共查询到20条相似文献,搜索用时 15 毫秒
1.
β-甘露聚糖酶产生菌的分离·鉴定及酶学特性研究 总被引:1,自引:1,他引:1
[目的]筛选产β-甘露聚糖酶的优良菌株,并对其进行分类鉴定和酶学特性的测定。[方法]运用单因子分析对β-甘露聚糖酶的酶学特性进行研究。[结果]筛选到的产β-甘露聚糖酶鉴定为枯草芽孢杆菌(Bacillus subtilis)。所产酶的最适反应温度和pH值分别为65℃和5.5。在45~70℃内酶活稳定,65℃保温15 min,残留酶活仍有70%左右;在pH值4.5~6.5内酶活相对稳定,pH值5.0条件下保存3h,残留酶活仍有75%以上。低浓度的Co2+、Mg2+等金属离子对该酶有强烈的激活作用,提高浓度后则对酶活有抑制作用。[结论]该酶具有良好的酶学特性,有应用于大规模生产的潜质。 相似文献
2.
[目的]筛选产β甘露聚糖酶的优良菌株,并对其进行分类鉴定和酶学特性的测定。[方法]运用单因子分析对β甘露聚糖酶的酶学特性进行研究。[结果]筛选到的产β甘露聚糖酶鉴定为枯草芽孢杆菌(Baccillus subtilis)。所产酶的最适反应温度和pH值分别为65℃和5.5。在45—70℃内酶活稳定,65℃保温15min,残留酶活仍有70%左右;在pH值4.5—6.5内酶活相对稳定,pH值5.0条件下保存3h,残留酶活仍有75%以上。低浓度的Co^2+、Mg^2+等金属离子对该酶有强烈的激活作用,提高浓度后则对酶活有抑制作用。[结论]该酶具有良好的酶学特性,有应用于大规模生产的潜质。 相似文献
3.
黑曲霉产β-甘露聚糖酶的纯化及酶学性质研究 总被引:1,自引:0,他引:1
[目的]分离纯化黑曲霉固态发酵产生的β-甘露聚糖酶,研究β-甘露聚糖酶酶学性质。[方法]黑曲霉经固态发酵制备粗酶液,分别采用硫酸铵分段沉淀法、丙酮沉淀法和Sephadex凝胶层析法对β-甘露聚糖酶进行分离纯化,用PAGE检验其纯度。同时测定纯化后的β-甘露聚糖酶酶学性质。[结果]β-甘露聚糖酶经40%~90%饱和度硫酸铵沉淀法纯化后比活力可提高到1 180.9 U/mg 经1.0 ∶1.0~1.6∶1.0(V/V)丙酮沉淀法纯化后的比活力可提高到1 847.0 U/mg;最后经凝胶层析法纯化后的比活力可提高到7 950.4 U/mg,纯化倍数为8.67,在PAGE凝胶电泳图谱上得到单一条带,即纯化后的β-甘露聚糖酶。[结论]纯化后β甘露聚糖酶的酶学性质为:最适pH值4.2,最适反应温度60 ℃,米氏常数Km 2.67 mg/ml。 相似文献
4.
产甘露聚糖酶细菌的分离鉴定、酶的部分纯化及酶学性质研究 总被引:1,自引:0,他引:1
以魔芋粉为惟一碳源作为富集条件,利用刚果红染色法从玉米地土壤中筛选到1株产β-甘露聚糖酶的菌株,经摇瓶培养后其酶活力达到101 U/mL。经形态观察及16S rDNA序列分析,鉴定为枯草芽孢杆菌(Bacillus subtilis)。利用硫酸铵分级沉淀、阴离子交换层析和疏水层析对酶进行了部分纯化。对酶的酶学性质研究发现,该酶的最适反应温度为50℃,最适反应pH为5.0;在45~55℃时酶的稳定性较好,保温30 min后其残留活性在80%以上,在pH4.5~5.5时酶的稳定性较好,保持30 min后其残留活性在80%以上。 相似文献
5.
6.
黑曲霉β-甘露聚糖酶的诱变选育及部分酶学特性 总被引:1,自引:0,他引:1
从实验室保藏的数十株真菌、细菌和酵母菌种中,经定向筛选,得到1株产β-甘露聚糖酶酶活较高的黑曲霉菌株MA.以菌株MA为出发菌,经Co60诱变和摇瓶发酵初、复筛,最终获得一株产β-甘露聚糖酶活力高且遗传性能稳定的菌株MA-56,其所产的β-甘露聚糖酶活力稳定在9.31×104 U/g ,较出发菌株提高了64.78%.酶学性质初步研究表明,黑曲霉菌株MA-56所产β-甘露聚糖酶的最适反应温度为70℃,最适反应pH为2.5~3.5;该酶在70 ℃以下具有良好的热稳定性,在pH 2.5~9.0的环境下表现稳定;在供试的10种金属离子中,只有Cu2+对酶活有较强的抑制作用. 相似文献
7.
短小芽孢杆菌XZG33耐高温酸性β-甘露聚糖酶酶学性质研究 总被引:1,自引:0,他引:1
[目的]从短小芽孢杆菌(Bacillus pumilus)XZG33发酵液中分离纯化甘露聚糖酶,并对其酶学性质进行研究。[方法]利用硫酸铵分级盐析、DEAE-cellulose DE52阴离子交换层析和Sephadex G-100分子筛凝胶过滤层析等方法,分离纯化到了均一的蛋白酶,酶纯度提高了39.7倍,回收率20.2%。通过SDS-PAGE电泳和SephadexG-75分子筛凝胶电泳测得酶蛋白分子量是40.0 kDa,为单亚基蛋白。酶最适作用pH值5.0,最适作用温度60℃,在pH值2.0~8.0范围内酶活性及稳定性较高。在80℃以下保温1 h,残余酶活还在80.0%以上。二价金属离子Mg2+、Ca2+、Co2+及Mn2+对酶有明显激活作用。酶对槐豆胶有强的底物水解特异性,而对淀粉、羧甲基纤维素钠以及桦树木聚糖水解活性极低。在最适作用条件下,以槐豆胶为底物测定Km为4.6 mg/ml。[结论]鉴于短小芽孢杆菌XZG33甘露聚糖酶具有以上优良的酶特性,它在食品原料及功能性低聚糖的开发方面有着潜在的应用价值。 相似文献
8.
3株产β-甘露聚糖酶菌株的分离和鉴定 总被引:2,自引:0,他引:2
从新疆极端干燥环境土壤样品中,以葡甘露聚糖(魔芋精粉)为唯一碳源,利用水解圈筛选法筛选到3株具有β-甘露聚糖酶活性的菌株.分别提取3株细菌基因组并经16S rRNA序列比对分析,确定3株菌分别属于芽孢杆菌(Bacillus sp.)、弗氏柠檬酸杆菌(Citrobacter freundii)、多粘类芽孢杆菌(Paenibacillus polymyxa). 相似文献
9.
10.
β-甘露聚糖酶的产酶菌种、条件及部分性质研究 总被引:12,自引:0,他引:12
杨幼慧 《华南农业大学学报》2001,22(2):86-88
利用刚果红以筛选法从芽孢杆菌中筛选到1株产β-甘露聚糖酶的理想菌株,即枯草杆菌(Bacillus subtills)NCIMB 11034。该菌产酶条件以槐豆胶或魔芋胶作为碳源,以酵母抽提物作为氮源,25℃培养27h为宜,该酶最适作用温度60℃,最适作用pH5.4,60℃保温3h酶活性不损失,有较好的应用前景。 相似文献
11.
蜗牛肝脏β-甘露聚糖酶的分离提取及纯化鉴定 总被引:1,自引:0,他引:1
从蜗牛肝脏组织制备粗酶液后,经硫酸铵分级分离和两次聚丙烯酰胺凝胶制备电泳,纯化到了蜗牛肝脏β-甘露聚糖酶。该酶经SDS-PAGE电泳分析显示为单一条带,其表观相对分子量为37KD。本法纯化的蜗牛肝脏β-甘露聚糖酶,比活力达到992.3U/mg,提纯倍数达8.45倍,回收率为25.12%。 相似文献
12.
黑曲霉酸性β-甘露聚糖酶的纯化及部分性质研究 总被引:1,自引:0,他引:1
黑曲霉(Aspergillus niger)WM20-11固态发酵成熟曲,经磷酸缓冲液浸提、硫酸铵分步盐析、DEAE-Sepharose fast flow阴离子交换层析、Sephadex G-100凝胶过滤层析等分离纯化手段,最终获得了Native-PAGE、SDS-PAGE纯的酸性β-甘露聚糖酶组分,其纯化倍数为25.08,收率为5.1%。Sephadex G-100凝胶过滤层析和SDS-PAGE测得纯酶的相对分子质量分别为39 kD和40 kD,表明该酶以单体形式存在;IEF-PAGE测得该酶的等电点为4.0;含糖量测定为19.6%;酶蛋白氨基酸组成中(Asp+Glu)/(Lys+Arg)为3.74。 相似文献
13.
从发酵培养5d的产β-甘露聚糖酶的Athelia rolfsii菌株CBS191.62发酵液中经硫酸铵沉淀、琼脂糖凝胶(DEAE Sepharose Fast Flow)层析、羟基磷灰石(Hydroxylapatite)层析和冷冻干燥结晶等步骤, 获得了比活提高了15.1倍,分子量为14.7 kD的凝胶电泳均一的β-甘露聚糖酶蛋白样品. 相似文献
14.
β-甘露聚糖酶在食品、饲料、造纸、洗涤等工业领域应用广泛。近几年,基因测序技术飞跃发展,研究人员挖掘到许多新颖的β-甘露聚糖酶基因并对其进行了酶学性质的研究。介绍了各种类型的甘露聚糖及其降解酶,梳理了β-甘露聚糖酶的糖苷水解酶家族分类、来源、结构和催化机理,归纳总结了近几年微生物来源β-甘露聚糖酶的重组表达、酶学性质及分子改造,简述了甘露聚糖酶在食品和饲料等方面的应用,展望了β-甘露聚糖酶的研究热点及方向。 相似文献
15.
16.
对土壤中分离的1株产β-甘露聚糖酶的枯草芽孢杆菌MSJ-5进行产酶性质的研究。菌株MSJ-5在发酵培养基中培养32h达到产酶高峰。β-甘露聚糖酶为粗酶液的主要组分,酶学性质的研究显示该酶最适反应温度为50℃,最适反应pH为7.0,在pH 5.0~7.0能保持较好的稳定性。水解魔芋甘露聚糖及水解产物分析试验结果表明菌株MSJ-5产生的β-甘露聚糖酶对魔芋甘露聚糖有显著降粘效果,水解产物以甘露寡糖为主。研究结果显示,菌株MSJ-5产生的β-甘露聚糖酶有应用到饲料添加和功能性寡糖行业的潜力。 相似文献
17.
β-甘露聚糖酶可应用于造纸、饲料、洗涤、纺织、食品、医药和石油开采等工业领域,特别是在造纸和饲料工业中已得到了广泛的应用。从β-甘露聚糖酶的水解方式和产物、微生物的来源及其工业应用等方面做了简要介绍。 相似文献
18.
α- 淀粉酶产生菌的分离筛选及酶学性质研究 总被引:1,自引:0,他引:1
[目的]获得在某些方面性能优良(如耐高温、耐强酸、耐强碱等)的α-淀粉酶产生菌。[方法]对α-淀粉酶产生菌进行分离筛选,并对其酶学性质进行了研究。[结果]从稀释样品涂布的淀粉筛选平板上筛选出10株有明显淀粉水解圈的单个菌株,又从中得到3株α-淀粉酶酶活力较高的菌株:X6、X8和X10。这3株菌的最适pH值均在中性范围内,最适温度均为60℃。Ca2+能提高酶的热稳定性,X6和X8在Ca2+浓度为0.02~0.04 mol/L时,酶的热稳定性最高;X10在Ca2+浓度为0.03~0.04 mol/L时,酶的热稳定性最高;当Ca2+浓度继续增大时,酶的热稳定性反而降低。[结论]为满足不同行业对不同特征α-淀粉酶的需求提供了理论依据。 相似文献
19.
以魔芋粉为原料,研究了用黑曲霉β-甘露聚糖酶制备低聚甘露糖的工艺条件.结果表明:反应时间、魔芋粉浓度、温度、加酶量、pH对酶法制备低聚甘露糖的工艺均有不同程度的影响,其中反应时间和温度影响较大,pH影响较小.通过正交试验确定了用黑曲霉β-甘露聚糖酶制备低聚甘露糖的最佳工艺条件为:反应体系的pH4.2、魔芋粉浓度2.0%、温度65℃、加酶量108 U/g、反应时间为4.0 h.在最佳工艺条件下,低聚甘露糖的产率可达32.3%. 相似文献
20.
β-甘露聚糖酶基因克隆与在大肠杆菌中表达 总被引:2,自引:2,他引:2
为了通过基因工程方法在大肠杆菌中发酵生产β-甘露聚糖酶,采用多重比较几种来源的β-甘露聚糖酶氨基酸序列,获得了该酶的保守结构域,并按此设计简并引物.以能水解魔芋葡甘聚糖的枯草杆菌属野生筛选菌种A33为材料,通过简并引物PCR法从A33基因组中扩增出β-甘露聚糖酶基因核心区段.经过克隆、测序及BLASTN比对分析,证实该DNA区段推导的编码蛋白具有β-甘露聚糖酶的保守结构域,属于该酶家族中的一员.将该片段构建到大肠杆菌表达载体pRsET-A并转入大肠杆菌表达系统BL21 DE3(pLysS),经过诱导获得了此酶的高效表达. 相似文献