首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
Summary The formation of lignin in the cell wall of compression wood of Pinus thunbergii was examined by selective radio-labeling of specific structural units in the lignin and visualization of the label in the different morphological regions by microautoradiography. Deposition of lignin in the tracheid cell wall of compression wood occurred in the order: p-hydroxyphenyl, guaiacyl and syringyl lignin, which is the same order as observed in normal wood. However, the period of lignification in the compression wood was quite different from those of normal and opposite woods. The p-hydroxyphenyl units were deposited mainly in the early stage of cell wall formation in compound middle lamella in normal and opposite woods, while in compression wood, they were formed in both the compound middle lamella and the secondary wall. The most intensive lignification was observed during the formation of the S2 layer, proceeding from the outer to inner S2 layers for a long period in compression wood. In the normal or opposite woods, in contrast, the lignification became active after formation of S3 had begun, then proceeded uniformly in the secondary wall and ended after a short period.A part of this report was originally presented at the 1989 International Symposium on Wood and Pulping Chemistry at Raleigh, NC, U.S.A.  相似文献   

2.
This study aims to evaluate the chemical composition of wood and extractives of Pinus taeda and Schizolobium parahyba (guapuruvu) as potential feedstock for new applications in the biorefinery industry. For this purpose, their content of α-cellulose, hemicellulose, insoluble lignin, hot water solubility, NaOH1% solubility, inorganic materials (ash), and monomeric sugars by high-performance liquid chromatography was quantified. Attenuated total reflectance infrared spectroscopy and thermogravimetric analysis were also used to complete the physicochemical characterization of the studied woods. The extractives were obtained by soxhlet extraction with ethanol:toluene and dichloromethane and identified with pyrolysis-gas chromatography/mass spectroscopy technique. The results showed that guapuruvu wood has the higher amount of hemicellulose (16%) when compared to pine wood (10%), which resulted in higher solubility in alkali solution. Furthermore, in relation to other biomasses, the two woods presented more percentage of lignin and minor content of hemicelluloses. The P. taeda wood presented the highest percentage of extractives mainly composed of fatty acids and aromatic hydrocarbons, while guapuruvu wood had a higher percentage of phenolic compounds and also fatty acids. Both the materials have low content of extractives with dichloromethane and were mainly composed of lipophilic compounds.  相似文献   

3.
 The chemical conversion of Japanese beech (Fagus crenata Blume) and Japanese cedar (Cryptomeria japonica D. Don) woods in supercritical methanol was studied using the supercritical fluid biomass conversion system with a batch-type reaction vessel. Under conditions of 270°C/27 MPa, beech wood was decomposed and liquefied to a greater extent than cedar wood, and the difference observed was thought to originate mainly from differences in the intrinsic properties of the lignin structures of hardwood and softwood. However, such a difference was not observed at 350°C/43 MPa, and more than 90% of both beech and cedar woods were effectively decomposed and liquefied after 30 min of treatment. This result indicates that the supercritical methanol treatment is expected to be an efficient tool for converting the woody biomass to lower-molecular-weight products, such as liquid fuels and useful chemicals. Received: December 19, 2001 / Accepted: March 15, 2002 Acknowledgments This research has been done under the research program for the development of technologies for establishing an eco-system based on recycling in rural villages for the twenty-first century from the Ministry of Agriculture, Forestry and Fisheries, Japan and by a Grant-in-Aid for Scientific Research (B)(2) (no.12460144, 2001.4–2003.3) from the Ministry of Education, Culture, Sports, Science and Technology, Japan. This study was presented in part at the 45th Lignin Symposium, Ehime, Japan, October 2000 and the 51st Annual Meeting of the Japan Wood Research Society, Tokyo, Japan, April 2001. Correspondence to:S. Saka  相似文献   

4.
The drying kinetics of reaction woods in Picea abies (compression wood) and Fagus sylvatica (tension wood) in comparison with their corresponding normal woods was investigated under constant convective drying conditions. Moisture profiles along the thickness of small flat-sawn boards taken from reaction and opposite wood zones were evaluated using a polychromatic X-ray system, a non-destructive method. The results revealed substantial differences in the drying behavior between the reaction and opposite woods. Both reaction woods represented slower drying rate than their matching normal woods mainly during the period of free water loss. However, the reaction and opposite woods reached the final moisture content (MC) of about 12% at the same time due to higher initial MC in the opposite woods. In the case of reaction wood, it took a longer time for the moisture profile to become approximately uniform. Overall, a more striking difference was observed in the drying behavior of compression and opposite wood in P. abies. Some important anatomical differences like the cell and pit dimensions and their proportion give some explanations for these drying behaviors.  相似文献   

5.
The present study is focused on analysing the suitability of different Streptomyces strains for biomechanical pulping purposes using spruce wood (Picea abies) as substrate. After 2 weeks of incubation, no apparent variations in lignin Klason content of treated woods were detected compared with the control. However, the increase in acid-soluble lignin fraction pointed out chemical alterations in lignin moiety. Through Py-GC/MS analysis enrichment in cellulose and lignin molecule modifications were detected in treated woods. The increase in the relative abundance of the most G-type phenol units with a higher oxidation degree suggests that some oxidation occurred in the lignin C3-alkyl chain. In addition, the decrease in the phenylmethane + phenylethane/phenylpropane (phC1 + ph C2/ph C3) ratio would indicate the ability of Streptomyces strains to breakdown the C3-alkyl chain linkages once carbons had been oxidized. From this study it could be concluded that the assayed strains are able to produce a delignification of spruce wood which may improve mechanical pulping processes.  相似文献   

6.
The lignification process and lignin distribution at different stages of cell wall differentiation in the secondary xylem of compression and normal woods of Pinus thunbergii were investigated by thioacidolysis and subsequent desulfuration. We prepared 50-µm-thick, contiguous tangential sections of pine shoots, cut from the cambial zone through to mature xylem. In compression wood, uncondensed guaiacyl (G) and p-hydroxyphenyl (H) lignins were deposited simultaneously from early to late stages of lignification. The various types of G-G, G-H, and H-H dimers were detected in compression wood, and the ratio of G-H and H-H dimers to total dimers increased as lignification proceeded. In contrast, uncondensed and condensed H units were detected in trace amounts in normal wood. Significant differences in the relative distributions of lignin interunit linkages were not observed between compression and normal woods or between differentiating and mature xylems in either compression or normal woods.Part of this report was presented at the 10th International Symposium on Wood and Pulping Chemistry, Yokohama, June, 1999  相似文献   

7.
The factors that cause weather-induced deterioration of wood surfaces were determined by chemical and spectroscopic analyses. Albizzia (Paraserianthes falcata Becker.) and sugi (Cryptomeria japonica D. Don) were exposed to two temperate conditions of natural weathering with and without rainfall and to accelerated conditions of artificial weathering coupled with ultraviolet (UV) light irradiation and water flashing. Infrared spectroscopic analysis showed that the oxidative reaction of lignin was observed under all conditions of weathering for both wood species. However, a marked decrease in lignin and hemicellulose content were recognized when albizzia woods were exposed to weathering with water. Lignin content in the softwood sugi did not decrease as much as in albizzia even in the presence of water, but the modification of lignin macromolecules was assumed to be accelerated by water, as seen by electron spin resonance spectroscopy. These results showed that the presence of water promotes the weathering deterioration of wood under UV irradiation.  相似文献   

8.
A new wood preservative containing low molecular weight and low-toxicity silicic acid (LWSA) was investigated. To prevent environmental pollution with the wood preservative, a silicic acid monomer aqueous solution (SAMS) or colloidal silicic acid solution (CSAS) was combined with various metal compounds or boric acid. Agents where SAMS or CSAS was combined with boric acid gave good protection against decay caused by the brown-rot fungus Fomitopsis palustris, the treated wood (Cryptomera japonica D. Don) specimens after the leaching test maintained a high resistance to decay. The leaching and decay tests revealed high quantities of chemicals leaching from wood treated with SAMS-metal agents. However, when wood was treated with SAMS-boric acid, there was little leaching of agent in either test. The mechanism of resistance of wood, which was treated with boric acid mixed with CSAS or SAMS, to the brown-rot fungus F. palustris were investigated. When the concentration of boric acid was high, mycelial growth was inhibited completely and no protein production was detected. When the amount of boric acid was low, the xylanase, mannase and cellulase activities were lower than with control wood powder. When powdery boric acid was combined with CSAS, it was considered that the treated woods have higher anti-weather properties than when boric acid-methanol solution was mixed with CSAS. The agent-preparation method adopted should be considered carefully after taking the treatment process and the intended use of the preservative-treated wood into account. Received 26 September 2000 This study was supported by a Grant-in-Aid (09460079) for Scientific Research from the Ministry of Education, Science, and Culture of Japan.  相似文献   

9.
Seedlings ofEucalyptus viminalis were grown for 50 days with their stems bent so tension wood would form. Every 10 days the lignin content, monomeric composition, and peroxidase activity in the tension wood were compared with those in the lower side (opposite wood) and in vertically grown controls. The lignin content in the developing tension wood started to decrease after 10 days of bending and kept decreasing for 50 days, whereas those in control plants and opposite wood remained almost unchanged. The yields of syringaldehyde from tension wood by nitrobenzene oxidation increased, and consequently the syringyl/ guaiacyl ratio of the lignin was higher in tension wood than in opposite wood and control plants. The peroxidase ionically bound to the cell walls (IPO) catalyzed oxidation of guaiacol and syringaldazine. The syringaldazineoxidizing activity of IPO from tension wood increased, whereas the activities of IPO from opposite wood and control plants did not show any marked change. In tension wood the increase in syringaldazine-oxidizing activity of IPO was consistent with an increase in the syringaldehyde yield. This suggests that IPO contributes to syringyl lignin deposition as other enzymes involved in the monolignol biosynthesis do in tension wood formation.This study was presented at the 50th Annual Meeting of the Japan Wood Research Society, Kyoto, April 2000  相似文献   

10.
Summary The in vitro decay of Aextoxicon punctatum and Fagus sylvatica wood by the fungi Trametes versicolor, Ganoderma australe, Phlebia chrysocrea and Lentinus cyathiformis was studied by the agar-block method, and then the decayed woods were analyzed by chemical and spectroscopic techniques. The results demonstrated the strong resistance of the A. punctatum wood to the brown-rot fungus L. cyathiformis; the resistance might be related to the low S/G lignin ratio in this Austral hardwood. Wood decay by the Austral white-rot fungi G. australe and P. chrysocrea was rather limited, and preferential degradation of lignin was not produced although all the fungi studied increased wood digestibility. The most characteristic white and brown-rot decay patterns were observed during the in vitro decay with T. versicolor and L. cyathiformis, respectively. Trametes versicolor caused high weight losses and reduced the lignin content of the wood, whereas L. cyathiformis produced a preferential removal of xylan. No important changes in the solid-state 13C NMR spectra were observed after wood degradation by T. versicolor, but this technique evidenced an increase in aromatic carbon by L. cyathiformis. This increase was higher than that found in the Klason lignin content, suggesting the presence of altered lignin fractions in the brown-rotted wood.The authors are indebted to Prof. H. D. Lüdemann for the facilities at the Institut für Biophysik und physikalische Biochemie (Regensburg), to A. Navarrete (INIA, Madrid) for her collaboration, and to C. F. Warren (ICE, Alcalá de Henares) for her linguistic assistance. The computer program for spectra treatment was developed by G. Almendros (Centro de Ciencias Medioambientales, CSIC, Madrid). This investigation has been funded by the Spanish Biotechnology Program (Grant BIO88-0185)  相似文献   

11.
The moisture diffusion coefficient of compression wood in spruce (P. abies) and tension wood in beech (F. sylvatica) was examined. The results indicated that the diffusion coefficient measured under steady-state condition (cup method) could well characterize the drying kinetics of the reaction woods. The compression wood offered more resistance to the moisture diffusivity when compared with the corresponding normal wood. The thick cell wall rich in lignin explains the small mass diffusivity in compression wood. In contrast, the mass diffusivity in beech is almost always higher in tension wood than in normal wood, in spite of similar density values. The high moisture diffusion in tension wood can be explained by the ease of bound water diffusion in the gelatinous layers (G-layers).  相似文献   

12.
To clarify the behavior of whole lignins in wood cell walls during alkaline nitrobenzene oxidation, the delignification process from cell walls in normal and compression woods of Chamaecyparis obtusa Endl. (Cupressaceae) was observed using ultraviolet and transmission electron microscopies. The lignin content conspicuously decreased to around 10% after 35min in normal wood. The lignin content in compression wood finally leveled off at aroumd 10% after 50min. In gel filtration of oxidation products in ethyl acetate, a high molecular weight fraction was prominent in extracts from the early stage of the reaction. As the oxidation progressed, the high molecular weight fraction became less prominent in both normal and compression wood. Changes in the weights of cell wall residues during reaction indicated that approximately half of the components other than lignin were also removed from the cell walls. This shows that the majority of lignin with relatively high molecular weight is removed from the cell walls together with polysaccharides in the early stage of the reaction and that further oxidative degradation occurs in solution in later stages. Only a small amount of the lignin with low molecular weight could be analyzed by gas chromatography.Parts of this report were presented at the 47th (Kochi, April 1997) and 48th (Shizuoka, April 1998) Annual Meetings of the Japan Wood Research Society, and at the Lignin Symposium, Sapporo, October 1997  相似文献   

13.
Summary Opposite wood, normal side wood, and compression wood were isolated from leaning stems of Abies balsamea, Larix laricina, Picea mariana, Pinus resinosa, and Tsuga canadensis and were subjected to analyses for lignin and relative carbohydrate composition. There were no statistically significant differences between the data obtained for opposite wood and side wood. Contrary to some earlier reports, opposite wood has exactly the same content of lignin, cellulose, and hemicelluloses as has corresponding normal wood.This paper is dedicated to Dean Edwin C. Jahn in honor of his 70th birthday.  相似文献   

14.
The effects of ozone treatment were investigated to improve the process of liquefaction of wood with polyhydric alcohol solvents. The liquefied wood having a high wood to polyhydric alcohol ratio (W/P ratio) could be prepared by using the wood treated with ozone in the liquid phase. The liquefied wood with a W/P ratio of 2 : 1 had enough fluidity to act as a raw material for chemical products. To get some information about the effects of ozone treatment toward the wood components, cellulose powder and steamed lignin were treated with ozone and liquefied. In particular, ozone treatment in the liquid phase was found to be effective for wood and cellulose powder. On the other hand, steamed lignin self-condensed during liquefaction after treatment with ozone in the liquid phase. Thus, ozone treatment provided lignin with reactive functional groups, and caused the subsequent condensation reaction. Although lignin was converted to a more condensable structure by ozone treatment, the condensation reaction was found to be suppressed for wood during its liquefaction. The wood liquefied products displayed good solubilities in N,N-dimethyl formamide (DMF) even after treatments of long duration. It was suggested that one of the main effects of ozone treatment toward wood was the decomposition of cellulose.Part of this report was presented at the 53rd Annual Meeting of the Japan Wood Research Society, Fukuoka, April 2003  相似文献   

15.
Participation of lignin in the reaction between vapor-phase formaldehyde and wood was examined by using gradually delignified wood meal. A fi rst-order rate equation was successfully applied to the weight gain data. From the estimated reaction parameters such as rate constant, k, and ultimate weight gain, a, the reactivity toward formaldehyde was discussed among wood components, and compared with that for acetylation. k decreased monotonously with progress of the elimination of lignin, suggesting that the reaction rate of lignin is dominant over that of whole wood, and the decrease in the ratio of lignin retarded the reaction of wood as a whole. On the other hand, a increased with decreasing lignin content. This may be attributable to the enhanced reactivity of the remaining lignin due to some structural changes and to the increase in the number of reactive sites in polysaccharides as a result of their exposure accompanying the elimination of lignin. The dependencies of k and a on the lignin content were not similar to the case for acetylation, probably because of the difference in the reaction phase. In vapor-phase formaldehyde treatment, the remaining lignin reacts as it is, whereas in liquid-phase acetylation it would undergo rearrangement or swelling of the structure in the reaction solution.  相似文献   

16.
Sugi (Cryptomeria japonica D. Don) and buna (Fugus crenata Blume) woods were treated with supercritical water (>374°C, >22.1 MPa) and fractionated into a water-soluble portion and a water-insoluble residue. The latter was washed with methanol to be fractionated further into a methanol-soluble portion and a methanol-insoluble residue. Whereas the carbohydrate-derived products were in the water-soluble portion, most of the lignin-derived products were found in the methanol-soluble portion and methanol-insoluble residue. The lignin-derived products in the methanol-soluble portion were shown to have more phenolic hydroxyl groups than lignin in original wood. The alkaline nitrobenzene oxidation analyses, however, exhibited much less oxidation product in the methanol-soluble portion and methanol-insoluble residue. These lines of evidence suggest that the ether linkages of lignin are preferentially cleaved during supercritical water treatment. To simulate the reaction of lignin, a study with lignin model compounds was performed;-O-4-type lignin model compounds were found to be cleaved, whereas biphenyl-type compounds were highly stable during supercritical water treatment. These results clearly indicated that the lignin-derived products, mainly consisting of condensed-type linkages of lignin due to the preferential degradation of the ether linkages of lignin, occurred during supercritical water treatment.This study was presented in part at the 45th lignin symposium, Ehime, Japan, October, 2000; and the 49th Annual Meeting of the Japan Wood Research Society, Tokyo, April 1988  相似文献   

17.
A series of experiments were carried out to investigate the colour stability of chemically treated and thermally modified wood compared to non-modified wood during long term artificial UV light irradiation. One set of wood samples was vacuum-pressure impregnated with alkaline (pH 9.8) copper (II) ethanolamine aqueous solution, while another set of samples from the same wood block was thermally modified at 210°C and −0.90 bar for 2 h. The treated and modified wood samples along with the non-modified ones were exposed to artificial UV light with the wave length in the region of UVA (315–400 nm) and UVB (280–315 nm) intermittently for 500 h. Colour measurements were carried out throughout the irradiation period at an interval of 100 h according to CIEL*a*b* system, where the results are presented in terms of ΔE, ΔL*, Δa* and Δb* values. Better photo-stability in terms of colour changes was recorded for both treated and modified woods compared to the non-modified one. By means of EPR and DRIFT spectroscopic study it was shown that some degree of colour stability of treated and modified woods, achieved during artificial UV light irradiation, resulted from lignin modifications and monomers of phenolic compounds.  相似文献   

18.
Summary Anatomical features of reaction wood formed in two Magnolia species, M. obovata Thunb. and M. kobus DC. which are considered to be among the primitive angiosperms, were observed. In addition, the distribution of guaiacyl and syringyl units of lignins in the cell walls of normal and reaction wood was examined using ultraviolet (UV)- and visible light (VL)- microspectrophotometry coupled with the Wiesner and M?ule reactions. The two Magnolia species formed a tension-like reaction wood without possessing the typical gelatinous layer (G-layer) on the upper side of the inclined stem or branch, in which a radial growth promotion occurred. Compared with the normal wood, the reaction wood had the following anatomical features: (1) the secondary walls of fiber tracheids lacked the S3 layer, (2) the innermost layer of fiber-tracheid walls showed a small microfibril angle, a fact being similar to the orientation of the microfibril angle of the G-layer in tension wood, and (3) the amounts of lignin decreased in the cell walls of fiber tracheids, especially with great decrease in proportion of guaiacyl units in lignins. In addition, VL-microspectrophotometry coupled with the Wiesner and M?ule reactions adopted in the present study showed potential to estimate the lignin contents in the cell walls and the proportion of guaiacyl and syringyl units in lignins. Received: 15 July 1998  相似文献   

19.
Wood samples of nine tropical hardwoods from Peru and sugar maple wood from Quebec were selected to perform moisture sorption tests associated with parallel-to-grain and tangential compression tests using a multiple step procedure at 25°C. Cold-water and hot-water extractives, sequential cyclohexane (CYC), acetone (ACE) and methanol (MET) extracts, ash content (ASH), wood density and interlocked grain (IG) were evaluated on matched samples too. Wood density corrected for the accessory substances was by far the major factor positively affecting the compressive properties of tropical hardwoods. The total amount of accessory substances is required in order to establish better relationships between physico–mechanical properties and density of tropical hardwoods. For a given wood density, the ultimate stress in parallel-to-grain compression was higher in tropical hardwoods than in temperate hardwoods. However, the compliance coefficients for both types of woods were quite similar. Sequential extraction with organic solvents was the most suitable method for evaluating the effect of extractives on compressive properties of tropical hardwoods. The CYC and ACE fractions did not contribute to variation in these mechanical properties. The substances dissolved in MET affected positively the compliance coefficient s 11 in parallel-to-grain compression and negatively the compliance coefficient s 33 in tangential compression. The IG decreased the compliance coefficient s 11 but also decreased the ultimate stress in parallel-to-grain compression. Finally, variations in compressive properties that were due to changes in equilibrium moisture content (EMC) were clearly influenced by wood density; denser woods were more sensitive to changes in EMC than lighter woods.  相似文献   

20.
    
 The chemical conversion of phenolized sulfuric acid lignin (P-SAL), prepared from sulfuric acid lignin (SAL) by phenolation with sulfuric acid catalyst, to novel cationic surfactant was investigated. To elucidate the chemical reactivity of the P-SAL to a Mannich reaction, 1-guaiacyl-1-p-hydroxyphenylethane (I) as a simple phenolized sulfuric acid lignin model compound was reacted with dimethylamine and formaldehyde. Quantitative analysis of the products by gas-liquid chromatography suggested that the p-hydroxyphenyl nucleus was more reactive than the guaiacyl nucleus. The Mannich reaction of SAL with dimethylamine did not yield a soluble cationic surfactant, but P-SAL produced water-soluble cationic surfactant in a quantitative yield. The Mannich reaction products (MP-SAL) of P-SAL had 1,3-dimethylaminomethyl groups/C9-C6. The results of the surface tension measurements showed that the decrease in surface tension of MP-SAL was much larger than that of lignosulfonate as a commercial surfactant from lignin. Received: February 13, 2002 / Accepted: June 12, 2002 Acknowledgments The authors thank Nippon Paper Industries Co. and Lion Corp. for providing the commercial products and Dr. K. Aoi (Graduate School of Bioagricultural Sciences, Nagoya University, Japan) for advising us on the measurement of surface tension. This research was conducted with the support of a Grant-in-Aid for Scientific Research (11460079) from the Ministry of Education, Culture, Sports, Science and Technology of Japan. Part of this report was presented at the 52nd Annual Meeting of the Japan Wood Research Society, Gifu, April 2002 Correspondence to:Y. Matsushita  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号