首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
为模拟三峡库区消落带土壤水分变化特征,作者设置了常规生长水分条件(CK)、轻度干旱水分胁迫(T1)、土壤水饱和(T2)以及水淹(T3)4个不同处理组,研究池杉当年实生幼苗在三峡库区消落带水位变化条件下的光合生理生态响应机理和适应对策.研究结果表明,不同水分处理均显著影响池杉幼苗光合色素、叶片气体交换以及表观资源利用效率.池杉幼苗不仅具有耐水湿的特点,还具有一定程度的耐旱性.在消落带防护林体系建设中,池杉适宜栽植于土壤饱和水或渍水的环境中;在干旱环境条件下应注意浇水抗旱,使池杉保持正常的净光合速率.  相似文献   

2.
Four different kinds of water treatment were applied to examine the photosynthetic characteristics of baldcypress (Taxodium distichum) seedlings in the hydro-fluctuation belt of the Three Gorges Reservoir area. The aim was to shed light on the physio-ecological adaptation of this species to changing water levels for revegetation purposes. The water treatments were normal growth water condition (CK), light drought water stress (T1), growth under soil water saturation (T2) and growth with soil submersion (T3). T3 had the lowest content of photosynthetic pigment; T1 and T2 did not differ from CK in the content of chlorophyll and carotenoid. The ratio of chlorophyll a to b in the four groups ranged from 2.04 to 2.69 and the ratio of chlorophyll to carotenoid from 3.08 to 4.51. In group T1, the seedling of baldcypres had lower apparent light use efficiency, lower apparent CO2 use efficiency and a lower net photosynthetic rate, with the net photosynthetic rate 24.9% lower than that of group CK. However, T2 and T3 did not differ from CK in apparent light use efficiency, apparent CO2 use efficiency and net photosynthetic rate. Water use efficiency of the four treatments consistently increased as treatment was prolonged; the average water use efficiency of T3 was the lowest while that of CK was the highest. Correlation analysis showed that the net photosynthetic rate of baldcypress seedlings was positively related to transpiration rate, stomatal conductance, water use efficiency, apparent light use efficiency and apparent CO2 use efficiency, but highly negatively related to the ratio of chlorophyll a to b. Net photosynthetic rate was not significantly related to the contents of chlorophyll and carotenoid, the ratio of chlorophyll to carotenoid, relative air humidity and intercellular CO2 concentration. The transpiration rate was positively correlated with stomatal conductance and negatively related to water use efficiency. The results showed that different water treatments could effectively influence the baldcypress seedlings’ content of photosynthetic pigment, leaf gas exchange and apparent resources use efficiency. The results verified that the species T. distichum takes on the features of a water-tolerant and hydrophilic plant, which can be considered as one of the species for the building of a forest protection system for the hydro-fluctuation belt in the Three Gorges Reservoir area. Baldcypress should not be planted in drought-stricken soils. __________ Translated from Acta Ecologica Sinica, 2005, 25(8) [译自:生态学报, 2005, 25(8)]  相似文献   

3.
模拟三峡库区消落带土壤淹水变化特征,设置常规生长水分条件(CK)、轻度干旱水分胁迫(T1)、土壤水饱和(T2)以及水淹(T3)4个处理组,研究池杉当年实生幼苗根系的苹果酸、莽草酸含量以及生物量变化(均以干质量计).结果表明:T1、T2和T3这3组池杉幼苗主根的苹果酸、莽草酸含量以及生物量均未与CK组达到显著性差异;T2和T3组侧根苹果酸平均含量分别显著高出CK组1.7和2.2倍,总根苹果酸平均含量显著高于CK组0.8和1.5倍;T1组的侧根、总根苹果酸平均含量与CK组均未达到显著差异;与侧根苹果酸的变化类似,T2和T3组侧根莽草酸平均含量分别高出CK组0.4和1.1倍,这与Tl组低于CK组0.5倍形成鲜明对比;T2和T3组总根莽草酸平均含量虽也分别高出CK组,但并未与之达到显著差异的程度,与T1组总根莽草酸含量显著低于CK组0.3倍形成鲜明对比;T2和T3组主根、侧根和总根生物量分别均未与CK组达到显著差异,但T1组的侧根、总根生物量却显著高于CK组.相关性分析表明:池杉总根苹果酸与莽草酸含量表现出极显著的正相关(P<0.01);总根莽草酸含量与总根生物量之间则表现出显著的负相关性(P<0.05).  相似文献   

4.
We conducted field and pot experiments to investigate the effects of brassinolide on 1-year-old Robinia pseudoacacia L. seedlings. In the field experiment, seedling roots were soaked in brassinolide solutions containing 0–0.4 mg/l pure brassinolide before planting. Survival and growth of the seedlings were determined 8 months later. The results showed that soaking roots in brassinolide prior to planting significantly increased the survival and growth of seedlings. The best results were in the 0.2 mg/l brassinolide treatment. In the pot experiment, roots were soaked in 0–0.4 mg/l brassinolide before planting followed by a foliar application of brassinolide when the seedlings leafed out. After the seedlings were established, the soil water content in the pots was regulated to simulate drought conditions and various physiological parameters were measured. The results showed that treatment with 0.2 mg/l brassinolide decreased the transpiration rate, stomatal conductance and malondialdehyde (MDA) content of seedlings growing under moderate or severe water stress compared to untreated seedlings. Leaf water content, predawn water potential, soluble sugar content, free proline content, and superoxide dismutase (SOD), peroxidase (POD) and catalase (CAT) activities were all greater in water-stressed seedlings in the 0.2 mg/l brassinolide treatment compared to the control. The results indicate that the application of brassinolide can ameliorate the effects of water stress and enhance drought resistance of Robinia seedlings. Treatment of seedlings with brassinolide may be a useful management tool for afforestation projects in arid and semiarid areas.  相似文献   

5.
The effects of the arbuscular mycorrhizal (AM) fungus Glomus mosseae on plant growth, leaf solutes and root absorption area of trifoliate orange (Poncirus trifoliata (L.) Raf.) seedlings were studied in potted culture under water stress conditions. Inoculation with G. mosseae increased plant height, stem diameter, leaf area, shoot dry weight, root dry weight and plant dry weight, when the soil water content was 20%, 16% and 12%. AM inoculation also promoted the active and total absorption area of root system and absorption of phosphorus from the rhizosphere, enhanced the content of soluble sugar in leaves and roots, and reduced proline content in leaves. AM seedings had higher plant water use efficiency and higher drought tolerance than non-AM seedlings. Effects of G. mosseae inoculation on trifoliate orange seedlings under 20% and 16% soil water content were more significant than under 12% soil water content. AM infection was severely restrained by 12% soil water content. Thus, effects of AM fungi on plants were probably positively related to the extent of root colonization by AM fungi. The mechanism of AM fungi in enhancing drought resistance of host plants ascribed to greater osmotic adjustment and greater absorption area of root system by AM colonization. __________ Translated from Journal of Plant Physiology and Molecular Biology, 2005, 30(5): 583–588 [译自: 植物生理与分子生物学报, 2005, 30(5): 583–588]  相似文献   

6.
Water potential (ϕ w) and net photosynthetic rate (Pn) ofLarix olgensis andPinus. sylvestris var.mongolica decreased with the decrease of soil water content. ϕ w and Pn ofL. olgensis changed hardly during the first 9 days after stopping watering, then decreased sharply at the 10th day Pn ofP. sylvestris varmongolica decreased slightly during the first 8 days, then decreased sharply at the 9th day. Their respiration rate, chlorophyll content and their a/b ratio changed hardly. The following 3 conclusions were obtained and discussed exhaustively. (1) ϕ w can be used to direct watering as a sensitive index of judging whetherL. olgensis andP. sylvestris var.mongolica lacking water. (2) The decrease of Pn ofL. olgensis andP. sylvestris var.mongolica when drought had nothing to do with chlorophyll. (3)P. sylvestris var.mongolica had morphological drought resistance, while Lolgensis had physiological drought resistance, and their drought resistance was discussed comparatively first time.  相似文献   

7.
Weixing Tan 《New Forests》2007,33(1):93-107
Impacts of nursery cultural treatments (T) on stress tolerance of greenhouse-grown 1 + 0 container white spruce (Picea glauca [Moench] Voss) seedlings (mean height 24 cm, root collar diameter 3.1 mm) for summer planting were studied. Seedlings were subjected to 12-h short-day treatments of 0 (T0), 3 (T3), 7 (T7), 10 (T10), or 15 (T15) days, followed by 0, 7, 17, 40, or 46 days of reduced N supply, respectively. Relevant physiological and morphological factors were examined concurrently. Foliar N concentrations exceeded optimal levels and differed little among treatments, suggesting a minor confounding role for N reduction. Both frost and drought tolerance increased incrementally from T0 through T15. Electrolyte leakage index decreased steadily from T0 (25% for roots, 17% for needles) to T15 (1% for roots, 2% for needles) after 2-h exposure of fine roots to − 2°C and of needles to − 8°C. Withholding soil watering for 19 days caused 80% mortality among seedlings in T0, 50% in T3, and < 10% in T7–T15. The transpiration decline curve suggested that enhanced drought tolerance was largely attributable to quicker stomatal closure during water stress and lower cuticular transpiration rate. The treatments increased root growth capacity on a per-seedling, but not per-root-mass, basis. Needle primordia were developed in all T7-T15 seedlings but not in T0 and T3 treatments, suggesting that nurseries may need no more than 7 days of blackout application for conditioning spruce seedlings for summer planting. Shoot dry weight fraction increased gradually from T0 through T15 and was linearly correlated with needle specific weight and frost tolerance, and may thus be useful in monitoring progress of conditioning treatments.  相似文献   

8.
Genipa americana L. (Rubiaceae) is a late successional neotropical fruit tree used in riparian forest restoration programs. We analyze the effects of light availability and soil flooding on the growth and photosynthetic characteristics of G. americana seedlings under nursery and natural light conditions. Two light levels (full sunlight and shade), and two levels of soil water (flooded and control) were used in the experiment. Flooding induced significant changes in the total seedling biomass (P < 0.01). The differences among water treatments were 70 and 10% at full sunlight and shade, respectively. These changes were explained by alterations in the maximum quantum efficiency of the photosystem 2 (Fv/Fm), light-saturated net photosynthetic rates (A sat) and intrinsic water use efficiency (WUE). G. americana has high physiological plasticity in relation to the light availability and flooding, although significant interactive effects between high light exposure and soil flooding were observed in several photosynthetic and growth variables. The results highlight the importance of the synergistic effects between physical environmental variables on the establishment and growth of G. americana seedlings. In the practical point of view we can indicate that, in degraded riparian forests subjected to soil flooding, seedlings of this species should be planted under partially shaded environments.  相似文献   

9.
In 2000, one-year-old seedlings of pyrenean oak (Quercus pyrenaica Willd.) and sessile oak (Quercus petraea [Matt.] Liebl) were planted in a thinned and an unthinned plot in a pinewood (Pinus sylvestris), and in a nearby clearing. In summer 2002 and 2003, water relations and gas exchange parameters were measured to address the impact of drought on the seedlings. Chlorophyll a fluorescence was also measured to explore leaf photochemistry and a possible non-stomatal limitation to photosynthesis (A). Reduction in stomatal conductance (g) in response to the decrease of predawn water potential (Ψpd) resulted the main cause affecting net carbon uptake. Water potential at midday (Ψmd) was similar in both species but Quercus petraea was more sensitive to soil water deployment occurred along summer, showing slightly lower Ψpd because worse recover of water potential during night. Rate of photosynthesis was higher in Q.␣pyrenaica probably in relation to its greater leaf mass per area (LMA) and nitrogen content per leaf area (Na). Mortality was highest in the clearing and lowest in the thinned pinewood. Throughout the summer, soil moisture was higher in the thinned area, possibly because of the reduction in tree transpiring surface and interception of rainfall. Accordingly, Ψpd of both species was higher in the thinned site.  相似文献   

10.
The capacity of radiata pine seedlings to overcome planting shock in wet and dry conditions and their dependence on previous history was analysed by studying post-planting resumption of gas exchange and photochemical reactions, and survival 2 months later. Even under well-irrigated soil conditions, seedlings showed the effects of stress: gas exchange was reduced, but a clear difference between soil-plugged (PR) seedlings and bare-root (BR) seedlings was observed. Drought enhanced the severity of photosynthesis deprivation. Photochemical reactions, analysed by chlorophyll a fluorescence parameters, were not affected by planting shock in conditions of available soil water, but altered dramatically when drought stress was raised, suggesting structural damage of photosynthetic machinery. Despite the dramatic sensitivity of radiata pine to water availability, rewatering produced remarkable recovery, indicating good photosynthetic components repair capacity, which depended, however, on stock quality at the moment of planting. The ability of radiata pine to cope with drought in terms of post-planting performance depended on both storage conditions and water availability at the planting site. These findings provide information for tree physiologists and foresters as to how the management of radiata pine seedlings before planting can affect post-planting performance potential under wet or dry environmental conditions.  相似文献   

11.
Seasonal changes in carbon isotope discrimination (Δ) and gas exchange traits were assessed in four Populus×euramericana clones differing in growth potential. Measurements were made during the second year after establishment in the field under two watering regimes, which were defined by the time-span between flood irrigations, hence resulting in different dry-down cycles: high irrigation (conservative schedule currently applied in the Ebro Valley, Spain) and low irrigation (equivalent to about a one-fourth reduction in water inputs). Net CO2 assimilation rate (A), stomatal conductance (gs), intrinsic water-use efficiency (A/gs) and other related photosynthetic traits (leaf nitrogen concentration, leaf greenness and leaf mass per area) were measured prior to watering, and Δ was analysed in water-soluble leaf extracts (Δs) and bulk leaves (Δl). Stem growth was monitored over 3 years starting at the year of establishment (1998). Data were subjected to a repeated measures ANOVA over time for a randomised block split-plot design across watering regimes. Significant differences between watering regimes were detected using a long-term estimate of photosynthetic performance such as Δl, in agreement with changes in soil water status and evapotranspirative demand. However, the lack of significant genotype×watering regime interactions for gas exchange traits and Δs suggested that water shortage imposed by low irrigation was not sufficient to reveal physiological adaptations to drought. In this regard, the reduction in water inputs brought about by low irrigation did not reduce tree growth for any of the clones, suggesting that the current irrigation scheme employed in the region is superfluous to the water consumption needs of poplars. Genotypic variation was detected in gas exchange traits, Δs, Δl and stem growth under both watering treatments. Significant correlations with stem volume for Δs (r = −0.60, p<0.05) and A (r = + 0.61, p<0.05) suggested that growth was improved by higher water-use efficiency (the ratio of carbon fixed to water lost, as inferred by Δs) due to variation in A rather than in gs. This observation corroborated the expectation derived from current theories that a lower Δ is related to higher stem volume, as a result of changes in net CO2 assimilation rates.  相似文献   

12.
When Cercis chinensis seedlings suffered from drought treatment, net photosynthetic rates had been significantly reduced at the end of the drought treatment. Compared with the control, the activities of acid invertases in roots had increased 5 and 11 days after drought treatment. Seventeen days after drought treatment, the activities of acid invertases in roots were significantly decreased, while activities of alkaline invertases in roots had also been significantly reduced. As the moisture in culture media decreased, so the activities of sucrose synthases in leaves decreased slightly. In roots, their activities had significantly increased 5 and 11 days after drought treatment. The contents of fructose in roots reduced as the moisture in culture media decreased and 11 and 17 days after drought treatment the reduction was significant. The content of glucose in roots clearly did not change as drought stress occurred further, but was still less than that in the control seedlings. Similarly, the content of sucrose reduced as the moisture in culture media decreased. At the beginning of the drought stress, the content of sucrose was significantly higher than that in the control and afterwards there were no differences between drought-treated seedlings and the control. The gradient of the sucrose content between leaves and roots was 0.0982 mg·g–1 FW 17 days after drought treatment, while the gradient of the seedlings under normal condition was 1.3832 mg·g–1 FW. The sucrose concentration gradient reduced by 92.9%. The reduction in the sucrose content gradient under drought stress decreased the sucrose partitioning in roots. Therefore, our results support the hypothesis of ‘shared control’.  相似文献   

13.
Abies fabri (Mast.) Craib is an endemic and dominant species in typical sub-alpine dark coniferous forests distributed in mountainous regions of the eastern Tibetan Plateau, China. We investigated the ecophysiological responses of A. fabri seedlings to short-term artificially-applied drought, nitrogen addition alone, and the combination of these treatments. Drought was created by excluding natural precipitation with an automatically controlled plastic roof that covered the seedlings. Nitrogen fertilization was applied weekly by spraying over seedlings with ammonium nitrate solution. Experiment results showed that drought caused a reduction in photosynthetic nitrogen use efficiency and leaf mass per area. Nitrogen addition enhanced photosynthetic performance by increasing net photosynthetic rate. In the drought plots, nitrogen addition increased net photosynthetic rate and instantaneous water use efficiency. These results showed that applied nitrogen improved plant water use efficiency and N accumulation in plant organs under drought conditions. Especially under drought conditions more N was concentrated into needles by applied nitrogen as compared with other organs. In conclusion, our results indicated that the combination of nitrogen addition and drought may result in positive effects on A. fabri seedlings in the short-term.  相似文献   

14.
模拟干旱环境下伐桩注水对毛竹生理特性的影响   总被引:3,自引:1,他引:2       下载免费PDF全文
[目的]探究模拟干旱环境下注水伐桩对1、2和3年生毛竹生理特性的影响,为气候变化背景下毛竹的适应性经营管理及毛竹林节水灌溉措施的制定提供理论参考。[方法]在毛竹林中选取面积相同(10 m×20 m)的样地9块,以1、2和3年生毛竹为试验材料,采用覆盖薄膜模拟干旱环境,对各样地四周进行挖沟切鞭处理,以阻断周边土壤水分的运输,试验设置CK(0个伐桩注水)、T1(12个伐桩注水)和T2(18个伐桩注水)3个灌水量处理,每个处理均进行3次重复,研究不同数量注水伐桩下3个年龄毛竹的生理响应。[结果]试验表明,在模拟干旱环境下,随着注水伐桩数量的减少,3个年龄毛竹的净光合速率与蒸腾速率显著下降,1、2和3年生毛竹的净光合速率与蒸腾速率最大降幅分别达到74.35%和73.08%、59.14%和36.62%及60.47%和61.54%;毛竹叶片叶绿素a、叶绿素b和类胡萝卜素含量显著下降,1年生和3年生毛竹叶片叶绿素a、叶绿素b和类胡萝卜含量差异均达到显著水平(P0.05),2年生毛竹叶片叶绿素a含量差异显著(P0.05),但叶绿素b和类胡萝卜素含量差异不显著(P0.05),3个年龄毛竹叶片叶绿素a/b差异均不显著(P0.05);毛竹叶片丙二醛(MDA)含量及超氧化物歧化酶(SOD)、过氧化氢酶(CAT)和过氧化物酶(POD)活性显著上升,且均达到差异显著水平(P0.05)。同时发现3个年龄毛竹的净光合速率、蒸腾速率和叶片光合色素含量与注水伐桩数量正相关,而叶片MDA含量及SOD、CAT和POD活性与注水伐桩数量负相关。[结论]模拟干旱环境下,增加注水伐桩可以使1、2和3年生毛竹光合蒸腾能力提高,光合产物积累增加,叶片光合色素含量升高,叶片MDA含量及SOD、CAT和POD活性降低。  相似文献   

15.
The time processes of photosynthetic induction responses to various irradiances in Korean pine (Pinus koraiensis) seedlings grown in open-light environments and in understory of forest were studied in an area near the Research Station of Changbai Mountain Forest Ecosystems, Jilin Province, China from July 15 to August 5, 1997. The results showed that at 200 μmol·m−2·s−1 photosynthetic photon flux density (PPFD) and 500 μmol·m−2·s−1 PPFD, the induction time for the photosynthetic rates of understory-grown seedlings to reach 50% and 90% steady-state net photosynthetic rates was longer than that of the open-grown seedlings. The induction responses of open-growth seedlings at 500 μmol·m−2·s−1 PPFD were slower than those at 200 μmol·m−2·s−1 PPFD, but it was the very reverse for understory-growth seedlings, which indicates that the photosynthetic induction times of Korean pine seedlings grown in the understory depended on the sunfleck intensity. Biograph: ZHOU Yong-bin (1970-), female, associate professor of Shenyang Agricultural University, Shenyang 110161, P.R. China. Responsible editor: Song Funan  相似文献   

16.
Due to the expected increases of number and intensity of summer droughts in Central Europe the identification of drought tolerant ecotypes becomes more important in future forestry. A common garden experiment with seedlings of Fagus sylvatica provenances from the center (Germany) and eastern margin (Poland) of the species’ distribution range was conducted. Responses of morphological, physiological, chemical and growth parameters to three drought treatments were analyzed. Relative growth rates of the marginal provenance were lower as compared to the central provenance. The marginal seedlings showed a tendency to higher total biomasses because of higher seed masses. In both provenances drought decreased biomass production and root/shoot ratio which was lower in the central provenance. A lower specific root area of the marginal provenance indicated a better adaptation to low xylem water potentials. Under moderate drought, lower leaf δ13C signatures may indicate lower stomatal limitation (or a reduced rate of CO2 assimilation) in the marginal provenance. We conclude that marginal beech provenances may exhibit a better drought adaptation.  相似文献   

17.
The growth and water metabolism of three common shrubs on the Loess Plateau were studied under soil with different water contents. Results showed that water consumption of those species decreased with the increase in drought stress, and water consumptions of these shrubs were different: Forsythia suspensa was the greatest, and Syringa oblata was the lowest. The growth rate of new branches and leaf area of three species were the fastest under adequate soil water conditions, and were the lowest under severe drought. Under the same water conditions, the growth of F. suspensa was the fastest while that of S. oblata was the slowest. The water content, proline and chlorophyll content of different species changed with the increase in soil water stress. The leaf water content of Periploca sepium and F. suspensa was obviously higher than that of S. oblata, while the leaf proline content of F. suspensa and S. oblata was lower than that of P. sepium. The ratio leaf chlorophyll a: b of F. suspensa and S. oblata decreased with the decrease in soil water content. Although these three shrubs had different mechanisms in response to drought stress, they all had higher drought resistance and could adapt to the drought condition on the Loess Plateau. This paper provided some bases for choosing tree species on the Loess Plateau. __________ Translated from Acta Botanica Boreali-Occidentalia Sinica, 2007, 27(1): 91–97 [译自: 西北植物学报]  相似文献   

18.
三峡库区岸生植物秋华柳对镉胁迫的光合响应   总被引:1,自引:0,他引:1  
贾中民  程华  魏虹  李昌晓 《林业科学》2012,48(6):152-158
镉是一种植物非必需元素,以毒性强、在土壤-植物系统中移动性大等特点受到广泛关注,它在生物圈中通常给生物带来有害的生态效应。土壤中过量的镉会引起植物的许多胁迫症状,研究表明:叶镉浓度超过5~10mg·kg-1(干质量)时对大多数植物都是有害的(Whiteetal.,2010);镉能抑制叶绿素的生物合成并导致叶绿素含量的下降和不同色素  相似文献   

19.
This study was conducted to investigate the potential for modifying drought tolerance of Japanese cypress (Chamaecyparis obtusa Endl.) and Japanese red pine (Pinus densiflora Sieb. et Zucc.). Three-year-old seedlings were controlled for five-months at three different soil water potentials ({ie73-1}). Japanese cypress exposed to high {ie73-2} was able to maintain higher photosynthesis (Phn), transpiration (Tr) and stomatal conductance to H2O (gH2O) in comparison to low {ie73-3} pretreatments, however, there was no significant difference in Phn for Japanese red pine. Soil water potential at the threshold from the maximum to limited Phn was higher in high {ie73-4} pretreatments than in low {ie73-5} pretreatments. Net photosynthesis, Tr and gH2O decreased more rapidly in high {ie73-6} pretreatments than in low {ie73-7} pretreatments. Transpiration decreased more significantly than Phn, thus, resulted in increased water use efficiency. All these factors are likely to result in significant improvements in the drought tolerance. Japanese red pine seems more drought-tolerant than Japanese cypress. Japanese cypress is suitable to soil of −0.05 MPa water potential, and Japanese red pine is suitable to −0.16 MPa and even dryer soils.  相似文献   

20.
消落带植被是三峡水库生态系统的重要组成部分,对于确保水库安全和库岸社会经济发展起着重要作用。消落带植被的空间分布及优势植物组成是消落带治理植物材料选择的重要依据。本研究基于三峡水库干流巫山-秭归段典型消落带的植被调查,研究消落带植被的物种多样性、植物生活型、优势植物的空间分布特征及其变化规律。结果表明:随着海拔的下降,消落带植被的物种多样性减少;1年生草本植物在群落中所占比例增加,多年生草本植物所占比例因地而异(巫山消落带为增加,秭归消落带为减少),木本植物所占比例减少。淹水较深区段消落带植被的优势植物主要是莎草科的莎草和禾本科的狗牙根、毛马唐、狗尾草及菊科的鬼针草等;淹水较浅区段的优势植物种类有所增加,但处于优势的仍然是莎草科、禾本科和菊科植物。能够在淹水区段存活的植物大多具有发达的通气组织、特殊的繁殖特性及对淹水和干旱环境有较强的适应能力。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号