口处的耗散损失、摩擦损失均不断增大;耗散功率、摩擦功率占总功率百分比及叶轮水力效率呈抛物线分布. 相似文献
13.
可调式射流泵性能的数值模拟 总被引:2,自引:1,他引:2
应用RNGκ-ε湍流模型及SIMPLE算法,对采用喷针调节喷嘴过流面积的可调射流泵在不同开度下的性能进行了数值模拟,并与试验数据进行对比分析.结果表明:喷针对可调射流泵性能有一定的影响,随着开度的减小,行程的增大,对可调射流泵效率的影响也越大.在大开度情况下数值计算的可调射流泵性能曲线与试验数据吻合较好;在小开度及小流量比工况下二者趋势一致,但存在一定偏差.通过对试验数据与数值计算值的对比分析,提出了基于数值模拟结果的可调射流泵的实际性能预测公式,该公式可以用数值模拟的结果来预测可调射流泵的实际性能,为可调射流泵的设计提供指导. 相似文献
14.
为了适应船用泵的发展,研制开发新型高效船用冷却泵,采用了Fluent模拟泵内流场,对CB80—65—125型船用冷却泵进行优化.模拟分析了设计工况下,叶轮优化前后,叶片背面与工作面的相对速度分布及z=0平面上的静压分布.根据模拟得到的结果,通过修改叶片进口安放角和叶片形状,对泵进行了优化设计,并对叶轮优化前后的流场进行了分析比较.对泵做了性能试验,并将试验结果与模拟结果作了对比.结果表明,叶轮内部流场和相对速度分布都得到了改善,优化后的叶轮形状更符合流动特性,泵流量和扬程都能满足要求,高效区宽,设计工况点的效率提高了3.56%.因此,结合Fluent模拟泵内流场来进行优化设计的方法是可行的. 相似文献
15.
以北赵引黄工程谢村站用多级双吸式离心泵为研究对象,基于雷诺时均N—S方程,采用SSTk-ω湍流模型,压力速度耦合使用SIMPLEC计算,对泵内部流动进行了三维定常全流场湍流数值模拟,得到不同工况下该泵内部流动的速度矢量图等流场信息.在对其内部流动规律进行了定性分析的基础上,预测了泵的性能,并与现场测试结果进行了对比分析.分析结果表明:首级叶轮首级压水室以及次级叶轮次级压水室内流动较均匀;由于过渡流道的结构特点以及流动惯性,流体在首级压水室进入过渡流道时,在流道突然扩大区域形成了旋涡,旋涡区域大小与流量有关;预测扬程值与现场测试扬程吻合较好,预测扬程最大误差为2.7%,而预测的流量-水力效率曲线与现场测试流量一机组效率曲线变化趋势一致.水泵内部流动的数值模拟可为工程中泵设计阶段的性能预测和结构优化提供依据. 相似文献
16.
运用数值模拟的方法,研究在不同被吸流体速度比下,不同喷嘴位置对采用环形射流喷嘴的新型环形射流泵性能的影响,设计了与传统贴壁环形射流喷嘴不同的夹心式环形射流喷嘴,使得工作流体在离开喷嘴后处于被吸流体的包夹之中.对该新型环形射流泵进行性能预测,并与传统环形射流泵进行对比.数值模拟结果表明:新型环形射流泵效率普遍高于传统环形射流泵效率;对于新型环形射流泵,工作喷嘴位置距离壁面8 mm为最优;对于工作喷嘴距离壁面分别为4,6 mm的新型环形射流泵,在流量比为0.4~0.8的范围内,最佳速度比为1/1,而对于工作喷嘴距离壁面8 mm的新型环形射流泵,在流量比为0.4~0.8的范围内,最佳速度比为3/1. 相似文献
17.
为研究射流式离心泵内流动机理,以JET750G1型射流式离心泵为研究对象,搭建试验测试系统,分别对不同安装高度下射流式离心泵的空化及能量特性进行试验研究;基于k-ω湍流模型和Zwart-Gerber-Belamri空化模型,对0 mm安装高度下泵各工况点内部流动进行数值模拟.试验结果表明:当流量增大到一定程度之后,扬程-流量、功率-流量、效率-流量曲线均急剧下降;随着安装高度的增大,陡降起始点向小流量工况偏移.数值计算结果表明:扬程、功率、效率的数值模拟结果与试验值基本吻合,数值模拟性能陡降起始流量点比试验值大0.5 m3/h;射流式离心泵由于其面积比值较小,射流剪切层被迅速排挤到喉管壁面,泵内最低压力点出现在喉管内喷嘴稍后处,空化最早发生在该处;随着流量的增大,空化区域急剧向叶轮进口扩展,性能陡降起始点正好是泵内初生空化流量点,射流式离心泵的空化性能取决于其射流器的空化性能;射流器能提升离心泵扬程和自吸性能,但射流器内高速回流及强剪切流动,导致其效率及空化性能大幅下降. 相似文献