首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The purpose of the present study was to obtain estimates of variance components and genetic parameters for direct and maternal effects on various growth traits in Beetal goat by fitting four animal models, attempting to separate direct genetic, maternal genetic and maternal permanent environmental effects under restricted maximum likelihood procedure. The data of 3,308 growth trait records of Beetal kids born during the period from 2004 to 2019 were used in the present study. Based on best fitted models, the direct additive h2 estimates were 0.06, 0.27, 0.37, 0.17 and 0.10 for birth weight (BWT), weight at 3 (WT3), 6 (WT6), 9 (WT9) and 12 (WT12) months of age, respectively. Maternal permanent environmental effects significantly contributed for 10% and 7% of total variance for BWT and WWT, respectively, which reduced direct heritability by 40 and 10% for respective traits from the models without these effects. For average daily gain (ADG1) and Kleiber ratios (KR1) up to weaning period (3 months) traits, maternal permanent environmental effects accounted for 7% and 8% of phenotypic variance, respectively, and resulted in a reduction of 6.6% and 5.4% in direct h2 of respective traits. For post-weaning traits, the maternal effects were non-significant (p > .05) which indicates diminishing influence of mothering ability for these traits. High and positive genetic correlations were obtained among WT3-WT6, WT6-WT9 and WT9-WT12 with correlations of 0.96 ± 0.25, 0.84 ± 0.23 and 0.90 ± 0.13, respectively. Thus, early selection at weaning age can be practised taking into consideration maternal variation for effective response to selection in Beetal goat.  相似文献   

2.
Estimates of (co)variance and genetic parameters of birth, weaning (205 days) and yearling (365 days) weight were obtained using single-trait animal models. The data were analysed by restricted maximum likelihood, fitting an animal model that included direct and maternal genetic and permanent environmental effects. The data included records collected between 1976 and 2001. The pedigree information extended as far back as early 1960s. The heritabilities for direct effects of birth, weaning and yearling weights were 0.36, 0.29 and 0.25, respectively. Heritability estimates for maternal effects were 0.13, 0.16 and 0.15 for birth, weaning and yearling weights, respectively. The correlations between direct and maternal additive genetic effects were negative for all traits analysed. The results indicate that both direct and maternal effects should be included in a selection programme for all the traits analysed.  相似文献   

3.
Records for Afshari sheep were retrieved from data collected between 2000 and 2005 at the Zanjan University experimental flock, at Zanjan, Iran. (Co)variance components and corresponding genetic parameters for birth weight (BW), weaning weight (WW), 6-month weight (W6), average daily gain from birth to weaning (ADGa), from birth to 6 months (ADGb), from weaning to 6 months (ADGc), Kleiber ratio at weaning (WWKR) and Kleiber ratio at 6 months of age (W6KR) were estimated using univariate and bivariate analyses by the DFREML procedure. The Kleiber ratio, defined as growth rate/metabolic weight, has been suggested to be a useful indicator of growth efficiency and an indirect selection criterion for feed conversion. Estimates of direct heritability ( h 2) were 0.23, 0.27, 0.11, 0.22, 0.07, 0.01, 0.13 and 0.06 for BW, WW, W6, ADGa, ADGb, ADGc, WWKR and W6KR, respectively. Maternal genetic effects represented a relatively large proportion of the total phenotypic variance for BW ( m 2 = 0.22), whereas maternal permanent environmental effects were significant for W6 ( c 2 = 0.15), ADGb ( c 2 = 0.16), ADGc ( c 2 = 0.14) and W6KR ( c 2 = 0.16). Results of bivariate analyses indicated the variable genetic correlations between traits. The largest positive genetic relationships were between adjacent measurements. The moderate estimates of h 2 for early growth traits indicate that in Afshari sheep faster genetic improvement through selection is possible for these traits. In order to increase the efficiency of feed conversion, use of Kleiber ratio in selection programmes was recommended.  相似文献   

4.
(Co)variance components and genetic parameters for various growth traits of Avikalin sheep maintained at Central Sheep and Wool Research Institute, Avikanagar, Rajasthan, India, were estimated by Restricted Maximum Likelihood, fitting six animal models with various combinations of direct and maternal effects. Records of 3,840 animals descended from 257 sires and 1,194 dams were taken for this study over a period of 32 years (1977–2008). Direct heritability estimates (from best model as per likelihood ratio test) for weight at birth, weaning, 6 and 12 months of age, and average daily gain from birth to weaning, weaning to 6 months, and 6 to 12 months were 0.28 ± 0.03, 0.20 ± 0.03, 0.28 ± 0.07, 0.15 ± 0.04, 0.21 ± 0.03, 0.16 and 0.03 ± 0.03, respectively. Maternal heritability for traits declined as animal grows older and it was not at all evident at adult age and for post-weaning daily gain. Maternal permanent environmental effect (c 2) declined significantly with advancement of age of animal. A small effect of c 2 on post-weaning weights was probably a carryover effect of pre-weaning maternal influence. A significant large negative genetic correlation was observed between direct and maternal genetic effects for all the traits, indicating antagonistic pleiotropy, which needs special care while formulating breeding plans. A fair rate of genetic progress seems possible in the flock by selection for all traits, but direct and maternal genetic correlation needs to be taken in to consideration.  相似文献   

5.
Direct and maternal (co)variance components and genetic parameters were estimated for growth and reproductive traits in the Kenya Boran cattle fitting univariate animal models. Data consisted of records on 4502 animals from 81 sires and 1010 dams collected between 1989 and 2004. The average number of progeny per sire was 56. Direct heritability estimates for growth traits were 0.34, 0.12, 0.19, 0.08 and 0.14 for birth weight (BW), weaning weight (WW), 12-month weight (12W), 18-month weight (18W) and 24-month weight (24W), respectively. Maternal heritability increased from 0.14 at weaning to 0.34 at 12 months of age but reduced to 0.11 at 24 months of age. The maternal permanent environmental effect contributed 16%, 4% and 10% of the total phenotypic variance for WW, 12W and 18W, respectively. Direct-maternal genetic correlations were negative ranging from −0.14 to −0.58. The heritability estimates for reproductive traits were 0.04, 0.00, 0.15, 0.00 and 0.00 for age at first calving (AFC), calving interval in the first, second, and third parity, and pooled calving interval. Selection for growth traits should be practiced with caution since this may lead to a reduction in reproduction efficiency, and direct selection for reproductive traits may be hampered by their low heritability.  相似文献   

6.
Variance components and genetic parameters for greasy fleece weights of Muzaffarnagari sheep maintained at the Central Institute for Research on Goats, Makhdoom, Mathura, India, over a period of 29 years (1976 to 2004) were estimated by restricted maximum likelihood (REML), fitting six animal models including various combinations of maternal effects. Data on body weights at 6 (W6) and 12 months (W12) of age were also included in the study. Records of 2807 lambs descended from 160 rams and 1202 ewes were used for the study. Direct heritability estimates for fleece weight at 6 (FW6) and 12 months of age (FW12), and total fleece weights up to 1 year of age (TFW) were 0.14, 0.16 and 0.25, respectively. Maternal genetic and permanent environmental effects did not significantly influence any of the traits under study. Genetic correlations among fleece weights and body weights were obtained from multivariate analyses. Direct genetic correlations of FW6 with W6 and W12 were relatively large, ranging from 0.61 to 0.67, but only moderate genetic correlations existed between FW12 and W6 (0.39) and between FW12 and W12 (0.49). The genetic correlation between FW6 and FW12 was very high (0.95), but the corresponding phenotypic correlation was much lower (0.28). Heritability estimates for all traits were at least 0.15, indicating that there is potential for their improvement by selection. The moderate to high positive genetic correlations between fleece weights and body weights at 6 and 12 months of age suggest that some of the genetic factors that influence animal growth also influence wool growth. Thus selection to improve the body weights or fleece weights at 6 months of age will also result in genetic improvement of fleece weights at subsequent stages of growth.  相似文献   

7.
Data were collected over a period of 21 years (1988–2008) to estimate (co)variance components for birth weight (BWT), weaning weight (WWT), 6-month weight (6WT), 9-month weight (9WT), 12-month weight (12WT), average daily gain from birth to weaning (ADG1), weaning to 6WT (ADG2), and from 6WT to 12WT (ADG3) in Sirohi goats maintained at the Central Sheep and Wool Research Institute, Avikanagar, Rajasthan, India. Analyses were carried out by restricted maximum likelihood, fitting six animal models with various combinations of direct and maternal effects. The best model was chosen after testing the improvement of the log-likelihood values. Heritability estimates for BWT, WWT, 6WT, 9WT, 12WT, ADG1, ADG2, and ADG3 were 0.39 ± 0.05, 0.09 ± 0.03, 0.06 ± 0.02, 0.09 ± 0.03, 0.11 ± 0.03, 0.10 ± 0.3, 0.04 ± 0.02, and 0.01 ± 0.01, respectively. For BWT and ADG1, only direct effects were significant. Estimate of maternal permanent environmental effect were important for body weights from weaning to 12WT and also for ADG2 and ADG3. However, direct maternal effects were not significant throughout. Estimate of c 2 were 0.06 ± 0.02, 0.03 ± 0.02, 0.06 ± 0.02, 0.05 ± 0.02, 0.02 ± 0.02, and 0.02 ± 0.02 for 3WT, 6WT, 9WT, 12WT, ADG2, and ADG3, respectively. The estimated repeatabilities across years of ewe effects on kid body weights were 0.10, 0.08, 0.05, 0.08, and 0.08 at birth, weaning, 6, 9, and 12 months of age, respectively. Results suggest possibility of modest rate of genetic progress for body weight traits and ADG1 through selection, whereas only slow progress will be possible for post-weaning gain. Genetic and phenotypic correlations between body weight traits were high and positive. High genetic correlation between 6WT and 9WT suggests that selection of animals at 6 months can be carried out instead of present practice of selection at 9 months.  相似文献   

8.
Estimates of (co)variance components and genetic parameters were calculated for birth weight (BWT), weaning weight (WWT), 6 month weight (6WT), 9 month weight (9WT), 12 month weight (12WT) and greasy fleece weight at first clip (GFW) for Malpura sheep. Data were collected over a period of 23 years (1985–2007) for economic traits of Malpura sheep maintained at the Central Sheep & Wool Research Institute, Avikanagar, Rajasthan, India. Analyses were carried out by restricted maximum likelihood procedures (REML), fitting six animal models with various combinations of direct and maternal effects. Direct heritability estimates for BWT, WWT, 6WT, 9WT, 12WT and GFW from the best model (maternal permanent environmental effect in addition to direct additive effect) were 0.19 ± 0.04, 0.18 ± 0.04, 0.27, 0.15 ± 0.04, 0.11 ± 0.04 and 0.30 ± 0.00, respectively. Maternal effects declined as the age of the animal increased. Maternal permanent environmental effects contributed 20% of the total phenotypic variation for BWT, 5% for WWT and 4% for GFW. A moderate rate of genetic progress seems possible in Malpura sheep flock for body weight traits and fleece weight by mass selection. Direct genetic correlations between body weight traits were positive and ranged from 0.40 between BWT and 6WT to 0.96 between 9WT and 12WT. Genetic correlations of GFW with body weights were 0.06, 0.49, 0.41, 0.19 and 0.15 from birth to 12WT. The moderately positive genetic correlation between 6WT and GFW suggests that genetic gain in the first greasy fleece weight will occur if selection is carried out for higher 6WT.  相似文献   

9.
Direct and maternal genetic and environmental variances and covariances were estimated for weaning weight and growth and maturing traits derived from the Brody growth curve. Data consisted of field records of weight measurements of 3,044 Angus cows and 29,943 weaning weight records of both sexes. Growth traits included weights and growth rates at 365 and 550 d, respectively. Maturing traits included the age of animals when they reached 65% of mature weight, relative growth rates, and degrees of maturity at 365 and 550 d. Variance and covariance components were estimated by REML from a set of two-trait animal models including weaning weight paired with a growth or maturing trait. Weaning and cow contemporary groups were defined as fixed effects. Random effects for weaning weight included direct genetic, maternal genetic, and permanent environmental effects. For growth and maturing traits, a random direct genetic effect was included in the model. Direct heritability estimates for growth traits ranged from .46 to .52 and for maturing traits from .31 to .34. Direct genetic correlations between weaning weight and weights and growth rates at 365 and 550 d ranged from .56 to .70. Correlations of maternal weaning genetic effects with direct genetic effects on weights at 365 and 550 d were positive, but those with growth rates were negative. Between weaning weight and degrees of maturity at both 365 and 550 d, direct genetic correlation estimates were .55 and maternal genetic correlations estimates were -.05, respectively. Direct genetic correlations of weaning weight with relative growth rates and age at 65% of mature weight ranged from .04 to .06, and maternal-direct genetic correlation estimates ranged from -.50 to -.56, respectively. These estimates indicate that higher genetic capacity for milk production was related to higher body mass and degrees of maturity between 365 and 550 d of age but was negatively related to absolute and relative growth rates in that life stage.  相似文献   

10.
Estimates of direct and maternal variance and heritability for weights at each week (up to 280 days of age) and month of age (up to 600 days of age) in Zebu cattle are presented. More than one million records on 200 000 animals, weighed every 90 days from birth to 2 years of age, were available. Data were split according to week (data sets 1) or month (data sets 2) of age at recording, creating 54 and 21 data sets, respectively. The model of analysis included contemporary groups as fixed effects, and age of dam (linear and quadratic) and age of calf (linear) effects as covariables. Random effects fitted were additive direct and maternal genetic effects, and maternal permanent environmental effect. Direct heritability estimates decreased from 0.28 at birth, to 0.12–0.13 at about 150 days of age, stayed more or less constant at 0.14–0.16 until 270 days of age and increased with age after that, up to 0.25–0.26. Maternal heritability estimates increased from birth (0.01) to a peak of 0.14 for data sets 1 and 0.07–0.08 for data sets 2 at about 180–210 days of age, before decreasing slowly to 0.07 and 0.05, respectively, at 300 days, and then rapidly diminished after 300 days of age. Permanent environmental effects were 1.5 to four times higher than genetic maternal effects and showed a similar trend.  相似文献   

11.
Data and pedigree information used in the present study were 3,022 records of kids obtained from the breeding station of Raini goat. The studied traits were birth weight (BW), weaning weight (WW), average daily gain from birth to weaning (ADG) and Kleiber ratio at weaning (KR). The model included the fixed effects of sex of kid, type of birth, age of dam, year of birth, month of birth, and age of kid (days) as covariate that had significant effects, and random effects direct additive genetic, maternal additive genetic, maternal permanent environmental effects and residual. (Co) variance components were estimated using univariate and multivariate analysis by WOMBAT software applying four animal models including and ignoring maternal effects. Likelihood ratio test used to determine the most appropriate models. Heritability ( \texth\texta2 ) \left( {{\text{h}}_{\text{a}}^2} \right) estimates for BW, WW, ADG, and KR according to suitable model were 0.12 ± 0.05, 0.08 ± 0.06, 0.10 ± 0.06, and 0.06 ± 0.05, respectively. Estimates of the proportion of maternal permanent environmental effect to phenotypic variance (c 2) were 0.17 ± 0.03, 0.07 ± 0.03, and 0.07 ± 0.03 for BW, WW, and ADG, respectively. Genetic correlations among traits were positive and ranged from 0.53 (BW-ADG) to 1.00 (WW-ADG, WW-KR, and ADG-KR). The maternal permanent environmental correlations between BW-WW, BW-ADG, and WW-ADG were 0.54, 0.48, and 0.99, respectively. Results indicated that maternal effects, especially maternal permanent environmental effects are an important source of variation in pre-weaning growth trait and ignoring those in the model redound incorrect genetic evaluation of kids.  相似文献   

12.
A total of 11,815 weight records from 23,94 Japanese Black calves was used to estimate direct, maternal, direct permanent environmental, and maternal permanent environmental effects on growth from birth to 356 d of age. The data were collected from a herd of Japanese Black cattle in Shiroshi city, Miyagi prefecture, Japan. A random regression model, including parity of dam and year-season of calving-sex of calf as fixed effects and animal, dam, animal permanent environmental, and maternal permanent environmental as random effects, was fitted to the data using Legendre polynomials for age of calf. Direct heritability estimates increased from 0.38 at birth to 0.65 at 120 d of age, decreased to 0.38 at 300 d, and then increased again up to 0.47 at 356 d. The ratio of animal permanent environmental variance to phenotypic variance decreased from 0.41 at birth to 0.12 at 90 d, and then increased gradually up to 0.40 at 270 d and oscillated around this value up to the end of the test period. Maternal genetic heritabilities increased from 0.04 at birth to 0.09 at 120 d and then decreased to 0.06 thereafter, whereas the variance ratios due to maternal permanent environment were fairly constant across the age trajectory, fluctuating around the value of 0.03. Direct genetic, phenotypic, maternal genetic, animal permanent environmental, and maternal permanent environmental correlations between different ages were all positive, and they generally decreased as the interval between ages increased. These correlations were lower between weights from nonadjacent ages than those between weights from adjacent ages. Results suggest that selection on preweaning weights would have a positive effect on weights at later ages.  相似文献   

13.
ABSTRACT

1. The objective of the study was to investigate the influence of maternal and parent of origin effects (POE) on genetic variation of Iranian native fowl on economic traits.

2. Studied traits were body weights at birth (BW0), at eight (BW8) and 12 weeks of age (BW12), age (ASM) and weight at sexual maturity (WSM), egg number (EN) and average egg weight (AEW).

3. Several models, including additive, maternal additive genetics, permanent environmental effects and POE were compared using Wombat software. Bayesian Information Criterion (BIC) was used to identify the best model for each trait. The chance of reranking of birds between models was investigated using Spearman correlation and Wilcoxon rank test.

4. Based on the best model, direct heritability estimates for BW0, BW8, BW12, ASM, WSM, EN and AEW traits were 0.05, 0.21, 0.23, 0.30, 0.39, 0.22 and 0.38, respectively. Proportion of variance due to paternal POE for BW8 was 4% and proportion of variance due to maternal POE for BW12 was 5%.

5. Estimated maternal heritability for BW0 was 0.30 and for BW8 and BW12 were 0.00 and 0.01, respectively, which shows that maternal heritability was reduced by age.

6. Based on the results, considering POE for BW8 and BW12 and maternal genetic effects for BW0 improved the accuracy of estimations and avoid reranking of birds for these traits.  相似文献   

14.
In the present study, (co)variance components and genetic parameters in Nellore sheep were obtained by restricted maximum likelihood (REML) method using six different animal models with various combinations of direct and maternal genetic effects for birth weight (BW), weaning weight (WW), 6-month weight (6MW), 9-month weight (9MW) and 12-month weight (YW). Evaluated records of 2075 lambs descended from 69 sires and 478 dams over a period of 8 years (2007–2014) were collected from the Livestock Research Station, Palamaner, India. Lambing year, sex of lamb, season of lambing and parity of dam were the fixed effects in the model, and ewe weight was used as a covariate. Best model for each trait was determined by log-likelihood ratio test. Direct heritability for BW, WW, 6MW, 9MW and YW were 0.08, 0.03, 0.12, 0.16 and 0.10, respectively, and their corresponding maternal heritabilities were 0.07, 0.10, 0.09, 0.08 and 0.11. The proportions of maternal permanent environment variance to phenotypic variance (Pe2) were 0.07, 0.10, 0.07, 0.06 and 0.10 for BW, WW, 6MW, 9MW and YW, respectively. The estimates of direct genetic correlations among the growth traits were positive and ranged from 0.44(BW-WW) to 0.96(YW-9MW), and the estimates of phenotypic and environmental correlations were found to be lower than those of genetic correlations. Exclusion of maternal effects in the model resulted in biased estimates of genetic parameters in Nellore sheep. Hence, to implement optimum breeding strategies for improvement of traits in Nellore sheep, maternal effects should be considered.  相似文献   

15.
Genetic breed differences, heterosis, recombination loss, and heritability for reproduction traits, lamb survival and growth traits to 90 days of age were estimated from crossing D'man and Timahdite Moroccan breeds. The crossbreeding parameters were fitted as covariates in the model of analysis. The REML method was used to estimate (co)variance components using an animal model. The first estimation of crossbreeding effects for Timahdite and D'man breeds shows that breed differences in litter traits are mainly of maternal genetic origin: +1.04 lambs, +1.88 kg, +0.60 lambs, and +2.23 kg in favour of D'man breed for litter size at lambing, litter weight at lambing, litter size at weaning, and litter weight at 90 days, respectively. The breed differences in lamb growth and survival are also of maternal genetic origin for the majority of traits studied, but in favour of the Timahdite breed: +3.48 kg, +45 g day−1 and +0.19 lambs for weight at 90 days, for average daily gain between 30 and 90 days of age, and for lamb survival to 90 days, respectively. The D'man direct genetic effect was low and negative for survival and birth weight of lambs during the first month of life. All traits studied showed positive heterosis effects. Recombination loss effects were not significant. Therefore, crossbreeding of Timahdite with D'man breeds of sheep can result in an improved efficiency of production of saleable lambs. Heritability estimates were medium for litter size but low for the other reproduction traits. Direct heritabilities were low for body weights and lamb survival at 90 days and the corresponding maternal heritabilities showed, however, low to moderate estimates. For litter traits, the estimates of genetic and phenotypic correlations were positive and particularly high for genetic correlations.  相似文献   

16.
Genetic parameters were estimated for 6-month weight (W6), 9-month weight (W9), 12-month weight (W12), average daily gain from birth to 6 months old (ADG6), and Kleiber ratio at 6 months (KL6) traits using 6,442 records obtained from a Raini Cashmere goat flock. The parameters were estimated using the restricted maximum likelihood procedure and applying four animal models excluding or including maternal additive genetic and permanent environmental effects. Heritability estimates for W6, W9, W12, ADG6, and KL6, under the most appropriate model were 0.028, 0.26, 0.29, 0.02, and 0.25, respectively. The estimates of genetic and phenotypic correlations among W6, W9, W12, and ADG6 were high and ranged from 0.73 to 0.99. The estimates of genetic and phenotypic correlations among KL6 and others traits were negative and low. Thus, these estimates of genetic parameters may provide a basis for deriving selection indices for postweaning growth traits also low genetic correlation between growth traits with KL6, it is possible to increase efficiency in Raini kids by multitrait selection.  相似文献   

17.
Records of 9,055 lambs from a composite population originating from crossing Columbia rams to Hampshire x Suffolk ewes at the U.S. Meat Animal Research Center were used to estimate genetic parameters among growth traits. Traits analyzed were weights at birth (BWT), weaning (7 wk, WWT), 19 mo (W19), and 31 mo (W31) and postweaning ADG from 9 to 18 or 19 wk of age. The ADG was also divided into daily gain of males (DGM) and daily gain of females (DGF). These two traits were analyzed with W19 and with W31 in three-trait analyses. (Co)variance components were estimated with REML for an animal model that included fixed effects of sex, age of dam, type of birth or rearing, and contemporary group. Random effects were direct and maternal genetic of animal and dam with genetic covariance, maternal permanent environmental, and random residual. Estimates of direct heritability were .09, .09, .35, .44, .19, .16, and .23 for BWT, WWT, W19, W31, ADG, DGM, and DGF, respectively. Estimates of maternal permanent environmental variance as a proportion of phenotypic variance were .09, .12, .03, .03, .03, .06, and .02, respectively. Estimates of maternal heritability were .17 and .09 for BWT and WWT and .01 to .03 for other traits. Estimates of genetic correlations were large among W19, W31, and ADG (.69 to .97), small between BWT and W31 or ADG, and moderate for other pairs of traits (.32 to .45). The estimate of genetic correlation between DGM and DGF was .94, and the correlation between maternal permanent environmental effects for these traits was .56. For the three-trait analyses, the genetic correlations of DGM and DGF with W19 were .69 and .82 and with W31 were .67 and .67, respectively. Results show that models for genetic evaluation for BWT and WWT should include maternal genetic effects. Estimates of genetic correlations show that selection for ADG in either sex can be from records of either sex (DGM or DGF) and that selection for daily gain will result in increases in mature weight but that BWT is not correlated with weight at 31 mo.  相似文献   

18.
Estimates of heritabilities and genetic correlations were obtained for weaning weight records of 23,681 crossbred steers and heifers and carcass records from 4,094 crossbred steers using animal models. Carcass traits included hot carcass weight; retail product percentage; fat percentage; bone percentage; ribeye area; adjusted fat thickness; marbling score, Warner-Bratzler shear force and kidney, pelvic and heart fat percentage. Weaning weight was modeled with fixed effects of age of dam, sex, breed combination, and birth year, with calendar birth day as a covariate and random direct and maternal genetic and maternal permanent environmental effects. The models for carcass traits included fixed effects of age of dam, line, and birth year, with covariates for weaning and slaughter ages and random direct and maternal effects. Direct and maternal heritabilities for weaning weight were 0.4 +/- 0.02 and 0.19 +/- 0.02, respectively. The estimate of direct-maternal genetic correlation for weaning weight was negative (-0.18 +/- 0.08). Heritabilities for carcass traits of steers were moderate to high (0.34 to 0.60). Estimates of genetic correlations between direct genetic effects for weaning weight and carcass traits were small except with hot carcass weight (0.70), ribeye area (0.29), and adjusted fat thickness (0.26). The largest estimates of genetic correlations between maternal genetic effects for weaning weight and direct genetic effects for carcass traits were found for hot carcass weight (0.61), retail product percentage (-0.33), fat percentage (0.33), ribeye area (0.29), marbling score (0.28) and adjusted fat thickness (0.25), indicating that maternal effects for weaning weight may be correlated with genotype for propensity to fatten in steers.  相似文献   

19.
Correlations between genetic expression in lambs when dams were young (1 yr), middle-aged (2 and 3 yr), or older (older than 3 yr) were estimated with three-trait analyses for weight traits. Weights at birth (BWT) and weaning (WWT) and ADG from birth to weaning were used. Numbers of observations were 7,731, 9,518, 9,512, and 9,201 for Columbia (COLU), Polypay (POLY), Rambouillet (RAMB), and Targhee (TARG) breeds of sheep, respectively. When averaged, relative estimates for WWT and ADG were similar across breeds. Estimates were variable across breeds. On average, direct heritability was greater when environment was young dams (.44 for BWT and .34 for WWT) than when environment was dams of middle age or older (.24 and .28 for BWT and .20 and .16 for WWT, respectively). Maternal heritability was greater when dams were middle-aged or older (.28 and .22 vs .18) for BWT but was greater when dams were younger (.10 vs .05 and .04) for WWT. The estimates of genetic correlations for direct effects across age of dam environments averaged .32 for birth weight and averaged .70 for weaning weight. Average estimates of maternal genetic correlations across age of dam classes were .36 or less for both BWT and WWT. Average estimates of correlations among maternal permanent environmental effects were .49 or less across age of dam classes. Total maternal effects accounted for .33 to .42 of phenotypic variance for BWT and for .09 to .26 of phenotypic variance for WWT. The average estimates of genetic correlations between expressions of the same genotypes with different ages of dams suggest that measurements of BWT of lambs with dams in young, middle, and older age classes should be considered to be separate traits for genetic evaluation and that for WWT measurements with young age of dam class and combined middle and older age of dam classes should be considered to be separate traits for genetic evaluation.  相似文献   

20.
Estimates of direct and maternal genetic parameters in beef cattle were obtained with a random regression model with a linear spline function (SFM) and were compared with those obtained by a multitrait model (MTM). Weight data of 18,900 Gelbvieh calves were used, of which 100, 75, and 17% had birth (BWT), weaning (WWT), and yearling (YWT) weights, respectively. The MTM analysis was conducted with a three-trait maternal animal model. The MTM included an overall linear partial fixed regression on age at recording for WWT and YWT, and direct-maternal genetic and maternal permanent environmental effects. The SFM included the same effects as MTM, plus a direct permanent environmental effect and heterogeneous residual variance. Three knots, or breakpoints, were set to 1, 205, and 365 d. (Co)variance components in both models were estimated with a Bayesian implementation via Gibbs sampling using flat priors. Because BWT had no variability of age at recording, there was good agreement between corresponding components of variance estimated from both models. For WWT and YWT, with the exception of the sum of direct permanent environmental and residual variances, there was a general tendency for SFM estimates of variances to be lower than MTM estimates. Direct and maternal heritability estimates with SFM tended to be lower than those estimated with MTM. For example, the direct heritability for YWT was 0.59 with MTM, and 0.48 with SFM. Estimated genetic correlations for direct and maternal effects with SFM were less negative than those with MTM. For example, the direct-maternal correlation for WWT was -0.43 with MTM and -0.33 with SFM. Estimates with SFM may be superior to MTM due to better modeling of age in both fixed and random effects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号