首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Variance and covariance components were estimated for weaning weight from Senepol field data for use in the reduced animal model for a maternally influenced trait. The 4,634 weaning records were used to evaluate 113 sires and 1,406 dams on the island of St. Croix. Estimates of direct additive genetic variance (sigma 2A), maternal additive genetic variance (sigma 2M), covariance between direct and maternal additive genetic effects (sigma AM), permanent maternal environmental variance (sigma 2PE), and residual variance (sigma 2 epsilon) were calculated by equating variances estimated from a sire-dam model and a sire-maternal grandsire model, with and without the inverse of the numerator relationship matrix (A-1), to their expectations. Estimates were sigma 2A, 139.05 and 138.14 kg2; sigma 2M, 307.04 and 288.90 kg2; sigma AM, -117.57 and -103.76 kg2; sigma 2PE, -258.35 and -243.40 kg2; and sigma 2 epsilon, 588.18 and 577.72 kg2 with and without A-1, respectively. Heritability estimates for direct additive (h2A) were .211 and .210 with and without A-1, respectively. Heritability estimates for maternal additive (h2M) were .47 and .44 with and without A-1, respectively. Correlations between direct and maternal (IAM) effects were -.57 and -.52 with and without A-1, respectively.  相似文献   

2.
Analysis of variance (ANOVA) and symmetric differences squared (SDS) methods were used to estimate additive genetic and environmental variances and covariances associated with weaning weight. The two methods were applied to 503 beef records collected over 19 yr from a relatively unselected university Angus herd. The SDS methodology was used with four models. The first model included direct (g) and maternal (gm) additive genetic effects, the genetic covariance between direct and maternal additive genetic effects (sigma ggm), permanent maternal environmental effects (m) and temporary environmental effects (e). The second model also allowed for a nonzero environmental covariance (sigma mem) between dam and offspring weaning weights. Models 3 and 4 were models 1 and 2, respectively, expanded to include a grandmaternal genetic effect (gn) and covariances sigma ggn and sigma gmgn. Two ANOVA solution sets for the parameters of model 4 were based on sire, dam, maternal grandsire, maternal grandam and phenotypic variances and offspring-dam (covOD), offspring-sire (covOS), offspring-grandam (covOGD) and offspring-maternal half-aunt or uncle (covOMH) covariances. Four ANOVA solution sets for the parameters of model 2 were based on sire, dam, within dam and maternal grandsire variances, covOD and either covOS or covOGD. Symmetric differences squared estimates of h2g and h2gm averaged .30 and .16, respectively. All SDS estimates of rho ggm (correlation between direct and maternal genetic effects) were less than -1. Estimates of sigma mem were positive. Both SDS estimates and one of the two ANOVA estimates of the grandmaternal variance were negative. The ANOVA model 4 estimates of h2g were .33. The estimates of h2gm were .44 and .39, while the estimates for rho ggm were -.88 and -.80. Both estimates of sigma mem were positive. The four ANOVA model 2 estimates of h2g and h2gm averaged .33 and .48, respectively. Three of the four estimates of rho ggm were less than -.97; the fourth was .35. Three of the four estimates of sigma mem were positive. Expectations show the extent to which SDS and ANOVA estimators were biased by nonzero grandmaternal components that were not accounted for. The extent to which dominance components bias the ANOVA estimators also is shown. Nonzero grandmaternal effects need to be taken into account in either SDS or ANOVA solution sets, or important biases occur with most of the estimators. More numerous, and generally more severe, biases occur with ANOVA estimators than with SDS estimators in solution sets that do not account for grandmaternal effects.  相似文献   

3.
Data for gestation length, birth weight, calving difficulty (percent assisted) and survival from birth to weaning were analyzed from 4,639 calves by 290 sires of 14 Bos taurus breeds (Hereford, Angus, Jersey, South Devon, Limousin, Simmental, Charolais, Red Poll, Brown Swiss, Gelbvieh, Maine Anjou, Chianina, Pinzgauer and Tarentaise) mated to Hereford and Angus cows. The calves were produced over a 7-yr period in a germ plasm evaluation program. Variance components were estimated for breed of sire (sigma 2b), sire within breed of sire (sigma 2s) and progeny within sire (sigma 2w) random effects. Estimates of sigma 2b and sigma 2s direct genetic variance were similar for gestation length and calf survival. Estimates of sigma 2b genetic variance were greater than for sigma 2s for birth weight and calving difficulty. Estimates of total heritability [h2t = 4(sigma 2b + sigma 2s)/(4 sigma 2b + sigma 2s + sigma 2w)] and within-breed heritability (h2w = 4 sigma 2s/sigma 2s + sigma 2w) indicated that gestation length (h2t = .77, h2w = 64) and birth weight (h2t = .79, h2w = .46) are under a high degree of direct genetic control, calving difficulty (h2t = .42, h2w = .21) is under a moderate degree of direct genetic control and calf survival (h2t = .11, h2w = .07) is under a low degree of direct genetic control. Estimates of genetic correlation for between (rb) - and within-breed (rg) sources of genetic variation were comparable in direction, but tended to be stronger between than within breeds.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
Weaning weight records of 27,774 Angus calves in 13 herds and 14,738 Hereford calves in 11 herds born during 1953 through 1983 in Virginia were analyzed using regression techniques and maximum likelihood (ML) procedures to estimate phenotypic and genetic trends for adjusted weaning weight (AWWT), weaning weight ratio (WWR) and deviations of AWWT from the mean AWWT of the contemporary group (DEV). Phenotypic trends for AWWT in the Angus and Herefords were .96 plus or minus .02 and .82 plus or minus .03 kg/yr, respectively. In the Angus breed, estimates of one-half of the sire genetic trend obtained from the ML procedure for WWR and DEV were .40 plus or minus .04 ratio units/yr and .72 plus or minus .07 kg/yr, respectively; corresponding values for Herefords were .25 plus or minus .06 ratio units/yr and .45 plus or minus .12 kg/yr. Estimates of one-half of the dam trends for the respective traits were .32 plus or minus .02 ratio units/yr and .55 plus or minus .04 kg/yr for Angus and .21 plus or minus .03 ratio units/yr and .30 plus or minus .07 kg/yr for Herefords. Estimates of sire and dam genetic trends from the regression analyses were slightly higher than estimates from the ML procedure, but adjustments to eliminate bias due to non-random mating and culling from the regression analyses increased the similarity of the results from the two procedures. Average annual genetic trends over the entire study period from the ML procedure for AWWT were 1.27 kg/yr for Angus and .75 kg/yr for Herefords. Genetic trends were not linear over the entire period. Total genetic trends in AWWT for Angus and Hereford, respectively, were .30 and -.61 kg/yr before 1971 and 2.18 and 1.98 kg/yr after 1970.  相似文献   

5.
The objective of the study was to estimate variance components, heritability, and repeatability of ultrasound longissimus muscle area (ULMA) measures. Data included 4,653 serial ULMA measures from 882 purebred Angus bulls and heifers. Animals were born over a 4-yr period from 1998 to 2001. Each year, bulls and heifers were ultrasonically scanned four to eight times, with a 4- to 6-wk interval between scans. Initially, data were subdivided by scan session across years and were analyzed in a multitrait model (MTM). Data pooled across years and scan session were then analyzed using random regression models (RRM) to estimate trends in genetic parameter estimates. Additive direct genetic variance increased with advancing scan session ranging from 8.67 cm4 at the first scan (mean age = 35 wk) to a maximum of 19.48 cm4 at the sixth scan (mean age = 56 wk). Heritability of ULMA increased from 0.35 at first scan to a maximum of 0.48 at the fourth scan (mean age = 50 wk). Additive direct genetic variance and heritability values at about 1 yr of age (fifth scan) were 18.24 cm4 and 0.45, respectively. Estimates from RRM also showed an increase in sigma(a)2 and h2 with age. Trends in sigma(pe)2 estimates, although tending to fluctuate, also increased with age. Additive direct genetic variance at 1 yr of age ranged from 15.8 cm4 to 17.0 cm4 for the different models. Heritability of yearling ULMA measures ranged from 0.40 to 0.42 and repeatabilities ranged from 0.80 to 0.84. For the range of ages used in the current study, both MTM and RRM showed close to maximum heritability values at around 1 yr of age. Therefore, phenotypic differences in yearling ULMA between Angus cattle are better indicators of genetic differences than earlier measurements. Angus breeders could, therefore, use ULMA measures made at around 1 yr of age to select next generation parents.  相似文献   

6.
Weaning weights from nine parental breeds and three composites were analyzed to estimate variance due to grandmaternal genetic effects and to compare estimates for variance due to maternal genetic effects from two different models. Number of observations ranged from 794 to 3,465 per population. Number of animals in the pedigree file ranged from 1,244 to 4,326 per population. Two single-trait animal models were used to obtain estimates of covariance components by REML using an average information method. Model 1 included random direct and maternal genetic, permanent maternal environmental, and residual environmental effects as well as fixed sex x year and age of dam effects. Model 2 in addition included random grandmaternal genetic and permanent grandmaternal environmental effects to account for maternal effects of a cow on her daughter's maternal ability. Non-zero estimates of proportion of variance due to grandmaternal effects were obtained for 7 of the 12 populations and ranged from .03 to .06. Direct heritability estimates in these populations were similar with both models. Existence of variance due to grandmaternal effects did not affect the estimates of maternal heritability (m2) or the correlation between direct and maternal genetic effects (r(am)) for Angus and Gelbvieh. For the other five populations, magnitude of estimates increased for both m2 and r(am) when estimates of variance due to grandmaternal effects were not zero. Estimates of the correlation between maternal and grandmaternal genetic effects were large and negative. These results suggest that grand-maternal effects exist in some populations, that when such effects are ignored in analyses maternal heritability may be underestimated, and that the correlation between direct and maternal genetic effects may be biased downward if grandmaternal effects are not included in the model for weaning weight of beef cattle.  相似文献   

7.
Variation between- and within-breeds was evaluated for accretion of weight from birth to 7 yr of age and hip height at 7 yr for 1,577 cows sired by Angus, Brahman, Brown Swiss, Charolais, Chianina, Gelbvieh, Hereford, Jersey, Limousin, Maine Anjou, Pinzgauer, Sahiwal, Simmental, South Devon, and Tarentaise and from either Angus or Hereford dams. Parameters from Wt = A (1 - Be-kt) were estimated by nonlinear regressions and provided estimates of mature body weight (A) and rate of weight accretion relative to change in age (k) for each cow. Actual weight at birth, linear adjusted weights at 200, 365, and 500 d of age, ratios of these weights to mature weight, and height at the hip at 7 yr were analyzed. Beyond 20 mo, weights were adjusted to a constant condition score within breed of sire. Variance and covariance components were derived for breed (sigma 2 b), sires within breed (sigma 2 s), and progeny within sire (sigma 2 w). For all traits, the sigma 2 b estimate of genetic variance ranged from two to four times greater than the variance component for sigma 2 s. Between-breed heritabilities were .91 +/- .27 and .54 +/- .17 for A and k, respectively. Estimates of within-breed heritability for these two traits were .61 +/- .11 and .27 +/- .09. Estimates, both between- and within-breed, of the genetic correlation between A and k were moderate to large and negative; those between A and weights at 200, 365, and 500 d and height at maturity were large and positive. Selection for immediate change in measures of growth would be most effective among breeds. Sufficient direct genetic variation exists between breeds to enhance breed improvement of growth characters through breed substitution. Greater opportunity to alter the shape of the growth curve exists through selection for within-breed selection than through breed substitution.  相似文献   

8.
Estimates of additive direct heritability (h2a) for traits such as litter size may be biased by maternal effects. The size of these effects was estimated using a derivative-free restricted maximum likelihood procedure under an animal model. First-parity records from Yorkshire (Y) and Landrace (L) gilts were obtained from the Quebec Record of Performance sow productivity program for 21,127 litters born between 1977 and 1987. Direct (sigma 2a) and maternal (sigma 2m) additive genetic variances, their covariance (sigma am) and error variance (sigma 2e) were estimated for total numbers born (NOBN), born alive (NOBA) and weaned (NOWN). Analysis of purebred Y and crossbred litters indicated that estimates of sigma 2a were of similar magnitude for all traits, with h2a ranging from .06 to .13. Except for L litters, estimates of sigma 2m were relatively low for NOBN and NOBA, and increased in size for NOWN, with h2m ranging from 0 to .08. Also, estimates of sigma am were negative, except for NOBN and NOBA with crossbred litters, and became increasingly negative for NOWN. Results from purebred L litters indicated there was a stronger negative correlation between direct and maternal genetic effects for NOBN and NOBA than for NOWN.  相似文献   

9.
Birth weights (4,155) and weaning weights (3,884) of Line 1 Herefords collected at the Fort Keogh Livestock and Range Research Laboratory in Miles City, MT, between the years of 1935 to 1989 were available. To study the effect of misidentification on estimates of genetic parameters, the sire identification of calf was randomly replaced by the identification of another sire based on the fraction of progeny each sire contributed to a yearly calf crop. Misidentification rates ranged from 5 to 50% with increments of 5%. For each rate of misidentification, 100 replicates were obtained and analyzed with single-trait and two-trait analyses with a restricted maximum likelihood (REML) algorithm. Two different models were used. Both models contained year x sex combinations and ages of dam as fixed effects, calendar birth date as a fixed covariate, and random animal and maternal genetic effects and maternal permanent environment effects. Model 2 also included sire x year combinations as random effects. As the rate of misidentification increased, estimates of the direct-maternal genetic correlation increased for both traits, with both models, for all analyses. With singletrait analyses, estimates of the fraction of variance that were due to sire x year interaction effects increased slightly for birth weight (near zero) and decreased slightly (0.015 to 0.004) for weaning weight as misidentification increased. With two-trait analyses, estimates of fraction of variance that were due to sire x year effects gradually decreased for weaning weight as misidentification increased. With the two-trait analyses, and with both models, as the level of sire misidentification increased, estimates of the genetic correlation between direct effects gradually increased, and estimates of the correlation between maternal effects gradually decreased. Estimates of the direct-maternal genetic correlation were more positive with Model 2 than with Model 1 for all levels of misidentification. Results of this study indicate that misidentification of sires would severely bias estimates of genetic parameters and would reduce genetic gain from selection.  相似文献   

10.
Analysis of variance (ANOVA) and symmetric differences squared (SDS) methods for estimating genetic and environmental variances and covariances associated with beef cattle weaning weight were compared via simulation. Simulation was based on the pedigree and record structure of 503 beef weaning weights collected over 19 yr from a university herd. The SDS methodology was used with four models. The simplest model included direct (g) and maternal (gm) additive genetic effects, genetic covariance between direct and maternal additive genetic effects (sigma ggm), permanent maternal environmental effects (m) and temporary environmental effects (e). The second model also allowed for a nonzero environmental covariance (sigma mem) between dam and offspring weaning weights. Models 3 and 4 were models 1 and 2, respectively, expanded to include a grandmaternal genetic effect (gn) and covariances sigma ggn and sigma gmgn. Two ANOVA solution sets for the parameters of model 4 were obtained using sire, dam, maternal grandsire, maternal grandam and phenotypic variances and offspring-dam (covOD), offspring-sire (covOS), offspring-grandam (covOGD), and offspring-maternal half-aunt or uncle (covOMH) covariances. Four ANOVA solution sets for the parameters of model 2 were obtained using sire, dam, within dam and maternal grandsire variances, covOD and either covOS or covOGD. Two sets of 1,000 replicates of the data were simulated. These data were used to compare precision and accuracy of SDS and ANOVA estimators, to estimate correlations among SDS and ANOVA estimators, and to study the importance of taking inbreeding into account with SDS methodology. All ANOVA estimators for rho ggm were biased downward. The SDS procedure had a clear advantage over ANOVA. Averages of SDS estimates were closer to parameter values used to simulate the data and their standard deviations were generally smaller. The standard deviations of both SDS and ANOVA estimates of rho ggm were very large. It is important to allow for a nonzero sigma mem (at least when it is negative) when using SDS methods; otherwise estimators of sigma 2gm and sigma ggm are biased upward and downward, respectively.  相似文献   

11.
Weaning weights from nine sets of Angus field data from three regions of the United States were analyzed. Six animal models were used to compare two approaches to account for an environmental dam-offspring covariance and to investigate the effects of sire x herd-year interaction on the genetic parameters. Model 1 included random direct and maternal genetic, maternal permanent environmental, and residual effects. Age at weaning was a covariate. Other fixed effects were age of dam and a herd-year-management-sex combination. Possible influence of a dam's phenotype on her daughter's maternal ability was modeled by including a regression on maternal phenotype (fm) (Model 3) or by fitting grandmaternal genetic and grandmaternal permanent environmental effects (Model 5). Models 2, 4, and 6 were based on Models 1, 3, and 5, respectively, and additionally included sire x herd-year (SH) interaction effects. With Model 3, estimates of fm ranged from -.003 to .014, and (co)variance estimates were similar to those from Model 1. With Model 5, grandmaternal heritability estimates ranged from .02 to .07. Estimates of maternal heritability and direct-maternal correlation (r(am)) increased compared with Model 1. With models including SH, estimates of the fraction of phenotypic variance due to SH interaction effects were from .02 to .10. Estimates of direct and maternal heritability were smaller and estimates of r(am) were greater than with models without SH interaction effects. Likelihood values showed that SH interaction effects were more important than fm and grandmaternal effects. The comparisons of models suggest that r(am) may be biased downward if SH interaction and(or) grandmaternal effects are not included in models for weaning weight.  相似文献   

12.
Data from the first four cycles of the Germplasm Evaluation program at the U.S. Meat Animal Research Center were used to evaluate weights of Angus, Hereford, and F1 cows produced by crosses of 22 sire and 2 dam (Angus and Hereford) breeds. Four weights per year were available for cows from 2 through 8 yr of age (AY) with age in months (AM). Weights (n = 61,798) were analyzed with REML using covariance function-random regression models (CF-RRM), with regression on orthogonal (Legendre) polynomials of AM. Models included fixed regression on AM and effects of cow line, age in years, season of measurement, and their interactions; year of birth; and pregnancy-lactation codes. Random parts of the models fitted RRM coefficients for additive (a) and permanent environmental (c) effects. Estimates of CF were used to estimate covariances among all ages. Temporary environmental effects were modeled to account for heterogeneity of variance by AY. Quadratic fixed regression was sufficient to model population trajectory and was fitted in all analyses. Other models varied order of fit and rank of coefficients for a and c. A parsimonious model included linear and quartic regression coefficients for a and c, respectively. A reduced cubic order sufficed for c. Estimates of all variances increased with age. Estimates for older ages disagreed with estimates using traditional bivariate models. Plots of covariances for c were smooth for intermediate, but erratic for extreme ages. Heritability estimates ranged from 0.38 (36 mo) to 0.78 (94 mo), with fluctuations especially for extreme ages. Estimates of genetic correlations were high for most pairs of ages, with the lowest estimate (0.70) between extreme ages (19 and 103 mo). Results suggest that although cow weights do not fit a repeatability model with constant variances as well as CF-RRM, a repeatability model might be an acceptable approximation for prediction of additive genetic effects.  相似文献   

13.
Knowledge of the relationships between absolute growth rate (AGR), relative growth rate (RGR) and feed conversion (FCONV) of bulls in postweaning feedlot performance tests can give cattle producers important information for selecting superior sires. Weight gain and FCONV data that were collected during 16 yr were analyzed from 393 Angus and 340 Hereford bulls by 26 and 27 sires, respectively, that were individually fed in 140-d tests. Sire variance and covariance components were used to obtain heritability (h2) estimates for AGR, RGR and FCONV and the genetic correlations (rg) and phenotypic correlations (rp) among these traits. Respective mean AGR, RGR and FCONV were 1.27 +/- .14 kg/d, .4378 +/- .0395%/d and 7.32 +/- .58 kg/kg for the Angus and 1.28 +/- .12 kg/d, .4552 +/- .0388%/d and 6.56 +/- .46 kg/kg for the Hereford bulls. Estimates of h2 were similar for AGR and RGR in both Angus (.36 +/- .11 and .22 +/- .09) and Hereford (.33 +/- .11 and .20 +/- .09) bulls. The h2 estimates for FCONV were .14 +/- .07 for Angus and .13 +/- .08 for Herefords. For the Angus and Hereford bulls, respectively, rg were .86 +/- .09 and .86 +/- .13 between AGR and RGR, -.84 +/- .38 and -.74 +/- .49 between AGR and FCONV and -.84 +/- .49 and -.61 +/- .64 between RGR and FCONV. The rp were .80 +/- .03 and .68 +/- .04 between AGR and RGR, -.58 +/- .05 and -.51 +/- .05 between AGR and FCONV and -.71 +/- .04 and -.73 +/- .04 between RGR and FCONV for the Angus and Hereford bulls, respectively.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
Estimates of covariance components between scrotal circumference, serving capacity, days to calving, and yearling and final weight were obtained for Hereford, Angus, and Zebu cross cattle in temperate and tropical Australia. Analyses were carried out by REML employing a derivative-free algorithm and fitting bivariate animal models. Aspects of modeling and computational requirements related to the use of this method are discussed. Estimates of heritabilities agreed closely with those from univariate analyses, being low for female reproductive performance and moderate to high for male reproduction and growth. Estimates of genetic correlation between male and female fertility traits were low but favorable, being -.25, -.28, and -.41 between scrotal circumference and days to calving for Herefords, Angus, and Zebu crosses, respectively. Genetic correlations between male reproductive traits and weights ranged from .24 to .52 for the temperate breeds and were higher (.65 to .69) for Zebu crosses. Phenotypic correlations between scrotal circumference and weights were similar for all breeds, ranging from .32 to .47, whereas serving capacity and weights were phenotypically unrelated. Estimates of correlations between days to calving and weights were less consistent. Phenotypically, there was little association between the two traits. Genetic correlations for Zebu crosses were negative and low to moderate (-.36 to -.66) and estimates for Angus were close to zero.  相似文献   

15.
Thirty years and 23 yr of life history data from a Hereford herd in Arizona and an Angus herd in Wyoming, respectively, were analyzed. Longevity averaged 4.21 +/- .06 for years from first calving to disposal (FST), 7.40 +/- .06 for years from birth to disposal (AGE) and 3.46 +/- .06 for lifetime number of calves weaned (NUM) in Herefords and 4.49 +/- .13 (FST), 6.68 +/- .12 (AGE) and 3.66 +/- .11 (NUM) in Angus. In the Hereford herd, heritability estimates for traits measuring longevity, estimated from daughter-dam regression and paternal half-sib analyses, ranged from .16 to .26. In the Angus herd, heritability estimates from daughter-dam regression ranged from .03 to .05. In the Hereford herd, genetic correlations of birth weight and weaning weight with longevity, from daughter-dam regression, were negative and generally of low magnitude, whereas genetic correlations between weaning condition score and longevity were positive and moderate. Analogous estimates from paternal half-sib analyses all were positive and moderate to high. Phenotypic correlations between early life traits and longevity traits in Herefords all were near zero. In the Angus herd, curves for age-specific survivorship and age-specific survival rate varied markedly among sires. This study suggested the existence of moderate genetic variation for longevity traits in beef cattle. None of the traits expressed early in life that were examined would, however, be reliable predictors of genetic or phenotypic merit for longevity.  相似文献   

16.
Parameters for direct and maternal dominance were estimated in models that included non-additive genetic effects. The analyses used weaning weight records adjusted for age of dam from populations of Canadian Hereford (n = 467,814), American Gelbvieh (n = 501,552), and American Charolais (n = 314,552). Method R estimates of direct additive genetic, maternal additive genetic, permanent maternal environment, direct dominance, and maternal dominance variances as a proportion of the total variance were 23, 12, 13, 19, and 14% in Hereford; 27, 7, 10, 18, and 2% in Gelbvieh; and 34, 15, 15, 23, and 2% in Charolais. The correlations between direct and maternal additive genetic effects were -0.30, -0.23, and -0.47 in Hereford, Gelbvieh, and Charolais, respectively. The correlations between direct and maternal dominance were -0.38, -0.02, and -0.04 in Hereford, Gelbvieh, and Charolais, respectively. Estimates of inbreeding depression were -0.20, -0.18, and -0.13 kg per 1% of inbreeding for Hereford, Gelbvieh, and Charolais, respectively. Estimates of the maternal inbreeding depression were -0.01, -0.02, and -0.02 kg, respectively. The high ratio of direct dominance to additive genetic variances provided some evidence that direct dominance effects should be considered in beef cattle evaluation. However, maternal dominance effects seemed to be important only for Hereford cattle.  相似文献   

17.
Two unselected herds of purebred Hereford and Angus cattle were created and their progeny evaluated during a 4-yr period (1964 to 1967) for 168-d postweaning gain when they were fed either a high- or medium-energy diet. Birth weight and 200-d adjusted weaning weight also were measured and the importance of sire x diet interactions for postweaning gain examined. Year effects were significant (P less than .001) for all traits in Herefords and for postweaning gain in Angus. Postweaning gain of both breeds increased in successive years, but no trend was observed for birth and 200-d weights. Bulls were heavier than heifers (P less than .05) for all three traits in both breeds. Hereford and Angus calves receiving the high-energy diet gained more (P less than .001) than their contemporaries fed the medium-energy diet. Sire differences were significant for birth weight in Herefords and for all three traits in Angus. Sire x diet interactions were not significant for postweaning gain in either breed. Genetic correlations were calculated by two methods: the two-way ANOVA approach using sire and sire x diet interaction variance components and the one-way ANOVA approach in which gains by progeny of each sire on each diet were considered to be two distinct traits. The genetic correlations for gain in Herefords could not be estimated by either method because of negative sire variance component estimates. The genetic correlations for gain in Angus were 1.08 for the two-way ANOVA method and 1.43 +/- .64 for the one-way ANOVA method. These results indicate that sires ranked the same based on progeny performance when fed either diet.  相似文献   

18.
(Co)variance components, direct and maternal breed additive, dominance, and epistatic loss effects on preweaning weight gain of beef cattle were estimated. Data were from 478,466 animals in Ontario, Canada, from 1986 to 1999, including records of both purebred and crossbred animals from Angus, Blonde d'Aquitaine, Charolais, Gelbvieh, Hereford, Limousin, Maine-Anjou, Salers, Shorthorn, and Simmental breeds. The genetic model included fixed direct and maternal breed additive, dominance, and epistatic loss effects, fixed environmental effects of age of the calf, contemporary group, and age of the dam x sex of the calf, random additive direct and maternal genetic effects, and random maternal permanent environment effects. Estimates of direct and maternal additive genetic, maternal permanent environmental and residual variances, expressed as proportions of the phenotypic variance, were 0.32, 0.20, 0.12, and 0.52, respectively. Correlation between direct and maternal additive genetic effects was -0.63. Breed ranking was similar to previous studies, but estimates showed large SE. The favorable effects of direct and maternal dominance (P < 0.05) on preweaning gain were equivalent to 1.3 and 2.3% of the phenotypic mean of purebred calves, respectively. The same features for direct and maternal epistatic loss effects were -2.2% (P < 0.05) and -0.1% (P > 0.05). The large SE of breed effects were likely due to multicollinearity among predictor variables and deficiencies in the dataset to separate direct and maternal effects and may result in a less reliable ranking of the animals for across breed comparisons. Further research to identify the causes of the instability of estimates of breed additive, dominance, and epistatic loss genetic effects, and application of alternative statistical methods is recommended.  相似文献   

19.
Heritability of 2-yr-old heifer calving difficulty score was estimated in nine purebred and three composite populations with a total of 5,986 calving difficulty scores from 520 sires and 388 maternal grandsires. Estimates were 0.43 for direct (calf) genetic effects and 0.23 for maternal (heifer) genetic effects. The correlation between direct and maternal effects was -0.26. Direct effects were strongly positively correlated with birth weight and moderately correlated with 200-d weight and postweaning gain. Smaller negative correlations of maternal calving difficulty with direct effects of birth weight, weaning weight, and postweaning gain were estimated. Calving difficulty was scored from 1 to 7. Predicted heritabilities using seven optimal scores were similar to those using four scores. The predicted heritability using only two categories was reduced 23%. Phenotypic and direct genetic variance increased with increasing average population calving difficulty score. The estimated direct and maternal heritabilities for 2-yr-old calving difficulty score were larger than many literature estimates. These estimates suggested substantial variance for direct and maternal genetic effects. The direct effects of 2-yr-old calving difficulty score seemed to be much more closely tied to birth weight than were maternal effects.  相似文献   

20.
Calving performance records from the American Angus Herd Improvement Registry files were used to estimate variance components for calving ease and survival to 24 h. Genetic parameters for direct and maternal effects were estimated by using a sire-maternal grandsire model. Data included two independent samples of 19 and 34 herds with complete calving information. Maternal variance for calving ease was much larger than the variance for the direct effect of the sire. Maternal heritability for calving ease was .27 and .20 in the two samples of herds, respectively. Heritabilities for direct effects were .21 and .07. The genetic correlations between direct and maternal effects were -.93 and -.80. There was little genetic variation in survival at birth. Parameter estimates were within the allowable parameter space in the sample of 19 herds. Heritability for the direct effect of the sire on survival was .04. Maternal heritability was .09, and the direct-maternal correlation was -.85.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号