首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An extremely small, conically shaped Pt microelectrode tip (with a radius of 30 nanometers) and the precise positioning capabilities of the scanning electrochemical microscope were used to penetrate a thin (200 nanometers) polymer film and obtain directly the standard potential and kinetic parameters of an electrode reaction within the film. The thickness of the film was determined while it was immersed in and swollen by an electrolyte solution. The film studied was the perfluorosulfonate Nafion containing Os(bpy)(3)(2+) (bpy, 2,2'-bipyridine) cast on an indium tin oxide surface. The steady-state response at the ultramicroelectrode allowed direct determination of the rate constant for heterogeneous electron transfer K(o) and the diffusion coefficient D without complications caused by transport in the liquid phase, charge exchange at the liquid-polymer interface, and resistive drop.  相似文献   

2.
Reversible electrochemical injection of discrete numbers of electrons into sterically stabilized silicon nanocrystals (NCs) (approximately 2 to 4 nanometers in diameter) was observed by differential pulse voltammetry (DPV) in N,N'-dimethylformamide and acetonitrile. The electrochemical gap between the onset of electron injection and hole injection-related to the highest occupied and lowest unoccupied molecular orbitals-grew with decreasing nanocrystal size, and the DPV peak potentials above the onset for electron injection roughly correspond to expected Coulomb blockade or quantized double-layer charging energies. Electron transfer reactions between positively and negatively charged nanocrystals (or between charged nanocrystals and molecular redox-active coreactants) occurred that led to electron and hole annihilation, producing visible light. The electrogenerated chemiluminescence spectra exhibited a peak maximum at 640 nanometers, a significant red shift from the photoluminescence maximum (420 nanometers) of the same silicon NC solution. These results demonstrate that the chemical stability of silicon NCs could enable their use as redox-active macromolecular species with the combined optical and charging properties of semiconductor quantum dots.  相似文献   

3.
A simple preparation of Cd(17)S(4)(SCH(2)CH(2)OH)(26) clusters in aqueous solution leads to the formation of colorless blocky crystals. X-ray structure determinations revealed a superlattice framework built up of covalently linked clusters. This superlattice is best described as two enlarged and interlaced diamond or zinc blende lattices. Because both the superlattice and the clusters display the same structural features, the crystal structure resembles the self-similarities known from fractal geometry. The optical spectrum of the cluster solution displays a sharp transition around 290 nanometers with a large absorption coefficient ( approximately 84,000 per molar per centimeter).  相似文献   

4.
Recrystallization of the solid Cd(10)S(4)(SC(6)H(5))(12) from a solution of pyridine and N, N-di-methylformamide (DMF) results in the formation of the cluster Cd(32)S(14)(SC(6)H(5))(36)-DMF(4) as pale yellow cubes. The structure consists of an 82-atom CdS core that is a roughly spherical piece of the cubic sphalerite lattice approximately 12 angstroms in diameter. The four corners of the lattice are capped by hexagonal wurtzite-like CdS units, which results in an overall tetrahedral cluster approximately 15 angstroms in diameter. This cluster dissolves intact in tetrahydrofuran where its absorption spectrum reveals a sharp peak at 358 nanometers at room temperature and its emission spectra show a strong broad band at 500 nanometers.  相似文献   

5.
The reaction of [Cp*Fe(eta5-P5)] with Cu(I)Cl in solvent mixtures of CH2Cl2/CH3CN leads to the formation of entirely inorganic fullerene-like molecules of the formula [[Cp*Fe(eta5:eta1:eta1:eta1:eta1:eta1-P5)]12[CuCl]10[Cu2Cl3]5[Cu(CH3CN)2]5] (1) possessing 90 inorganic core atoms. This compound represents a structural motif similar to that of C60: cyclo-P5 rings of [Cp*Fe(eta5-P5)] molecules are surrounded by six-membered P4Cu2 rings that result from the coordination of each of the phosphorus lone pairs to CuCl metal centers, which are further coordinated by P atoms of other cyclo-P5 rings. Thus, five- and six-membered rings alternate in a manner comparable to that observed in the fullerene molecules. The so-formed half shells are joined by [Cu2Cl3]- as well as by [Cu(CH3CN)2]+ units. The spherical body has an inside diameter of 1.25 nanometers and an outside diameter of 2.13 nanometers, which is about three times as large as that of C60.  相似文献   

6.
A crystalline counterionic layer at the interface between an electrolyte solution and a charged layer of insoluble amphiphilic molecules was observed with grazing incidence synchrotron x-ray diffraction. Uncompressed arachidic films spread over 10(-3) molar cadmium chloride solution (pH 8.8) spontaneously form crystalline clusters with coherence lengths of approximately 1000 angstroms at 9 degrees C. Ten distinct diffraction peaks were observed, seven of which were attributed to scattering only from a crystalline Cd(2+) layer and the other three to scattering primarily from the arachidate layer. The reflections from the Cd(2+) layer were indexed according to a 2 x 3 supercell of the arachidate lattice with three Cd(2+) ions per cadmium unit cell.  相似文献   

7.
Li G  McGown LB 《Science (New York, N.Y.)》1994,264(5156):249-251
Linked by strings of diphenylhexatriene (DPH) molecules, beta- and gamma-cyclodextrins (CDs) can form nanotube aggregates that contain as many as approximately 20 betaCDs (20 nanometers long) or approximately 20 to 35 gammaCDs (20 to 35 nanometers long). Nanotube formation was indicated in solution, by fluorescence anisotropy and light scattering results, and on graphite surfaces, by scanning tunneling microscopy. Tubes were not observed for the smaller alphaCDs. Molecular modeling shows that CD cavity size and the rodlike DPH structure are key factors in nanotube formation. Spectra generated by proton nuclear magnetic resonance indicate the inclusion of DPH in the interior of the CDs and formation of nanotubes in betaCDs and gammaCDs only. The photophysical properties of DPH are affected by its arrangement into a one-dimensional array within the CD nanotube, possibly because of exciton formation.  相似文献   

8.
A homogeneous system for the selective, catalytic oxidation of methane to methanol via methyl bisulfate is reported. The net reaction catalyzed by mercuric ions, Hg(II), is the oxidation of methane by concentrated sulfuric acid to produce methyl bisulfate, water, and sulfur dioxide. The reaction is efficient. At a methane conversion of 50 percent, 85 percent selectivity to methyl bisulfate ( approximately 43 percent yield; the major side product is carbon dioxide) was achieved at a molar productivity of 10(-7) mole per cubic centimeter per second and Hg(II) turnover frequency of 10(-3) per second. Separate hydrolysis of methyl bisulfate and reoxidation of the sulfur dioxide with air provides a potentially practical scheme for the oxidation of methane to methanol with molecular oxygen. The primary steps of the Hg(II)-catalyzed reaction were individually examined and the essential elements of the mechanism were identified. The Hg(II) ion reacts with methane by an electrophilic displacement mechanism to produce an observable species, CH(3)HgOSO(3)H, 1. Under the reaction conditions, 1 readily decomposes to CH(3)OSO(3)H and the reduced mercurous species, Hg(2)(2+) The catalytic cycle is completed by the reoxidation of Hg(2)(2+) with H(2)SO(4) to regenerate Hg(II) and byproducts SO(2) and H(2)O. Thallium(III), palladium(II), and the cations of platinum and gold also oxidize methane to methyl bisulfate in sulfuric acid.  相似文献   

9.
Molecular dynamics occurring in the earliest stages following photo-induced charge transfer were investigated. Femtosecond time-resolved absorption anisotropy measurements on [Ru(bpy)(3)](2+), where bpy is 2,2'-bipyridine, reveal a time dependence in nitrile solutions attributed to initial delocalization of the excited state over all three ligands followed by charge localization onto a single ligand. The localization process is proposed to be coupled to nondiffusive solvation dynamics. In contrast, measurements sampling population dynamics show spectral evolution associated with wave packet motion on the excited state surface that is independent of solvent. The results therefore reveal two important contributions to the evolution of charge transfer states in condensed phase, one that is strongly coupled to the surrounding environment and another that follows a potential internal to the molecule.  相似文献   

10.
Alkanes, although plentiful enough to be considered for use as feedstocks in large-scale chemical processes, are so unreactive that relatively few chemical reagents have been developed to convert them to molecules having useful functional groups. However, a recently synthesized iridium (lr) complex successfully converts alkanes into hydridoalkylmetal complexes (M + R-H --> R-M-H). This is a dihydride having the formula Cp(*)(L)lrH(2), where Cp(*) and L are abbreviations for the ligands (CH(3))(5)C(5) and (CH(3))(3)P, respectively. Irradiation with ultraviolet light causes the dihydride to lose H(2), generating the reactive intermediate Cp(*)lrL. This intermediate reacts rapidly with C-H bonds in every molecule so far tested (including alkanes) and leads to hydridoalkyliridium complexes Cp(*)(L)lr(R)(H). Evidence has been obtained that this C-H insertion, or oxidative addition, reaction proceeds through a simple three-center transition state and does not involve organic free radicals as intermediates. Thus the intermediate Cp(*)lrL reacts most rapidly with C-H bonds having relatively high bond energies, such as those at primary carbon centers, in small organic rings, and in aromatic rings. This contrasts directly with the type of hydrogen-abstraction selectivity that is characteristic of organic radicals. The hydridoalkyliridium products of the insertion reactions can be converted into functionalized organic molecules-alkyl halides-by treatment with mercuric chloride followed by halogens. Expulsion (reductive elimination) of the hydrocarbon from the hydridoalkyliridium complexes can be induced by Lewis acids or heat, regenerating the reactive intermediate Cp(*)lrL. Oxidative addition of the corresponding rhodium complexes Cp(*)RhL to alkane C-H bonds has also been observed, although the products formed in this case are much less stable and undergo reductive elimination at -20 degrees C. These and other recent observations provide an incentive for reexamining the factors that have been assumed to control the rate of reaction of transition metal complexes with C-H bonds-notably the need for electron-rich metals and the proximity of reacting centers.  相似文献   

11.
Fluorescence microscopy of nanoscale silver oxide (Ag2O) reveals strong photoactivated emission for excitation wavelengths shorter than 520 nanometers. Although blinking and characteristic emission patterns demonstrate single-nanoparticle observation, large-scale dynamic color changes were also observed, even from the same nanoparticle. Identical behavior was observed in oxidized thin silver films that enable Ag2O particles to grow at high density from silver islands. Data were readily written to these films with blue excitation; stored data could be nondestructively read with the strong red fluorescence resulting from green (wavelengths longer than 520 nanometers) excitation. The individual luminescent species are thought to be silver nanoclusters that are photochemically generated from the oxide.  相似文献   

12.
To obtain kaolinite at low temperature and pressure from the system Si(OH)(4)-Al(3+)-H(2)O, the sixfold coordination of aluminum is a necessary prerequisite. Kaolinite was synthesized at pH values from 2 to 9 and with a ratio of SiO(2) to Al(2)O(3) in solution from 1 to 10 by means of the complexation of Al(3+) and fulvic acid.  相似文献   

13.
Binuclear ion containing nitrogen as a bridging group   总被引:1,自引:0,他引:1  
A binuclear ion ([NH(3))5RuN(2)Ru(NH(3))(5)](5)+ is formed by the direct reaction of N(2) with an aqueous solution of (NH(3))(5)RuOH(2)(2+) at room temperature. The binuclear ion is also formed by the reversible reaction of (NH(3))5RuOH(2)(2+) with (NH(3))(5)RuN(2)(2+). Solid [(NH(3))(5)RuN(2)Ru(NH(3))(5)] (BF(4))(4) has been prepared, and its ultraviolet and infrared spectra are reported.  相似文献   

14.
Highly vibrationally excited O(2)(X(3)sigmag(-), v >/= 26) has been observed from the photodissociation of ozone (O(3)), and the quantum yield for this reaction has been determined for excitation at 226 nanometers. This observation may help to address the "ozone deficit" problem, or why the previously predicted stratospheric O(3) concentration is less than that observed. Recent kinetic studies have suggested that O(2)(X(3)sigmag(-), v >/= 26) can react rapidly with O(2) to form O(3) + O and have led to speculation that, if produced in the photodissociation of O(3), this species might be involved in resolving the discrepancy. The sequence O(3) + hv --> O(2)(X(3)sigmag(-), v >/= 26) + O; O(2)(X(3)sigmag(-), v >/= 26) + O(2) --> O(3) + O (where hv is a photon) would be an autocatalytic mechanism for production of odd oxygen. A two-dimensional atmospheric model has been used to evaluate the importance of this new mechanism. The new mechanism can completely account for the tropical O(3) deficit at an altitude of 43 kilometers, but it does not completely account for the deficit at higher altitudes. The mechanism also provides for isotopic fractionation and may contribute to an explanation for the anomalously high concentration of heavy O(3) in the stratosphere.  相似文献   

15.
The rate coefficients, k(1), for the reaction of OH with CHF(2)Br have been measured using pulsed photolysis and discharge flow techniques at temperatures (T) between 233 and 432 K to be k(1), = (7.4 +/- 1.6) x 10(-13) exp[-(1300 +/- 100)/T] cubic centimeters per molecule per second. The ultraviolet absorption cross sections, sigma, of this molecule between 190 and 280 nanometers were measured at 296 K. The k(1), and sigma values were used in a one-dimensional model to obtain an atmospheric lifetime of approximately 7 years for CHF(2)Br. This lifetime is shorter by approximately factors of 10 and 2 than those for CF(3)Br and CF(2)ClBr, respectively. The ozone depletion potentials of the three compounds will reflect these lifetimes.  相似文献   

16.
Hunter D  Ross DS 《Science (New York, N.Y.)》1991,251(4997):1056-1058
The toxicity of A1 that has been mobilized in soil, streams, and lakes through acid deposition primarily has been attributed to mononuclear A1 species. Polynuclear A1 species are more toxic than mononuclear species, but they have not been considered to be significant in the environment. Aluminum-27 nuclear magnetic resonance (NMR) spectra of forested spodosol soil horizon samples show the presence of polynuclear A1O(4)A1(12)(OH)(24)(H(2)O)(12)(7+). The AlO(4)A1(12)(OH)(24)(H(2)O)(12)(7+) species accounted for 30 percent of the aqueous A1 observable by NMR, and this could make a significant contribution to the toxicity of the A1 in these soils.  相似文献   

17.
Sonication of aqueous Co(2+) and hydrazine resulted in the formation of anisometric (disk-shaped) cobalt nanoclusters that averaged about 100 nanometers in width and 15 nanometers in thickness. Electron diffraction from single particles revealed that they were oriented (001) crystals that conformed to a trigonal or hexagonal unit cell four times the size of the cell adopted by bulk alpha-cobalt. Lorentz microscopy indicated that these were single-magnetic domain particles, with the axis of magnetization located in the (101) plane, offset at some appreciable angle from the (001) axis.  相似文献   

18.
An array of aligned carbon nanotubes (CNTs) was incorporated across a polymer film to form a well-ordered nanoporous membrane structure. This membrane structure was confirmed by electron microscopy, anisotropic electrical conductivity, gas flow, and ionic transport studies. The measured nitrogen permeance was consistent with the flux calculated by Knudsen diffusion through nanometer-scale tubes of the observed microstructure. Data on Ru(NH3)6(3+) transport across the membrane in aqueous solution also indicated transport through aligned CNT cores of the observed microstructure. The lengths of the nanotubes within the polymer film were reduced by selective electrochemical oxidation, allowing for tunable pore lengths. Oxidative trimming processes resulted in carboxylate end groups that were readily functionalized at the entrance to each CNT inner core. Membranes with CNT tips that were functionalized with biotin showed a reduction in Ru(NH3)6(3+) flux by a factor of 15 when bound with streptavidin, thereby demonstrating the ability to gate molecular transport through CNT cores for potential applications in chemical separations and sensing.  相似文献   

19.
An unusual distribution of particle sizes has been observed following the formation of molybdenum particles by argon ion sputtering. Many of the molybdenum particles produced by sputtering at the threshold pressure for particle formation in the vapor appear to be single crystalline cubes. There are two prominent peaks in the edge length distribution of the cubes, one centered at 4.8 nanometers with a halfwidth of approximately 1.3 nanometers and the other at 17.5 nanometers. The peak for the larger cubes is approximately square and has a total width of 7.0 nanometers. Evidence is presented that the larger cubes are formed by a 3 by 3 by 3 self-arrangement of the smaller cubes, which contain approximately 7000 atoms. Self-arrangement in inorganic structures is normally only observed when the building blocks are atoms, molecules, or clusters of less than 100 atoms.  相似文献   

20.
Lightly etched single-walled carbon nanotubes are chemically reacted to form rings. The rings appear to be fully closed as opposed to open coils, as ring-opening reactions did not change the structure of the observed rings. The average diameter of the rings was 540 nanometers with a narrow size distribution. The nanotubes in solution were modeled as wormlike polymer chains, yielding a persistence length of 800 nanometers. Nanotubes shorter than this length behave stiffly and stay nearly straight in solution. However, nanotubes longer than the Kuhn segment length of 1600 nanometers undergo considerable thermal fluctuation, suggesting a greater flexibility of these materials than is generally assumed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号