首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Individual glucosinolates (GLS) were determined in vegetables of three Cruciferae species: Brassica oleracea L. (white cabbage, red cabbage, Savoy cabbage, Brussels sprouts, cauliflower, kale, kohlrabi), Brassica rapa L. (turnip), and Raphanus sativus L. (red radish, black radish, and white radish) produced in two years. The cultivars were compared for the contents of total-, indole-, and aliphatic GLS. In both years, the total content of GLS was highest in black radish, and all examined R. sativus vegetables contained the greatest amount of aliphatic GLS. Neither the level nor the identity of GLS differentiated among the vegetables of the other cultivars grown in the same year. Comparison of the GLS contents of the same cultivar in two production years, which differed in temperature and rainfall rate, showed that low average 10-day rainfall and high average temperature during the vegetation period significantly increased the GLS content of vegetables. This suggests that the year x cultivar interaction modified the GLS content of vegetables.  相似文献   

2.
In cabbage, glucosinolates such as sinigrin are hydrolyzed by plant myrosinase to allyl isothiocyanate (AITC), allyl cyanide, and, in the presence of an epithiospecifier protein, 1-cyano-2,3-epithiopropane (CEP). Isothiocyanates have been implicated in the cancer-protective effects of Brassica vegetables. The effect of processing on the hydrolysis of glucosinolates was investigated in cabbage. Cabbage was steamed or microwaved for six time durations over 7 min. Glucosinolate concentrations were slightly reduced after microwave cooking (P < 0.001) but were not influenced after steaming (P < 0.05). Myrosinase activity was effectively lost after 2 min of microwave cooking and after 7 min of steaming. Hydrolysis of residual glucosinolates following cooking yielded predominantly CEP at short cooking durations and AITC at longer durations until myrosinase activity was lost. Lightly cooked cabbage produced the highest yield of AITC on hydrolysis in vitro, suggesting that cooking Brassica vegetables for a relatively short duration may be desirable from a health perspective.  相似文献   

3.
The research focused on the glucosinolate (GLS) breakdown products formed during the fermentation of cabbage. A relationship between the contents of degradation products in fermented cabbage and native GLS in raw cabbage was investigated. The effect of fermented cabbage storage on the contents of individual compounds was also assayed. Ascorbigen formed from one of the degradation products of glucobrassicin (indole GLS) was found to be a dominating compound in fermented cabbage. Irrespective of the time of fermented cabbage storage, the content of ascorbigen reached approximately 14 micromol/100 g. Neither the content of isothiocyanates, the major degradation products of aliphatic GLS, nor that of cyanides exceeded 2.5 microM. Storage of cabbage caused periodical increases and decreases in the contents of cyanides and consequent declines in the contents of isothiocyanates. The highest relative contents (expressed as a percentage of the native GLS content) of degradation products--ranging from >70 to 96%--were reported for the products of glucoraphanin degradation, whereas the lowest-- <5% --were reported for the products of sinigrin degradation.  相似文献   

4.
氮肥形态和用量对蔬菜生长与硝态氮累积的影响   总被引:31,自引:0,他引:31  
Experiments were carried out on a vegetable field with Peking cabbage (Bvassica pekinensis (Lour.) Rupr.), cabbage (Bvassica chinensis var. oleifera Makino and nemoto), green cabbage (Brassica chinensis L.), spinach (Spinacia oleracea L.) and rape (Brassica campestris L.) to study the effects of N forms and N rates on their growth and nitrate accumulation. The results indicated that application of ammonium chloride, ammonium nitrate, sodium nitrate and urea significantly increased the yields and nitrate concentrations of Peking cabbage and spinach. Although no significant difference was found in the yields after application of the 4 N forms, nitrate N increased nitrate accumulation in vegetables much more than ammonium N. The vegetable yields were not increased continuously with N rate increase, and oversupply of N reduced the plant growth, leading to a yield decline. This trend was also true for nitrate concentrations in some vegetables and at some sampling times. However, as a whole, the nitrate concentrations in vegetables were positively correlated with N rates. Thus, addition of N fertilizer to soil was the major cause for increases in nitrate concentrations in vegetables. Nitrate concentrations were much higher in roots, stems and petioles than in blades at any N rate.  相似文献   

5.
The influence of two Spanish growing locations with well-differentiated climatic conditions (northern and eastern areas) on the main bioactive compounds, glucosinolates (GLS), total phenolic compounds (TPC), and vitamin C, as well as myrosinase activity and antioxidant capacity in five white cabbage ( Brassica oleracea L. var. capitata) cultivars was investigated. Cabbages with the highest concentration of total GLS presented the highest vitamin C level (r = 0.75, P ≤ 0.05) and the lowest antioxidant capacity (r = -0.76, P ≤ 0.05). The cultivars with the highest vitamin C content had the lowest myrosinase activity (r = -0.89, P ≤ 0.05) and antioxidant capacity (r = -0.86, P ≤ 0.05), whereas those with the largest TPC amount showed the highest antioxidant capacity (r = 0.71, P ≤ 0.05). Cabbage cultivars grown in the northern area of Spain with low temperatures and radiation led to higher mean values of myrosinase activity (29.25 U/g dm), TPC (10.0 GAE mg/g dm), and antioxidant capacity (81.6 μmol Trolox/g dm), whereas cultivars grown in the eastern area with high temperature and radiation led to larger mean values of GLS (14.3 μmol/g dm) and vitamin C (5.3 mg/g dm). The results of this investigation provide information regarding the most suitable Spanish growing location to produce white cabbage with an optimized content of health-promoting compounds.  相似文献   

6.
Cooking as a domestic processing method has a great impact on food nutrients. Most Brassica (Brassicaceae, Cruciferae) vegetables are mainly consumed after being cooked, and cooking considerably affects their health-promoting compounds (specifically, glucosinolates, phenolic compunds, minerals, and vitamin C studied here). The microwave cooking process presents controversial results in the literature due to the different conditions that are employed (time, power, and added water). Therefore, the aim of this work was to study the influence of these conditions during microwave cooking on the human bioactive compounds of broccoli. The results show a general decrease in the levels of all the studied compounds except for mineral nutrients which were stable under all cooking conditions. Vitamin C showed the greatest losses mainly because of degradation and leaching, whereas losses for phenolic compounds and glucosinolates were mainly due to leaching into water. In general, the longest microwave cooking time and the higher volume of cooking water should be avoided to minimize losses of nutrients.  相似文献   

7.
Total and individual levels of glucosinolates (GSs) were measured in red cabbage after various microwave treatments varying in time and intensity of the treatments. Furthermore, the myrosinase enzyme activity of the microwave-heated vegetables was determined. The retention of GSs in the cabbage and the residual activity of the hydrolytic enzyme as a result of microwave preparation were compared with untreated cabbage. In general, high total GS levels were observed for all of the applied microwave treatments. Strikingly, many of the time/energy input combinations resulted in levels exceeding the total GS content of the untreated cabbage material. Moreover, the increase in levels seems to be associated with the energy input applied. A possible explanation for this behavior is an increased extractability of GS from heat-treated cabbage as compared to raw cabbage. Substantial myrosinase activity was retained in cabbage treated at low (24 min, 180 W) and intermediate microwave powers (8 min, 540 W) while microwave cooking for 4.8 min at 900 W (259.2 kJ energy input) resulted in a complete loss of hydrolytic activity. In this respect, differences in observed temperature profiles of the various microwave treatments play an important role. Higher retention of GSs and controllable amounts of active myrosinase can offer increasing health-promoting properties of microwave-prepared Brassica vegetables.  相似文献   

8.
The phenolic profiles of cabbage white butterfly ( Pieris brassicae L.; Lepidoptera: Pieridae) at different development stages (larvae, exuviae, and butterfly), its excrements, and its host plant Brassica rapa var. rapa L. were determined by high performance liquid chromatography- diode-array detector-mass spectrometry/mass spectrometry-electrospray ionization (HPLC-DAD-MS/MS-ESI). Twenty-five acylated and nonacylated flavonoid glycosides and ferulic and sinapic acids were identified in host plant, from which only 12 compounds were found in the excrements. In addition, the excrements showed the presence of sulfate flavonoids and other flavonoid glycosides that were not detected in the leaves. In the larvae kept without food for 12 h, only 3 compounds common to the plant material and 2 others, also present in the excrements, were characterized. The results indicate that deacylation, deglycosylation, and sulfating steps are involved in the metabolic process of P. brassicae and that its excrements may constitute a promising source of bioactive compounds, which could be used to take profit of this common pest of Brassica cultures.  相似文献   

9.
The study was aimed at determining the effect of light conditions on contents of glucosinolates (GLS) in germinating seeds of white mustard, red radish, white radish, and rapeseed. The seeds were germinated in light and dark, at 25 degrees C, for up to 7 days. As compared to the nongerminated seeds, in seeds exposed to light and germinated for 4, 5, 6, and 7 days the content of total GLS was observed to decrease by 30 to 70% depending on the species. Germination in conducted the dark for the respective periods of time resulted in decreases of total GLS not exceeding 25%. The changes in the concentration of total GLS were attributed to aliphatic GLS predominating in seeds, yet in the case of white mustard to sinalbin belonging to aralkyl glucosinolates. Although seeds germinated in the dark, as compared to those exposed to light, were characterized by a higher total content of indole GLS, the percentage contribution of that group of compounds in white mustard, red radish, and white radish remained at a similar level, irrespective of germination time. Only in the case of rapeseed was the percentage of the sum of indole GLS observed to increase from 17 to up to 45% once the seeds were exposed to light and to 50% once they were germinated in the dark.  相似文献   

10.
In this study, the effects of three common cooking practices (i.e., boiling, steaming, and frying) on the artichoke phenolic compounds pattern were evaluated by LC-MS/MS analysis. The variation of carotenoids, antioxidant capacity, and artichoke physical properties after cooking was also investigated. The major phenolic compounds present in the raw sample were 5- O-caffeoylquinic and 1,5-di- O-caffeoylquinic acids; after cooking treatments, an increase of the overall caffeoylquinic acids concentration due to the formation of different dicaffeoylquinic acid isomers was observed. Steamed and fried samples showed similar patterns of dicaffeoylquinic concentrations, which were higher with respect to the boiled samples. On the other hand, all cooking practices, particularly frying, decreased flavonoid concentration. The antioxidant capacity of cooked artichokes, measured by three different assays, enormously increased after cooking, particularly after steaming (up to 15-fold) and boiling (up to 8-fold). The observed cooking effect on the artichoke antioxidant profile is probably due to matrix softening and increased extractability of compounds, but the increase of antioxidant capacity is much higher than the increase of antioxidant concentration. These results suggest that some common cooking treatments can be used to enhance the nutritional value of vegetables, increasing bioaccessibility of health-promoting constituents.  相似文献   

11.
Virgin olive oils were subjected to simulated common domestic processing, including frying, microwave heating, and boiling with water in a pressure cooker. The impact of these processes on polyphenol content and physicochemical characteristics of oils was assessed. Thermal oxidation of oils at 180 degrees C caused a significant decrease in hydroxytyrosol- and tyrosol-like substances. In contrast, oils heated for 25 h still retained a high proportion of the lignans 1-acetoxypinoresinol and pinoresinol. Thermal oxidation also resulted in a rapid degradation of alpha-tocopherol and the glyceridic fraction of oils. Microwave heating of oils for 10 min caused only minor losses in polyphenols, and the oil degradation was lower than that in thermoxidation assays. Again, lignans were the least affected polyphenols and did not change during microwave heating. Boiling a mixture of virgin olive oil and water in a pressure cooker for 30 min provoked the hydrolysis of the secoiridoid aglycons and the diffusion of the free phenolics hydroxytyrosol and tyrosol from the oil to the water phase. Losses of polyphenols were detected only at pH lower than 6. Moreover, alpha-tocopherol and the glyceridic fraction of oils were not modified during this process. It is worth noting that all the heating methods assayed resulted in more severe polyphenols losses and oil degradation for Arbequina than for Picual oil, which could be related to the lower content in polyunsaturated fatty acids of the latter olive cultivar. These findings may be relevant to the choice of cooking method and olive oil cultivar to increase the intake of olive polyphenols.  相似文献   

12.
Cabbage, Brassica oleracea subsp. capitata (cv. Lennox and Rinda), and oilseed rape, Brassica rapa subsp. oleifera (cv. Valo and Tuli), plants were grown under ambient CO(2) (360 ppm) or elevated CO(2) (720 ppm) at 23/18 degrees C and under a photoperiod of 22/2 h light (250 micromol m(-)(2) s(-)(1))/dark regime for up to 5 weeks. Afterward, the performance of the crucifer specialist Plutella xylostella (Lepidoptera: Plutellidae) and the generalist Spodoptera littoralis (Lepidoptera: Noctuidae) on those plants was studied. The mean relative growth rate (RGR) of P. xylostella larvae, feeding on both cultivars of oilseed rape or on the Lennox cultivar of cabbage leaves grown at an elevated CO(2) concentration, was significantly reduced as compared to ambient CO(2). A negative larval growth rate at elevated CO(2) was observed for P. xylostella on both oilseed rape cultivars, but the growth rate was reduced but positive on cabbage. Conversely, the RGR of S. littoralis on either plant species was not affected by CO(2) treatment but was lower on cabbage cv. Rinda than on cv. Lennox. The mortality of the larvae was not affected by CO(2) treatment either. At the same time, elevated CO(2) significantly decreased the concentrations of leaf phytochemical constituents in oilseed rape, i.e., total phenolics and total nitrogen, but not in cabbage. The effect of elevated CO(2) on the leaf glucosinolate concentrations of both plant species was marginal. In addition, the observed significant changes in individual glucosinolate concentrations of oilseed rape leaves were not consistent among cultivars. However, our results demonstrate for the first time quite strong effects of CO(2) enrichment on the larval performance of P. xylostella, which is an important pest of Brassica plants around the world. Further studies are still required to increase our understanding of why elevated CO(2) differently affects the performance of specialist and generalist insect herbivores on Brassica plants.  相似文献   

13.
The use of wastewater for irrigation is increasingly being considered as a technical solution to minimize soil degradation and to restore nutrient contents of soils. The aim of this study is to increase fertility and minimize degradation of soils irrigated with wastewater exposed to different purification treatments. A field experiment was conducted to investigate the effects of control and irrigation with wastewater, which had undergone different purification treatments, on macro‐ and micronutrient distribution within the soil profile and nutrient contents of cabbage (Brassica olerecea var. Capitate cv. Yalova‐1) in Erzurum, Turkey. Wastewater irrigation and preliminary treatment–wastewater irrigation significantly affected soil chemical properties especially at 0–30 cm soil depth and plant nutrient contents after one year. Application of wastewater increased soil salinity, organic matter, exchangeable Na, K, Ca, Mg, plant‐available P, and micro‐elements and decreased soil pH. Wastewater increased also yield and N, P, K, Fe, Mn, Zn, Cu, B, and Mo contents of cabbage plants. Undesirable side effects were not observed in plant heavy‐metal contents, due to salinity and toxic concentrations of metals from the application of wastewater to soil.  相似文献   

14.
Fourier transform infrared (FT-IR) microspectroscopy and low-field (LF) proton NMR transverse relaxation measurements were used to study the changes in protein secondary structure and water distribution as a consequence of aging (1 day and 14 days) followed by salting (3%, 6%, and 9% NaCl) and cooking (65 degrees C). An enhanced water uptake and increased proton NMR relaxation times after salting were observed in aged meat (14 days) compared with nonaged meat (1 day). FT-IR bands revealed that salting induced an increase in native beta-sheet structure while aging triggered an increase in native alpha-helical structure before cooking, which could explain the effects of aging and salting on water distribution and water uptake. Moreover, the decrease in T2 relaxation times and loss of water upon cooking were attributed to an increase in aggregated beta-sheet structures and a simultaneous decrease in native protein structures. Finally, aging increased the cooking loss and subsequently decreased the final yield, which corresponded to a further decrease in T2 relaxation times in aged meat upon cooking. However, salting weakened the effect of aging on the final yield, which is consistent with the increased T2 relaxation times upon salting for aged meat after cooking and the weaker effect of aging on protein secondary structural changes for samples treated with high salt concentration. The present study reveals that changes in water distribution during aging, salting, and cooking are not only due to the accepted causal connection, i.e., proteolytic degradation of myofibrillar structures, change in electrostatic repulsion, and dissolution and denaturation of proteins, but also dynamic changes in specific protein secondary structures.  相似文献   

15.
通过大田试验研究了不同浓度的土壤侵蚀磁性示踪剂对大白菜生理特性及产量、品质的影响。结果表明,在4个浓度(1%、3%、5%、10%)的示踪剂处理下,大白菜叶长、叶宽及产量均明显增大;低浓度(3%~5%)的示踪剂提高了大白菜的株高,促进了根的伸长,显著提高了叶绿素含量(p<0.05),同时对大白菜净光合速率、蒸腾速率也有促进作用。示踪剂处理使叶片中超氧化物歧化酶(SOD)活性显著降低(p<0.05),而根系中SOD活性则显著升高(p<0.05);示踪剂对过氧化物酶(POD)活性的影响与对SOD活性的影响恰好相反,对过氧化氢酶(CAT)活性影响较小,在低浓度条件下,叶片与根系中POD和CAT保持有较高活性;示踪剂还导致叶片中丙二醛(MDA)含量显著提高(p<0.05)。同时,示踪剂降低了大白菜可溶性糖含量,但不显著。示踪剂浓度大于5%时显著降低维生素C含量(p<0.05)。低浓度(1%~3%)处理时有效改善了大白菜品质。总之,低浓度的示踪剂用量对大白菜生长有促进作用,高浓度的示踪剂对大白菜生长有抑制作用。  相似文献   

16.
The effect of methyl jasmonate (MJ) spraying on the chemistry of Brassica plants was investigated. Glucosinolates (GLS) in the leaves, stems, and roots of laboratory-grown oilseed rape (Brassica rapa subsp. oleifera cv. Tuli and Valo) 3 and 7 days after MJ treatment were analyzed. Volatile organic compounds (VOCs) from whole oilseed rape plants were collected 3 days after MJ treatment. GLS were also analyzed from field-grown oilseed rape (cv. Valo) treated with MJ. The production of indolyl GLS in laboratory-grown oilseed rape, especially the concentration of 4-hydroxy-3-indolylmethyl (4-OH-glucobrassicin) in leaves, stems, and roots, 3-indolylmethyl (glucobrassicin) in stems, and 4-methoxy-3-indolylmethyl (4-methoxyglucobrassicin) in roots, was induced after MJ treatment. The VOC emission profile changed after MJ treatment, and homoterpene (E)-4,8-dimethyl-1,3,7-nonatriene (DMNT) was detected only in MJ-treated plants. The GLS concentration in the field-grown plants was significantly higher in MJ-treated plants than in control plants. These results suggest that spraying with MJ induces the production of secondary compounds, that is, GLS and VOCs, in Brassica plants. The induction of VOC emissions in oilseed rape is comparable to that caused by insect feeding damage. Thus, MJ-treated crop plants may become less palatable to insect herbivores and more attractive to natural enemies of herbivores.  相似文献   

17.
Plant analysis has been used to evaluate the nutritional status of many crops for diagnostic and corrective purposes. This study was initiated to establish critical nitrogen (N) plant tissue levels using midrib NO3‐N concentration for cabbage (Brassica oleracea L., capitata group) during the growing season. Tissue samples for nitrate analysis were taken from cabbage plants over a period of four growing seasons beginning at the 4 to 6 leaf stage of growth and biweekly through pre‐harvest. The midrib from the most recently full sized leaf was sampled for NO3‐N concentration determination.

A high degree of correlation existed between NO3‐N concentration in cabbage midribs at various sampling dates and yield as determined by stepwise regression analysis. Nitrate‐N concentration in cabbage midribs indicated the N status of the plant. Minimum or critical levels of NO3‐N in cabbage midribs for sampling dates throughout the growing season were established for conditions such as are found in the desert regions of Arizona as follows: 4 to 6 leaves, 11,000 mg kg‐1; 10 to 12 leaves, 8000 mg kg‐1; folding, 6000 mg kg‐1; early head, 4000 mg kg‐1; pre‐harvest, 3000 mg kg‐1.  相似文献   

18.
Solution culture experiments were conducted under controlled environmental conditions to determine the effects of cadmium(II) [Cd(II)] activity (0, 8, 14, 28, 42, and 54 μM) on influx (IN) into roots and transport (TR) from roots to shoots of zinc (Zn), copper (Cu), iron (Fe), manganese (Mn), calcium (Ca), magnesium (Mg), phosphorus (P), and sulfur (S) in ryegrass (Lolium perenne L.), maize (Zea mays L.), white clover (Trifolium repens L.), and cabbage (Brassica oleracea var. capitata L.). Shoot and root dry matter (DM) decreased with increased external Cd, and plant species differed extensively. Ryegrass and cabbage were relatively tolerant to Cd toxicity compared to white clover and maize. Influx and TR of Cu, Zn, Fe, Mn, Ca, and Mg were lower with increasing external Cd compared to controls, and species also differed. Influx and TR of P were enhanced in each species with up to 14 μM Cd, decreased in white clover and cabbage at higher Cd levels, while in maize and ryegrass continued to increase as Cd increased. Influx and TR of S were high in white clover at 8 μM Cd and decreased as Cd increased. Influx of S was high in ryegrass, but TR of S remained relatively constant as Cd increased. Influx and TR of S did not significantly change in maize, but decreased in cabbage as Cd increased. With Cd up to 14 μM, decreases in both IN and TR of Zn, Fe, Mn, Ca, and Mg were greater in white clover than in cabbage. Sensitivity of the dicotyledonous plant species to Cd toxicity might have been associated with Cd effects on IN and TR of Fe, Mn, Ca, and Mg. However, differences in plant sensitivities to Cd toxicity between ryegrass and maize were not reflected in Cd effects on IN and TR of mineral nutrients.  相似文献   

19.
小青菜对土壤中毒死蜱吸收移动特征研究   总被引:1,自引:0,他引:1  
以小青菜为供试蔬菜,通过在土壤中添加毒死蜱,进行盆栽试验,研究毒死蜱对小青菜生长的影响、在土壤中的降解速度以及在小青菜中的吸收和转移规律,为蔬菜中农药残留风险评估和蔬菜安全生产提供理论依据。试验结果表明,与对照相比,含有高浓度(>50.0 mg kg-1)毒死蜱土壤对小青菜的生长有显著抑制作用;毒死蜱在不同处理土壤中的半衰期从23.03 d至77.43 d不等;残留于土壤中的毒死蜱能够被种植的小青菜根系吸收并转移至茎叶部分,随着土壤中处理浓度的增加,毒死蜱在小青菜根、茎和叶中的残留量也随之增加,且毒死蜱在小青菜根中的残留量最大,在叶中的残留量最小;土壤中毒死蜱残留量与小青菜根、茎和叶中毒死蜱的含量呈良好的线性关系,线性方程分别为:C根=0.025 1C土壤-0.235 8,C茎=0.012 3C土壤-0.051 7,C叶=0.000 7C土壤+0.011 5。为了实现蔬菜中农药残留从农田到餐桌的全程控制,保证无公害蔬菜的安全生产与供应,首先要对生产基地土壤中的农药残留进行检测,并从源头上进行控制。  相似文献   

20.
基于小白菜Cd吸收推算土壤Cd安全阈值   总被引:3,自引:0,他引:3  
Cadmium(Cd), a common toxic heavy metal in soil, has relatively high bioavailability, which seriously threatens agricultural products. In this study, 8 different soils with contrasting soil properties were collected from different regions in China to investigate the Cd transfer coefficient from soil to Chinese cabbage(Brassica chinensis L.) and the threshold levels of Cd in soils for production of Chinese cabbage according to the food safety standard for Cd. Exogenous Cd(0–4 mg kg~(-1)) was added to the soils and equilibrated for 2 weeks before Chinese cabbage was grown under greenhouse conditions. The influence of soil properties on the relationship between soil and cabbage Cd concentrations was investigated. The results showed that Cd concentration in the edible part of Chinese cabbage increased linearly with soil Cd concentration in 5 soils, but showed a curvilinear pattern with a plateau at the highest dose of exogenous Cd in the other 3 soils. The Cd transfer coefficient from soil to plant varied significantly among the different soils and decreased with increasing soil p H from 4.7 to 7.5. However, further increase in soil pH to 8.0 resulted in a significant decrease in the Cd transfer coefficient. According to the measured Cd transfer coefficient and by reference to the National Food Safety Standards of China, the safety threshold of Cd concentration in soil was predicted to be between 0.12 and 1.7 mg kg~(-1) for the tested soils. The predicted threshold values were higher than the current soil quality standard for Cd in 5 soils, but lower than the standard in the other 3 soils. Regression analysis showed a significant positive relationship between the predicted soil Cd safety threshold value and soil p H in combination with soil organic matter or clay content.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号