首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Wheat-rye translocation 1RS.1AL from cv. Amigo is still popular in wheat breeding and commercial cultivars. It introduces several disease and pest resistance genes from rye into wheat, and appears to enhance root system development. To create a set of uniform stocks for precise tests, the rye arm 1RS was separated from the wheat arm in the translocation by misdivision of centromeres in univalents, fused into a complete chromosome 1R, and then re-translocated to all group-1 wheat chromosomes 1A, 1B and 1D, creating a set of three translocation and three substitution lines in a uniform background of cv. Pavon 76. Misdivision frequencies of the chromosomes mirrored those observed earlier in that shorter chromosomes broke less frequently than the long ones, and chromosomes from previous misdivision-fusion events misdivided more frequently than normal intact chromosomes. This set of chromosome lines with 1RS from cv. Amigo increases to three the number of such translocations stocks in wheat.  相似文献   

2.
Grain protein compositions of 106 advanced generation backcross lines from crosses involving ‘Amigo’ (1AL.1RS), ‘Aurora’, ‘Kavkaz’, ‘Skorospelka-35’ and ‘Sunbird’ (all 1BL.1RS) and ‘Gabo’ 1DL.1RS parents and 152 cultivars with unknown pedigree were analysed by one-dimensional SDS-PAGE. Eighty seven backcross lines and 16 cultivars carried one or other of these translocations, 2 cultivars had a 1R (1B) substitution, whereas 5 backcross lines were found to be heterogeneous for the 1BL.1RS translocation. The translocation lines were easily identified by the presence of secalins (Sec-1) controlled by rye chromosome arm IRS and a simultaneous loss of the gliadin (Gli-1) and/or triticin (Tri-1) protein bands controlled by the replaced wheat chromosome arm (1AS, 1BS or 1DS). Certain gliadins, showing no allelic variation among the genotypes analysed, were identified as markers for chromosome arms 1AS (Mr= 34 kd) and IBS (Mr= 42,33 kd). The whole chromosome substitutions 1R (1B) were recognized by scoring for the presence of Sec-1 and HMW secalin bands, Sec-3 (controlled by rye chromosome arm 1RL) and the absence of Gli-B1 and HMW glutenin subunits, Glu-B1 (controlled by wheat chromosome arm 1BL). The results have shown that protein electrophoresis provides a rapid and reliable technique for screening genotypes for these translocations and substitutions in a breeding programme.  相似文献   

3.
Many studies have been conducted to determine the relative effects of the 1BL.1RS translocation on various traits in wheat. The effects of different wheat (Triticum aestivum L.) genetic backgrounds and rye (Secale cereale L.) sources have been addressed as major factors for inconsistent agronomic performance and end-use-quality traits of 1BL.1RS translocation wheats. However, all these studies were accomplished by using 1BL.1RS translocations with impure wheat genetic bases and narrow rye origins. The objective of this study was to test the genetic effects of centric fusion translocations by using primary 1BL.1RS lines derived from various pure wheat lines and rye sources. Twenty-one primary 1BL.1RS translocation lines were created from crosses between two pure wheat lines and three Chinese local rye varieties. These translocation lines and their wheat parents were then evaluated in southwestern China. The results provide direct evidence of the diverse effects of the different wheat parents and rye sources, taking part in 1BL.1RS translocations, on resistance to diseases, agronomic performance, and end-use quality traits. The highest amount of genetic diversity was observed in 1BL.1RS translocations derived from the same wheat lines and diverse rye varieties. The results suggest that the genetic diversity of 1BL.1RS translocation lines may originate from the different wheat genetic backgrounds, from different rye sources, from their interaction, and from the translocation itself. Creation of diverse 1BL.1RS translocations offers ample possibilities to introduce more variation into wheat for improved performance.  相似文献   

4.
小麦-黑麦1RS/1BL新易位系的创制和分子细胞遗传学鉴定   总被引:4,自引:0,他引:4  
利用普通小麦(Triticum aestivum L.)品种小偃6号与黑麦(Secale cereale L.)品种德国白粒杂交,选育出一批带有黑麦抗病性状的小偃6号类型种质材料。应用连续C-分带-基因组原位杂交(sequent C-banding-GISH)技术对上述材料进行染色体组成分析,筛选出2个小麦-黑麦1RS/1BL纯合易位系BC152-1-1和BC01-89-1。其中,BC152-1-1(2n=42)除含有1对1RS/1BL易位染色体外,未见其他染色体变异;BC01-89-1(2n=43)除含有1对1RS/1BL纯合易位染色体外,还附加1条两端缺失的3R染色体。高分子量麦谷蛋白亚基(HMW-GS)组成分析和品质分析结果表明,BC152-1-1和BC01-89-1不仅含有来自小偃6号的14+15优质亚基,而且其蛋白质含量、湿面筋含量和SDS沉降值等品质性状都得到显著改良。  相似文献   

5.
Wheat cultivars carrying the 1BL.1RStranslocation were crossed with newly synthesised octoploid triticale lines involving four rye genotypes having ο-secalin banding patterns different from each other and from that of the 1BL.1RS translocation. Homologous recombination was expected between the short arm of the 1R chromosomes of the rye genotypes and the 1RS arm of the 1BL.1RSwheat/rye translocation. Seven sequence-specific PCR-based markers:Xiag95, RMS13, Bmac0213, GPI, Xpsr960, 5Sand SCM9, and ο-secalinproteins were used to detect recombination events in the BC1F2 generation. Segregation analysis demonstrated that a barley SSR marker (Bmac0213) locus was present on the 1RS chromosome arm. Of 834plants tested in four different BC1F2 populations, 246individuals were found to carry recombined1BL.1RS translocation chromosomes. Genetic linkage analysis was performed on the eight markers in the four different mapping populations. The physical positions of the markers are discussed. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

6.
Wheat (Triticum aestivum L.) breeders often utilize alien sources to supply new genetic variation to their breeding programs. However, the alien gene complexes have not always behaved as desired when placed into a wheat background. The introgressed genes of interest may be linked to undesirable genes, expressed at low levels or not at all. The short arm of rye (Secale cereale L.) chromosome one (1RS) contains many valuable genes for wheat improvement. In order to study rye gene response to varying copy number, wheat lines were constructed which contained zero, two or four doses of 1RS. The meiotic behavior of rye chromosome 1R, and wheat/rye translocation chromosomes, 1AL/1RS and 1BL/1RS was studied in the F1 hybrids between wheat lines carrying 1R or the translocation chromosomes. The IRS arm was transmitted at a very high frequency; 98 % of the F2 plants had at least one of the chromosomes with a IRS arm. In addition, 44 % of the F2 plants received at least one copy of the chromosomes from each parent. Analysis of the meiotic behavior of the IRS arm suggested that few euploid wheat gametes were formed. Therefore, most of the pollen must have contained IRS. It is unknown whether the lack of euploid wheat pollen could account for the high transmission frequency of the rye chromosomes. There may have been differential survival of the embryos receiving the rye chromosome as well.  相似文献   

7.
Z. X. Tang    S. L. Fu    Z. L. Ren    H. Q. Zhang    Z. J.Yang    B. J. Yan 《Plant Breeding》2009,128(5):524-527
The wheat-rye 1BL.1RS translocation chromosomes have been used widely around the world in commercial wheat ( Triticum aestivum L.) production because of the presence of several disease resistance genes and a yield enhancement factor on the rye ( Secale cereale L.) chromosome. However, the recent reports of the loss of complete effectiveness of the disease resistance genes on the most commonly used 1BL.1RS chromosome have highlighted the need to seek and deploy additional sources of disease resistance genes. Three new sibling wheat cultivars, 'CN12', 'CN17' and 'CN18', were developed carrying 1RS arms derived from the rye inbred line L155. Genomic in situ hybridization and C-banding analysis revealed that all the three cultivars contained the rye chromosome 1RS arm fused to the wheat 1BL wheat chromosome arm. The three cultivars displayed high yields and high resistance to local powdery mildew and stripe rust pathotypes. Fluorescence in situ hybridization analysis indicated the different structure of 1BL.1RS chromosome between 'CN18' and the other two cultivars. The present study provides a new 1RS resource for wheat improvement.  相似文献   

8.
The T1BL.1RS wheat (Triticum aestivum L.) - rye (Secale cereale L.) translocations have been of particular interest and are widely used in bread wheat breeding programs. The objective of this study was to determine the effect of the T1BL.1RS chromosome on grain yield and its components using 20 near-isolines of spring bread wheat cultivar ‘Seri M82’ (10 homozygous for chromosome 1B substitution and 10 homozygous for T1BL.1RS). The test lines have been produced by substituting the 1B chromosome in Seri M82 (T1BL.1RS, T1BL.1RS) through backrossing. Two field experiments were evaluated under optimum (five irrigations) and reduced (one irrigation) moisture conditions for two consecutive production cycles at the Mexican National Agricultural Research Institute, Ciudad Obregon, Sonora, Mexico. The presence of T1BL.1RS had a significant effect on grain yield, harvest index, grains/m2, grains/spike, 1000-grain weight, test weight, flowering date and physiological maturity in both moisture conditions. The agronomic advantage of the 1B substitution lines on above-ground biomass yield at maturity, spikes/m2and grain-filling duration was expressed only under the optimum moisture condition. The presence of T1BL.1RS increased grain yield 1.6% and 11.3% for optimum and reduced moisture conditions, respectively. These results encourage further use of T1BL.1RS wheats in improving agronomic traits, especially for reduced irrigation or rainfed environments. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

9.
Summary The Sr27 translocation in WRT238 was found to consist of chromosome arms 3RS of rye and 3AS of common wheat. An attempt was made to purposely produce compensating translocations having 3RS and a wheat homoeologous group 3L arm. To achieve this, plants, double monosomic for 3R and a wheat homoeologous group 3 chromosome, were irradiated (7.5 Gy gamma rays) or left untreated before being used to pollinate stem rust susceptible testers. Segregation for stem rust resistance was studied to identify F2 families with Sr27-carrying translocated chromosomes, these were confirmed by means of C-banding. Compensating translocations 3RS3AL and 3RS3BL) were obtained readily and at similar frequencies from untreated and irradiated plants (respectively, 7.2% and 9.3%). Both translocation types have impaired transmission and segregate approximately 3: 2 (present: absent) in the F2.  相似文献   

10.
The 1BL.1RS wheat-rye translocation and a wheat-Triticum timopheevii chromosomal introgression carry the Sr31, Lr26, Yr9 and Pm8 genes and the Sr36/Pm6 gene cluster, respectively. The objective of this study was to determine the distribution and impact of these two translocations in 220 wheat varieties registered in Hungary in the last 35 years until 2005. The 1BL.1RS translocation was introduced into Hungary via wheat cultivars ‘Avrora’ and ‘Kavkaz’, which were registered in 1970. New 1BL.1RS cultivars developed in Hungary first appeared in 1982. After reaching a maximum frequency of 50.0% among cultivars registered in Hungary in 1994, their presence declined steadily to 13.3% by 2005. The Sr36/Pm6 cultivars first appeared in 1980. Their frequency quickly reached 31.8% (1983–1984), but then dropped to between 9.6 and 18.5% (1990–2005). The two main Hungarian breeding programs showed opposing trends in the exploitation of these two translocations. In Martonvásár, 1BL.1RS played a dominant role, being present from 1993 to 1997 in ca. 95% of the released cultivars, while at the same time the use of Sr36/Pm6 was marginal. Conversely, among the Szeged cultivars, Sr36/Pm6 was present at high frequency (44.7% in 2002) with a low share of 1BL.1RS. In artificial field inoculation tests (1985–2003) both of the stem rust resistance genes provided significant resistance in all the years, though Sr36 proved more effective than Sr31. While Pm8 was not effective, except for the last 2 years, Pm6 exhibited significant resistance against powdery mildew in most of the 18 years tested. These data may help breeders to assess the usefulness of wheat-rye 1BL.1RS chromosome translocations and the Sr36/Pm6 resistance gene clusters in their future wheat improvement programs.  相似文献   

11.
Chromosome arm 1RS of rye ( Secale cereale L.), when transferred to wheat ( Triticum sp.), significantly influences variety performance, because it carries genes for resistance to disease and insect pathogens. Inserted into wheat, 1RS also promotes haploid production, affects end-product quality, and sometimes affects yield. Therefore, its detection by breeders and geneticists is important. The entire 1RS arm is present in chromosome substitutions and in Robertsonian translocations involving chromosomes 1A, 1B, or 1D of wheat. In recombinant lines, a segment of 1RS has been exchanged with a segment of a group-1 wheat chromosome. Determining the wheat chromosome arm involved in a translocation, the source of rye chromatin, and the amount of 1RS chromatin introduced is necessary for a complete characterization of the introgressed segment. Biochemical, molecular, and cytogenetic technologies are described which enable such a characterization of 1RS in wheat. Examples of using gel electrophoresis, high-performance liquid chromatography, monoclonal antibodies, rye-specific molecular probes, RFLP and PCR assays, chromosome banding, in situ hybridization, and flow cytometry are provided. A comparison of these technologies is made and the advantages and disadvantages of each technology are discussed relative to modern wheat breeding efforts. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

12.
A growing interest exists in using wheat for producing both hard and soft wheat products. It would be desirable if 1RS translocations in hard wheat could produce flour suitable for soft wheat products. The objective of this study was to test the effects of centric translocations of chromosome 1 from different rye sources for end‐use quality. The quality influences of the 1RS and 1RL translocations and 1R substitutions from different rye sources were studied in a set of hard spring wheat ‘Pavon 76’(CIMMYT) lines in three environments in Georgia. The protein concentration of the 1RL translocations was the highest while the 1RS translocations showed no difference in protein concentration compared with that of controls. The 1RS translocations increased alkaline water retention capacity while the 1RL translocations reduced it. T1DSAE1RL was preferred for soft wheat products over other genotypes.  相似文献   

13.
A powdery mildew resistant double disomic wheat-rye substitution line carrying rye chromosomes 1R and 2R was crossed with normal bread wheats. The F2 generation was analysed cytologically by C-banding. Wheat-rye chromosome translocations involving both rye chromosomes 1R and 2R were frequent in F2. Lines with translocations of 1R and 2R were harvested separately. After four generations of selfing and selection for mildew resistance and fertility, fully fertile resistant lines were selected and analysed cytologically. Lines with 1BL/1RS and 2BS/2RL translocations were identified. The resistance on chromosome 1RS could not be shown to be different from control varieties carrying the same rye segment, while the resistance on 2RL is much broader than the earlier known 2RL derived resistance in the line Transec. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

14.
Y. Weng    P. Azhaguvel    R. N. Devkota    J. C. Rudd 《Plant Breeding》2007,126(5):482-486
The rye ( Secale cereale L.) chromosome arm 1RS is one of the most successfully used alien resources in wheat ( Triticum aestivum L.) improvement, and it is still being widely utilized by many breeding programmes. With increasing application of marker-assisted selection in wheat breeding, development of an efficient molecular marker system to monitor and track 1AL.1RS and 1BL.1RS wheat–rye translocations is of practical value. In this study, we systematically evaluated the utility of eight rye-specific molecular markers in detecting 1RS chromatins with different origins in diverse wheat genetic backgrounds. Two such markers, PAWS5/S6 and SCM9 were identified that were able to differentiate multiple sources of wheat–rye translocations involving 1RS. A duplex polymerase chain reaction (PCR) procedure was developed with two rye-specific markers PAWS5/S6 and RIS and tested in a set of representative wheat lines. The two rye-specific markers and the duplex PCR procedure established in this study provided a useful tool in marker-assisted selection of materials containing desirable 1RS chromatin in wheat breeding.  相似文献   

15.
In order lo investigate the origin of two of the German 1RS. 1BL wheat-rye translocations used world-wide in breeding, a number of DNA probes were considered which (a) were critical for the short arm of the rye chromosome 1 R and (b) should show a specificity for the gene pool of Petkus rye. The DNA probe CDO580 was revealed as a specific one. (1) It clearly differentiated 1RS.1AL (‘Amigo’). 1RS.lBL (‘Salmon’) and 1RS.1DL (‘Gabo’) from the two German sources. (2) Both translocation wheats deriving from the Weihenstephan (Munich) and from the Salzmünde (Halle/S.) origin showed an identical DNA fragment which was typical for the gene pool of Petkus rye. It is supposed that both German sources have one progenitor in common.  相似文献   

16.
The F1 AABBRHch hybrids studied here were produced by crosses between the Portuguese triticale cultivar 'Douro' (AABBRR) and the tritordeum line HT9 (AABBHchHch). Fluorescent in situ hybridization performed with genomic DNA probes genomic in situ hybridization (GISH) from rye and Hordeum chilense allowed the unequivocal parental genomes discrimination in all hybrids. Among 55 plants, one presented a spontaneous wheat–rye translocation which was successfully detected after GISH. Recombinant chromosomes identification was made after reprobe with pTa71 and pSc119.2. Nine rDNA loci were detected by pTa71 and pSc119.2 identified the chromosome arms involved in the translocation, after comparing the observed hybridization patterns with those described by several authors. We identified the spontaneous wheat–rye translocation as being the 7BS/7RL. Many wheat–rye translocations have been found (e.g. 1BL.1RS and 1AL.1RS), but as far as we know, this is the first time that this translocation is reported. We considered it helpful for wheat breeding programmes as it could provide the transference of interesting agronomic characteristics from rye (e.g. leaf rust resistance) to wheat.  相似文献   

17.
以小麦-黑麦1BL·1RS易位系(Kavkaz、山农030-1)、1AL·1RS易位系(Amigo)、荆州黑麦、八倍体小黑麦劲松49、1R-7R二体异附加系以及普通小麦中国春、辉县红、铭贤169、Chancellor等为材料,对65个黑麦1RS特异标记进行鉴定,从中筛选出8个稳定的标记,即NOR-1、SECA2/SECA3、SCSS30.2、Sec1Gene、Sec1Pro、ω-Sec-P1/P2、ω-Sec-P3/P4和IB-267,可用于检测1AL·1RS易位系或1BL·1RS易位系;另外3个特异标记O-SEC5′-A/O-SEC3′-R、IAG95-1和SCM-9可用于区别1RS来源不同的1AL·1RS和1BL·1RS易位系。利用这11个标记和染色体原位杂交技术对40份山东省近年育成小麦品种(系)进行检测,发现潍麦8号、鲁麦14、济宁13、山农664、山农优麦3号和烟农25为1BL·1RS易位系,而且是1RS的整臂易位系,未检测到1AL·1RS易位系和其他易位类型。  相似文献   

18.
Differential chromosome staining by using the Giemsa C- banding technique and test crosses have revealed rye chroma tin in the hexaploid wheat variety ‘Amigo’ which resulted from wheat crosses with the octoploid triticale ‘Gaucho’. The results demonstrated a pair of translocated wheat chromosomes involving the short arm of rye chromosome 1R and the long arm of the homoeologous wheat chromosome 1A (1Aq/1Rp translocation). The localization of the translocation breakpoint is supposed 10 be within the centromeric region.  相似文献   

19.
Ear emergence time and response to vernalization were investigated in 12 alien substitution lines in which a pair of chromosomes 5A of recipient spring wheat cultivars was replaced by a pair of chromosomes 5R of Siberian spring rye ‘Onokhoiskaya’. The recipients were 12 spring cultivars of common wheat, each carrying different Vrn genes. Spring rye ‘Onokhoiskaya’ had the Sp1 (now called Vrn-R1) gene for spring growth habit located on chromosome 5R, but its expression was weaker. The Vrn-R1 gene had no effect on growth habit, ear emergence time and response to vernalization in wheat-rye substitution lines. Ears emerged significantly later in the 5R(5A) alien substitution lines than in the recipient wheat cultivars with the Vrn-A1/Vrn-B1/vrn-D1 or Vrn-A1/vrn-B1/Vrn-D1 genotypes. No difference in ear emergence time was found between most of the 5R(5A) alien substitution lines and the cultivars carrying the recessive vrn-A1 gene. The presence of the Vrn2a and Vrn2b alleles at the Vrn2 (now called Vrn-B1) locus located on wheat chromosome 5B was confirmed.The replacement of chromosome 5A by chromosome 5R in wheat cultivars ‘Rang’ and ‘Mironovskaya Krupnozernaya’, which carries the single dominant gene Vrn-A1, converted them to winter growth habit. In field studies near Novosibirsk the winter hardiness of 5R(5A) wheat–rye substitution lines of ‘Rang’ and ‘Mironovskaya Krupnozernaya’ was increased by 20–47% and 27–34%, respectively, over the recurrent parents.  相似文献   

20.
The Aegilops kotschyi cytoplasm and a 1BL-1RS translocation chromosome that consists of the long arm of wheat chromosome 1B and the short arm of rye chromosome 1R were transferred to six spring common wheat cultivars by repeated backcrossing. Resistance to leaf rust race 21B conditioned by the Lr26 gene and a secalin subunit encoded by the Sec-1 gene, both on the 1RS arm, were used as the selection markers of the translocation chromosome. Five of the six cultivars used were converted to complete male steriles, whereas the remaining one, cv. Kitamiharu 48, retained normal fertility, after transfer of both the 1BL-1RS chromosome and Ae. Kotschyi cytoplasm. Conventional gene analysis suggested that Kitamiharu 48 carries an incompletely dominant fertility-restoring gene. The F1 hybrids between the male steriles and ordinary common wheat cultivars recovered fertility only at a low level, indicating that a single dose of the Rfv1 gene on the 1BS arm of wheat is insufficient for full fertility restoration under spring-sowing condition. Our results are in clear contrast to complete fertility restoration under fall-sowing condition reported by Nonaka et al. (1993). Combination of the 1BL-1RS chromosome / Ae. Kotschyi cytoplasm system with a new fertility-restoring gene discovered in Kitamiharu 48 may provide a breakthrough for spring-type hybrid wheat. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号