首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The effects of different densities of caged Nile tilapia, Oreochromis niloticus, on water quality, phytoplankton populations, prawn, and total pond production were evaluated in freshwater prawn, Macrobrachium rosenbergii, production ponds. The experiment consisted of three treatments with three 0.04‐ha replicates each. All ponds were stocked with graded, nursed juvenile prawn (0.9 ± 0.6 g) at 69,000/ha. Control (CTL) ponds contained only prawns. Low‐density polyculture (LDP) ponds also contained two cages (1 m3; 100 fish/cage) of monosex male tilapia (115.6 ± 22 g), and high‐density polyculture (HDP) ponds had four cages. Total culture period was 106 d for tilapia and 114 d for prawn. Overall mean afternoon pH level was significantly lower (P ≤ 0.05) in polyculture ponds than in CTL ponds but did not differ (P > 0.05) between LDP and HDP. Phytoplankton biovolume was reduced in polyculture treatments. Tilapia in the LDP treatment had significantly higher (P ≤ 0.05) harvest weights than in the HDP treatment. Prawn weights were higher (P ≤ 0.05) in polyculture than prawn monoculture. These data indicate that a caged tilapia/freshwater prawn polyculture system may provide pH control while maximizing pond resources in temperate areas.  相似文献   

2.
The effects of pond fertilization and feeding rate on growth, economic returns and water quality were investigated to develop a low‐cost cage‐cum‐pond integrated system for production of Oreochromis niloticus (L.). Hand‐sexed male fingerlings averaging 19±0.39 and 32±0.69 g were stocked in cages and open ponds at 150 fish cage?1 and 2 fish m?2 respectively. Fish were cultured for 114 days in five triplicate treatments. Cages were installed into ponds and caged fish were fed a 24% protein diet at 3% (T1) and 6% (T2) body weight day?1 (BWD) without pond fertilization, and 6% BWD with pond fertilization (T3). The open water in the fourth treatment (T4) was not stocked but contained caged fish, which were fed 6% BWD for the first 57 days followed by 3% BWD for the remaining period. Ponds in the control (T5) had no cages and were neither fertilized nor open‐pond fish fed. Feeding rate and pond fertilization significantly (P<0.05) affected fish growth, profitability and water quality among treatments. Fish growth, feed utilization, fish yield, water quality and profits were significantly (P<0.05) better in T3 than the other treatments. It was concluded that fish production and economic returns were optimized at 6% BWD in fertilized ponds.  相似文献   

3.
Cage‐pond integration system is a new model for enhancing productivity of pond aquaculture system. A field trial was conducted using African catfish (Clarias gariepinus) and Nile tilapia (Oreochromis niloticus) in cages and carps in earthen ponds. There were four treatments replicated five times: (1) carps in ponds without cage, (2) tilapia at 30 fish m?3 in cage and carps in open pond, (3) catfish at 100 fish m?3 in cage and carps in open pond, (4) tilapia and catfish at 30 and 100 fish m?3, respectively, in separate cages and carps in open pond. The carps were stocked at 1 fish m?2. The cage occupied about 3% of the pond area. The caged tilapia and catfish were fed and the control ponds were fertilized. Results showed that the combined extrapolated net yield was significantly higher (P < 0.05) in the catfish, tilapia and carps integration system (9.4 ± 1.6 t ha?1 year?1) than in the carp polyculture (3.3 ± 0.7 t ha?1 year?1). The net return from the tilapia and carps (6860 US$ ha?1 year?1) and catfish, tilapia and carps integration systems (6668 US$ ha?1 year?1) was significantly higher than in the carp polyculture (1709 US$ ha?1 year?1) (P < 0.05). This experiment demonstrated that the cage‐pond integration of African catfish and Nile tilapia with carps is the best technology to increase production; whereas integration of tilapia and carp for profitability.  相似文献   

4.
We evaluated the effect of varying cage stocking density (60, 90 and 120 fish m?3) and feeding duration (10, 30 and 60 min) in a cage‐cum‐pond‐integrated system on growth performance, water quality and economic benefits in Labeo victorianus culture. Interactions between stocking density and feeding duration significantly (< 0.05) affected the fish growth performance and yields in the cages‐cum‐pond system. Stocking density of 60 fish m?3 resulted in the highest growth in cages and in ponds regardless of the feeding duration, but produced lower yields than at stocking density 90 fish m?3. The lowest Apparent Food Conversion Ratio (AFCR) in cages occurred at stocking density of 60 fish m?3 and feeding duration of 30 min. Growth performance in the open ponds declined with increased feeding duration of the caged fish. Survival in cages and in the open ponds decreased with increased cage density, but was not affected by feeding duration. Low dissolved oxygen were recorded, at stocking density of 120 fish m?3, the lowest DO occurred when feeding of caged fish lasted 60 min. Growth performance, water quality and economic benefits in Labeo victorianus culture positively respond to interaction between stocking density and feeding durations.  相似文献   

5.
Abstract.— A 12‐wk feeding trial was conducted in cages with juvenile Nile tilapia Oreochromis niloticus to evaluate distillers grains with solubles (DDGS) as a direct feed, the effects of pelleting on its utilization, and the compatibility of caged tilapia and prawns in polyculture. Nine 1.0‐m3 cages were stocked with 200 juvenile (26 ± 0.9 g) tilapia. Cages were suspended in a 0.2‐ha pond stocked with juvenile freshwater prawns Macrobrachium rosenbergii at 40,000/ha. Three replicate cages were randomly assigned to each dietary treatment. In one dietary treatment DDGS was fed as an unpelleted loose grain ration (26% protein). In a second dietary treatment fish were fed DDGS that had been steam‐pelleted (23% protein). Fish in a third dietary treatment were fed a commercial catfish diet (31% protein) for comparison. After 12 wk, individual weight, individual length, and specific growth rate were significantly higher (P < 0.05) and feed conversion ratio was significantly lower (P < 0.05) for fish fed the commercial catfish diet than for fish fed either unpelleted or pelleted DDGS. Specific growth rate was significantly higher (P < 0.05) for fish fed pelleted DDGS than for fish fed unpelleted DDGS. Survival did not differ significantly (P > 0.05) among treatments (>95%). Although growth was increased in fish fed the commercial diet, their cost of production (<0.66/kg gain) was significantly higher (P < 0.05) than in fish fed unpelleted and pelleted DDGS (<0.26/ kg gain and <0.37/kg gain, respectively). The costs of gain in fish fed unpelleted DDGS was significantly lower (P < 0.05) than in fish fed the pelleted DDGS. Prawn production was 1,449 kg/ha and addition of tilapia in polyculture increased total pond productivity approximately 81 %. These data suggest that DDGS provides economical growth in tilapia when fed as a direct feed and that polyculture of tilapia may improve overall pond efficiency in freshwater prawn production ponds, even at temperate latitudes.  相似文献   

6.
ABSTRACT

Fish cage culture is an intensive, continuous-flow fish farming system, allowing intensive exploitation of water bodies with relatively low capital investment. This study aimed to determine the production function of Nile tilapia, Oreochromis niloticus, in cages; the profit-maximizing biomass at 300–400 and 500–600 fish per m3 for cages of different volumes; and the influence of water body conditions in fish performance. Feed intake, survival rate, and water temperature were monitored daily; dissolved oxygen, pH, and transparency of water were monitored each 15 days. Caged tilapia were fed daily on commercial, floating pellets (32% crude protein) at 0900, 1300, and 1700, and feeding rate was adjusted based on weight gain and survival rate. Data were analyzed statistically by ANOVA (P = 0.05) and regression analysis; the Mitscherlich function was chosen to represent the production function. Carrying capacity of both stocking densities reached 200 kg/m3 and no differences were found (P > 0.05) regarding accumulated biomass and individual average weight over time. The larger stocking density yielded larger accumulated biomass and had better feeding efficiency and no differences between individual average weights of fish at both densities were observed (P > 0.05). Profit-maximizing biomass at 500–600 fish/m3 was 145 kg/m3 and at 300–400 fish/m3 was 121 kg/m3. Cage farming of Nile tilapia at 500–600 fish/m3, individual average weight 283 g, presented many advantages: optimization of space and production time, better feed efficiency, higher fish production per unit volume of cages, and increased profitability.  相似文献   

7.
Two experiments (E1 and E2) to assess the performance of tilapia broodstock and tilapia sex‐reversed fry in overwintering were conducted at the Research Institute for Aquaculture No.1 (RIA‐1) in the cold seasons of 1995–96 and 1996–97. Nile tilapia Oreochromis niloticus (L.) broodstock of the Thai, GIFT, Egypt and Viet strains were overwintered in deep and shallow ponds, as well as in deep and shallow hapas suspended in a single deep pond for evaluation of the influence of overwintering systems on the survival and growth of fish. Large (> 1 g) and small (< 1 g) tilapia seed were overwintered in deep hapas‐in‐ponds for comparison of their performance. In 1995–96, the coldest pond water temperature was 10–11 °C, and survival of tilapia broodfish overwintered in deep and shallow hapas‐in‐ponds was 99.6–100%. This was significantly (P < 0.05) higher than fish stocked in deep and shallow ponds (74.4–90%). The survival rate of larger monosex tilapia fry was 54%, which was significantly (P < 0.05) higher than that of smaller fry (33.4%). In 1996–97, the lowest pond water temperature was 15.8 °C, and fry showed similarly high survival rates in all treatments (97–100%). There was no significant difference between fry in the two size classes. The results of this study clearly indicate that hapas‐in‐ponds are useful for reducing the risk and improving the survival of tilapia broodstock and fry in the cold season. Differences in the decline in ambient temperatures year on year mean that the need for special overwintering conditions varies. Hapas‐in‐ponds are a low‐cost overwintering method that can be one of the appropriate strategies for tilapia seed production under the variable, cool temperature regimes in northern Vietnam.  相似文献   

8.
In aquaculture, the benefit of autotrophic production within land-based ponds for fish production has long been recognized. In cage culture, organisms growing on the cage net have so far only been considered as a problem. This study investigated the potential production of periphyton on cage nets used in a tropical mixed tilapia culture of Oreochromis mortimeri (Trewavas), Tilapia rendalli (Boulenger) and Oreochromis niloticus (Linnaeus) in Lake Kariba, Zimbabwe. The production of periphyton was assessed experimentally and compared with the energy demand of the caged fish. The tilapias were found to graze intensively on the net, and the primary production of periphyton on the cage net was ≈ 1% relative to the energy demands of the fish.  相似文献   

9.
Nile tilapia (Oreochromis niloticus L.) was fed rice bran (RB), wheat bran (WB) and maize bran (MB) at 1.5% body weight. Fingerlings averaging 14 g were stocked at 19 462 fish ha?1 in three treatments with six replicates per treatment. Clarias gariepinus was stocked at 250 fish ha?1 to reduce the density of tilapia fry. Growth and economic performance were compared for 250 days in 0.08 ha fertilized ponds. Fish growth was highest (P < 0.05) in MB and least in RB treatment. Growth in WB treatment was intermediate. Feed conversion ratio in MB and WB treatments was similar (P > 0.05), but significantly higher (P < 0.05) than in RB treatment. Water quality parameters were similar (P > 0.05) among treatments. At retail price of US$ 1.28 kg?1 fish, returns above both variable and total costs from MB and WB treatments were positive, while those from RB were negative. However, at US$ 1.79 kg?1 fish, all test‐feeds had positive returns above variable and total costs. In conclusion, MB treatment produced the highest growth, but the highest profitability was obtained in the WB treatment. Under present study conditions, RB was not cost‐effective in the production of O. niloticus. A selling price of US$ 1.79 kg?1 fish is recommended.  相似文献   

10.
Channel catfish (lctalurus punctatus) fingerlings stocked at a rate of 450 fish/0.04 ha pond were simultaneously cultured with fingerlings stocked in 1.25 m3 cages (0, 250, 350, or 450 fishlcage; one cage/pond). The fish in the cages were cultured and harvested for a 90–330 g (whole fish) market. The fish in the open ponds were cultured and harvested for a 490–1,140 g market. Harvest weights of open pond fish in all treatments were similar indicating that the presence of the caged fish and the associated higher daily pond feeding rates did not affect open pond production. Ninety-five to 99% of the caged fish and 96 to 98% of the open pond fish were of marketable size at harvest. Survival and food conversion ratios were similar among treatments. Results of this study indicate that total pond production can be increased (in this case up to 19%) by using a combination of open pond and cage techniques and by simultaneously producing fish for two markets.  相似文献   

11.
A comparative study was carried out to compare the effect of caging mullet and tilapia in a shrimp polyculture system. In six shrimp tanks (three tanks for each fish species), either mullet, Mugil cephalus (CCT‐SM), or tilapia, Oreochromis niloticus (CCT‐ST), was stocked in cages. In three other tanks, mullets were allowed to roam freely in shrimp tanks (D‐SM). White shrimp, Litopenaeus vannamei (0.50 g), was cultured as the predominant species were distributed randomly into nine fibreglass tanks (5 m3) at a density of 300 shrimp/tank, while fish (1.50 g) were stocked at the same density of 10% of the initial total shrimp biomass. The results showed that water quality parameters were not significantly different among treatments (p > .05), except for total suspended solids (TSSs). System performances based on parameters such as total weight gain (2,808.15 g/tank) and nutrient recovery were higher in D‐SM treatment (39.80% for nitrogen and 27.40% for phosphorus) than in CCT‐SM and CCT‐ST treatments (p < .05). These system performance parameters were significantly affected by the mullet‐holding strategy; however, they were not affected by fish species. The addition of mullet or tilapia in shrimp tanks did not affect shrimp growth differentially. Fish growth performances based on parameters such as final weight (98.43 g/fish) and DGR (1.29 g/day) were significantly higher in D‐SM treatment and were significantly different among D‐SM, CCT‐SM and CCT‐ST treatments (p < .05). It is concluded that in shrimp–fish polyculture with a stocking density of fish at 10% of the initial total shrimp biomass, tilapia is more effective than mullet, when caged. However, under free‐roaming conditions, the use of mullet is more effective in terms of system performances relative to a system holding caged tilapia.  相似文献   

12.
Abstract The interactions between cage culture and wild fishery activities in three Indonesian reservoirs, Saguling, Cirata and Jatiluhur, of the greater Ciratum watershed, West Java, were evaluated using historical data and interviews with cage culture operators. In all three reservoirs, cage culture of common carp, Cyprinus carpio L., and later of common carp and Nile tilapia, Oreochromis niloticus (L.), were encouraged as an alternative livelihood for persons displaced by the impoundment. Currently, a two‐net culture system, locally known as ‘lapis dua’, in which in the inner cage (7 × 7 × 3 m) is used for common carp culture and the outer cage (7 × 7 × 5/7 m) is stocked with Nile tilapia, is practised. On average each cage is stocked with approximately 100 kg fingerlings each of common carp and Nile tilapia. The numbers of cages and production of cultured fish has increased in the reservoirs, but total and per cage production began to decline from about 1995 in Saguling from 2200 kg cage?1 in 1989 to <500 kg cage?1 in 2002, and in Cirata from a peak of approximately 2300 kg cage?1 in 1995 to approximately 400 kg cage?1 in 2002. In Jatiluhur, which has a considerably lower cage density, total fish production and production per cage has increased since 2000, and currently is approximately 4000 kg cage?1, close to production in the early years of cage culture activities. The cage culture operations also resulted in substantial nutrient loading, estimated at 3.2, 15.2 and 3.1 t of nitrogen and 134, 636 and 128 kg of phosphorous per year in the maximum years of production for Saguling, Cirata and Jatiluhur reservoirs, respectively. In later years, when cage culture production was high, fish kills occurred in the cages, and in Jatiluhur reservoir coincided with a dramatic decline in wild fishery catches. An attempt is made to determine the maximum number of cages for each of the reservoirs that will bring long‐term sustainability of cage culture operations and the wild fisheries in the three reservoirs.  相似文献   

13.
This research was conducted to investigate the effect of stocking density on the growth performance and yield of Oreochromis niloticus in cage culture in Lake Kuriftu. The treatments had stocking densities of 50 (50F), 100 (100F), 150 (150F), and 200 (200F) fish per m?3. All treatments were in duplicate. Juveniles with an average weight of 45. 76±0.25 g were stocked in the treatments. The fish were fed a composite mixture of mill sweeping, cotton seed, and Bora food complex at 2% of their body weight twice per day using feeding trays for 150 days in powdered form. The growth performance of O. niloticus was density dependent. The final mean weight of O. niloticus ranged 147.76±0.28–219.71±1.42 g and the mean daily weight gain was 0.69±0.01–1.15±0.02 g day?1. Fish held in cages with lower density were heavier than the ones held at higher densities, and showed higher weight gain and daily weight gain. The most effective stocking density, in terms of growth parameters, was 50 fish m?3. The gross yield (4.5–20.55 kg cage?1) showed a significant difference with increasing stocking density (P<0.05). Moreover, the apparent food conversion ratio (2.48–7.22) was significantly affected by stocking density (P<0.05). However, survival rate was not affected by stocking density (P>0.05). It can be concluded that the most effective stocking densities were at 50 fish m?3 cage for larger size fish demand in a short period and 200 fish m?3 for higher gross production with supplementary feed.  相似文献   

14.
The effect of scheduled use of high‐protein and low‐protein diets on body weight and fry production of Nile tilapia, Oreochromis niloticus (L.), was determined. A preliminary feeding trial was first conducted on fingerlings. These were fed a high‐protein diet (H, 25% protein) or a low‐protein diet (L, 18% protein) daily, or diet H for 1–3 days followed by diet L for 1–4 days. Final body weight was significantly higher (P < 0.05) in fish fed diet H daily and in fish fed diet H for 2–3 days followed by diet L for 1 day (2H?1L and 3H?1L). Fingerlings on 1H?1L and 3H?2L had slightly lower growth. Based on the response of the fingerlings, five feeding schedules were tested with the broodstock. A high‐protein diet (HP, 40%) and a low‐protein diet (LP, 25%; same as H for fingerlings) were used. Feeding schedules significantly influenced body weight of female but not the male fish. Fry production was not significantly affected by the feeding schedule for broodstock. When growth, fry production and saving in feed cost were all considered, the broodstock on 1HP?1LP and 3HP?2LP feeding schedules both gave the highest overall performance. These findings give fish farmers an option in the management of feeding of tilapia broodstock.  相似文献   

15.
Abstract

Two studies were conducted to determine if temporary sequestration of fingerling channel catfish, Ictalurus punctatus, in cages improves production of multiple-crop ponds. In the first study, 0.04-ha ponds were stocked with 295 large (mean weight = 566 g) and 780 fingerling (mean weight = 21 g) catfish. Fingerlings were stocked into cages or open ponds. At 120 days after stocking, fish in cages were released. After an additional 40 days, ponds were clean-harvested to remove large (>500 g) and small (<500 g) fish. In the second study, ponds (0.08-ha) were stocked with 750 large (mean weight = 46 g) and 750 small (mean weight = 20 g) fingerling catfish. Small fingerlings were stocked into cages or open ponds. At 60 days after stocking, fish in cages were released. Market-ready fish were selectively harvested at five and nine months after stocking. Results from the first study indicated that individual weight, weight gain, and yield of both size classes of fish raised in sequestered ponds were significantly greater (P< 0.05) than that of fish raised in open ponds. In addition, total weight gain and yield of fish in sequestered ponds was significantly greater (P< 0.05) than those in non-sequestered ponds. Results from the second study indicated that a significantly greater (P< 0.05) number of market-ready fish were harvested from sequestered ponds than from non-sequestered ponds. Mean yield of sequestered ponds was 31% greater than that of non-sequestered ponds; however, differences were not significant (P> 0.05). Amount of feed fed to fish raised in sequestered ponds was significantly greater (P< 0.05) than amount of feed fed to fish raised in non-sequestered ponds in both studies. It is unclear which factor or factors were responsible for the enhanced production of sequestered ponds; however, temporary sequestration may reduce agonistic behavior and competition for feed between fish size groups.  相似文献   

16.
This study determined the growth performance and acquired resistance of Nile tilapia, Oreochromis niloticus (L.) that survived Streptococcus iniae infection. Tilapia were challenged with three doses of S. iniae (8.8 × 103, 8.8 × 104 and 8.8 × 105 CFU fish?1 for low, medium and high challenges respectively). Groups of non‐injected and tryptic soy broth‐injected fish were maintained as controls. Significantly (P<0.05) higher mortality (45.0%) occurred in the high challenge treatment than in the low challenge treatment group (29.6%). The medium challenge group had mortality (36.3%) that did not differ significantly from the high or low treatment. Few fish died in the non‐injected and broth‐injected treatments (3.4% and 0.8% respectively). The tilapia that survived S. iniae infection used to assess growth performance were selected from survivors without gross clinical signs of disease. These fish were randomly stocked at a rate of 30 fish into each 57 L aquarium in triplicate and fed to apparent satiation for 8 weeks. No significant differences were detected in weight gain, feed intake, feed efficiency ratio or survival between S. iniae‐survived tilapia and the control treatments following the 8‐week growth performance trial. Following the 8‐week feeding study, tilapia were challenged with 1 × 106 CFU fish?1 of S. iniae to assess acquired immunity. Mean cumulative mortality was significantly higher (P<0.05) in the control treatments (41.7% for the non‐injected and 43.3% for the broth‐injected fish) than in the low, medium and high challenge treatments (7.4%, 3.3% and 8.3% respectively). Serum protein was significantly (P<0.05) elevated in the S. iniae‐survived tilapia that were subsequently challenged when compared with controls challenged for the first time. Agglutinating antibody titre was significantly higher in the fish in the medium and high challenge treatments, compared with the control fish challenged for the first time. The results suggest tilapia that survive S. iniae challenge without showing overt disease signs performed as well as non‐infected tilapia. Further, the S. iniae‐survived tilapia challenged following the 8‐week growth performance trial gained acquired resistance to homologous S. iniae challenge.  相似文献   

17.
Opportunities for developing small‐scale tilapia industry in the Philippines is hampered by the shortage of good‐quality seeds and broodstock. Most small‐scale farmers are dependent on distribution centres for improved tilapia seeds that are expensive and not sufficient to meet market demands. An option would be for farmers to develop their own tilapia breeds using simple procedures within their technical and financial resources. This option will also help sustain the diversity of locally adapted domestic stocks of tilapia. The Philippine tilapia production of ~122 316 MT can be increased by ensuring a stable supply of quality seeds and transferring suitable technology to fish farmers. The study was carried out in a tilapia hatchery/nursery pond in the Philippines to explore the potential for a farmer‐based research on tilapia breed improvement using relatively simple artificial selection procedures. One generation of size‐specific mass selection based on the early culling of large fry (collimation procedure) was applied on a Nile tilapia strain, Oreochromis niloticus L., in net cages set in a small earthen pond. Two episodes of directional selection were performed after initial removal of large fry at 21 days. Selection of parents and progeny testing were conducted in hapa and B‐net cages set in earthen ponds. The selection resulted in a significant response of 8% for standard length and 29% for weight relative to the control. The crude estimates of realized heritability is ~16% for standard length and ~26% for weight comparable with similar studies conducted by other workers.  相似文献   

18.
This study was designed to determine the effect of complete substitution of fish meal (FM) by three plant protein sources including extruded soybean meal (SBM), extruded full‐fat soybean (FFSB) and corn gluten meal (CGM) on growth and feed utilization of Nile tilapia Oreochromis niloticus and tilapia galilae Sarothrodon galilaeus. Four isonitrogenous of crude protein (ca. 28.0%) and isocaloric (ca. 19 MJ kg−1) experimental diets were formulated. The control diet (diet 1) was prepared with FM as the main protein sources. Diets 2–4, each FM control diet, were completely substituted with SBM (diet 2), FFSB (diet 3) and CGM (diet 4). l ‐lysine and dl ‐methionine were added to plant protein diets to cover the nutritional requirements of tilapia. Each treatment was allocated to three net pens and fed for 17 weeks. Nile tilapia fed the control diet showed significantly higher (P≤0.05) values for final body weight (FBW), feed intake (FI), weight gain (WG) and specific growth rate (SGR), whereas fish fed the diet with CGM achieved the lowest values. Tilapia galilae fed SBM diet recorded the highest (P≤0.05) values for growth performance. Better feed conversion ratio (FCR) for both Oreochromis niloticus and Sarothrodon galilaeus was observed when fish were fed SBM diet, whereas the worse FCR was recorded for FFSB diet. Feed utilization parameters including protein productive value (PPV), fat retention (FR) and energy retention (ER) showed significant differences (P≤0.05) for both the species fed different dietary protein sources. The present results suggest that, for Nile tilapia, both SBM and FFSB supplemented with dl ‐methionine and l ‐lysine can completely replace dietary FM. Meanwhile, S. galilaeus fed SBM diet exhibited comparable growth and feed utilization with those fish fed a fish‐meal‐based diet.  相似文献   

19.
An 8‐wk experiment was conducted to evaluate the effects of dietary protein on the growth performance, body composition, and serum biochemical indices of large male genetically improved farmed tilapia (GIFT), Oreochromis niloticus, reared in fertilized freshwater cages. Six semi‐purified diets were formulated, containing 18.05, 22.39, 25.97, 31.62, 35.97, and 39.89% protein (designated as P18, P22, P26, P30, P34, and P38, respectively). Each diet was fed to randomly selected fish (initial mean weight 216.7 g) in four cages. At the end of the experiment, the final body weights varied significantly (P < 0.05), ranging from 520 to 580 g. Fish receiving the P30 diet had the highest final weight value (580.5 ± 5.4 g). Weight gains of fish fed the P26 and P30 diets were significantly higher (P < 0.05) than those fed the P18 and P38 diets. The apparent feed efficiency of fish fed the P18 diet was significantly lower (P < 0.05) than that of fish in the other groups except the P22 group (P > 0.05). The apparent protein efficiency ratio decreased gradually with increasing dietary protein. Whole‐body moisture and ash showed no significant difference (P > 0.05), but protein and fat content were significantly affected by dietary protein level (P < 0.05). No significant differences were found for serum total protein, triglyceride, total cholesterol, glutamic‐oxaloacetic transaminase, and glutamic‐pyruvic transaminase levels among different diets (P > 0.05); only serum glucose level was affected by dietary protein levels (P < 0.05). Second‐order polynomial regression of weight gain suggested 29.3% dietary protein is adequate content for maximum growth of large male GIFT, O. niloticus.  相似文献   

20.
The effects of varying water depths and temperature on the growth, feed utilization, mortality rates and body composition of Nile tilapia, Oreochromis niloticus (L.), were evaluated. Triplicate groups of 20 fish (mixed-sex) m-3 were stocked into 200-m2 freshwater earthen ponds maintaining four water depths: 50, 100, 200 and 300 cm. The fish were fed on commercial fish pellets (23% protein), twice a day for 10 months (May 1991-February 1992). Water temperatures ranged from 5 oC to 33 oC. Growth performance and survival were significantly affected by pond depth and water temperature. Fish weight gain was lowest (250 g per fish), feed conversion poorest (3.15), and mortality highest (41.5%) at 50 cm depth, whereas 100-200 cm depth produced the best growth rates at warm water temperatures (> 21 oC). At 100-200 cm depth, weight gain was significantly (P<0.001) increased to 348-362 g per fish, feed conversion improved to 2.53-2.59 (P<0.01) and mortality reduced to 21-27% (P<0.001). Fish growth was significantly reduced (P<0.001) below 21 oC. Below 10 oC, fish stopped feeding and developed severe stress, fungal infection and high mortality. However, mortality rate was significantly reduced at 300 cm depth. Body lipid and protein were sharply decreased (P<0.001) with decreasing water temperature and pond depth, whereas body ash showed irregular patterns.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号