首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Poor soil and drought stress are common in semiarid areas of China, but maize has a high demand for nitrogen (N) and water. Maize production using the technique of double ridges and furrows mulched with plastic film are being rapidly adopted due to significant increases in yield and water use efficiency (WUE) in these areas. This paper studied N use and water balance of maize crops under double ridges and furrows mulched with plastic-film systems in a semiarid environment over four growing seasons from 2007 to 2010. To improve precipitation storage in the non-growing season, the whole-year plastic-film mulching technique was used. There were six treatments which had 0, 70, 140, 280, 420 or 560 kg N ha−1 applied in every year for maize. In April 2011, spring wheat was planted in flat plots without fertilizer or mulch following four years of maize cultivation. After four years, all treatments not only maintained soil water balance in the 0–200 cm soil layer but soil water content also increased in the 0–160 cm soil layer compared to values before maize sowing in April 2007. However, under similar precipitation and only one season of spring wheat, soil water content in the 0–160 cm soil layer sharply decreased in all treatments compared to values before sowing in April 2011. Over the four years of maize cultivation, average yield in all treatments ranged from 4071 to 6676 kg ha−1 and WUE ranged from 18.2 to 28.2 kg ha−1 mm−1. In 2011, the yield of spring wheat in all treatments ranged from 763 to 1260 kg ha−1 and WUE from 3.5 to 6.5 kg ha−1 mm−1. The potential maximum grain yield for maize was 6784 kg ha−1 with 360 kg N ha−1 applied for four years, but considerable NO3N accumulated in the soil profile. A lesser application (110 kg N ha−1) to this tillage system yielded in 82% of the maximum, increased nitrogen use efficiency and mitigated the risk of nitrogen loss from the system. This study suggests that double ridge–furrow and whole-year plastic-film mulching could sustain high grain yields in maize with approximately 110 kg N ha−1 and maintain soil water balance when annual precipitation is >273 mm in this semiarid environment.  相似文献   

2.
Increasing demand for livestock products is driving development of livestock systems worldwide. That requires improved and new forage production options. The Loess Plateau region in central-northern China is an important area for livestock production, as it supports11% and 19% of the country’s cattle and sheep, respectively (China statistical yearbook 2014). The rain-fed semi-arid environment of the Loess Plateau means that maximizing the water-use-efficiency (WUE) of forage production is vital to guarantee enough fodder supply the livestock demand. A three-year field experiment in north-west Loess Plateau compared forage production, water use and water-use-efficiency as well as crude protein (CP) content of forage maize, Sudan grass, foxtail millet and Japanese millet sown at three sowing dates according to the opening rain during 2011–2013. On average, forage maize produced the highest biomass (12.1 t ha−1) and had the highest WUE (43.4 kg DM ha−1 mm−1). This was followed by Sudan grass (7.8 t ha−1; 26.5 kg DM ha−1 mm−1), Japanese millet (6.7 t ha−1; 26.2 kg DM ha−1 mm−1) and foxtail millet (6.7 t ha−1; 24.6 kg DM ha−1 mm−1). Optimizing sowing date played an important role in maximizing forage production and WUE of all tested forages. Compared to the earliest sowing date, a delay of two weeks reduced forage production by 17% in maize, 35% in foxtail millet, and 16% in Japanese millet. A delay of four to six weeks reduced biomass yield by 58% in maize, 57% in foxtail millet, and 56% in Japanese millet. Late sowing also greatly reduced WUE of forage maize and foxtail millet by 33% and 42%, respectively, when compared to early sowing. The middle sowing date maximized forage production and WUE of Sudan grass in two of the three growing seasons, which was 20% and 38% higher than the early and late sowing, respectively. Late sowing in all forages reduced crop water use by 42–57 mm compared to the early sowing. Among four test crops, CP of Sudan grass (7.9%) and forage maize (7.7%) was higher than foxtail millet (6.8%) and Japanese millet (6.7%). Compared with early sowing, CPf in late sowing significantly increased in Sudan grass and decreased in Japanese millet, in contrast, no evident sowing date effect was found in forage maize and foxtail millet. This study showed that all four warm-season annual grasses had high forage production potential, forage maize was the most reliable and efficient option. Forage maize and the millets could easily be integrated into existing cropping systems and provide opportunities as both grain and forage-producing crop to provide added flexibility for farmers.  相似文献   

3.
Regions in north-western Europe characterized by high density of livestock/biogas plants and extensive silage maize production are facing major environmental challenges due to excessive residual soil mineral nitrogen (N) in autumn and hence nitrate leaching. Winter catch crops (CC) have potential to accumulate residual N; however, the N uptake potential after maize harvest in autumn and spring remains unclear. Therefore, a two-year field trial (April 2012–April 2014) was conducted at three sites, to quantify the combined effects of four consecutive CC sowing dates (10 Sep; 20 Sep; 30 Sep and 15 Oct) and two CC species (rye, Secale cereale. L. and Italian ryegrass, Lolium multiflorum Lam.) on DM accumulation and N uptake of CC above- and belowground in autumn and spring, and to derive functional relationships. The results clearly showed that rye was more effective in accumulating biomass and nitrogen than Italian ryegrass. The better performance of rye was related to increased growth intensity of roots and shoot, a different allocation pattern and higher N uptake efficiency. An exponential function of temperature sum (Tsum) produced a reliable prediction of above- and belowground biomass and N. To achieve an agronomically relevant N uptake of 20 kg N ha−1, rye required 278 °Cd Tsum, which corresponds to a sowing date latest in the second decade of September. Under favourable growing conditions, a biomass accumulation of up to 5 Mg DM ha−1, corresponding to 83 kg N ha−1 above- and belowground, seems achievable under the given environmental conditions. In continuous maize grown under the environmental conditions of Northern Germany, however, catch crops will not reach a relevant N uptake on the long-term average.  相似文献   

4.
Different preceding crops interact with almost all husbandry and have a major effect on crop yields. In order to quantify the yield response of winter wheat, a field trial with different preceding crop combinations (oilseed rape (OSR)–OSR–OSR–wheat–wheat–wheat), two sowing dates (mid/end of September, mid/end of October) and 16 mineral nitrogen (N) treatments (80–320 kg N ha−1) during 1993/1994–1998/1999, was carried out at Hohenschulen Experimental Station near Kiel in NW Germany. Single plant biomass, tiller numbers m−2, biomass m−2, grain yield and yield components at harvest were investigated. During the growing season, the incidence of root rot (Gaeumannomyces graminis) was observed. Additionally, a bioassay with Lemna minor was used to identify the presence of allelochemicals in the soil after different preceding crops.Averaged over all years and all other treatments, wheat following OSR achieved nearly 9.5 t ha−1, whereas the second wheat crop following wheat yielded about 0.9 t ha−1 and the third wheat crop following 2 years of wheat about 1.9 t ha−1 less compared with wheat after OSR. A delay of the sowing date only marginally decreased grain yield by 0.2 t ha−1. Nitrogen fertilization increased grain yield after all preceding crop combinations, but at different levels. Wheat grown after OSR reached its maximum yield of 9.7 t ha−1 with 210 kg N ha−1. The third wheat crop required a N amount of 270 kg N ha−1 to achieve its yield maximum of 8.0 t ha−1.Yield losses were mainly caused by a lower ear density and a reduced thousand grain weight. About 4 weeks after plant establishment, single wheat plants following OSR accumulated more biomass compared to plants grown after wheat. Plants from the third wheat crop were smallest. This range of the preceding crop combinations was similar at all sampling dates throughout the growing season.Root rot occurred only at a low level and was excluded to cause the yield losses. The Lemna bioassay suggested the presence of allelochemicals, which might have been one reason for the poor single plant development in autumn.An increased N fertilization compensated for the lower number of ears m−2 and partly reduced the yield losses due to the unfavorable preceding crop combination. However, it was not possible to completely compensate for the detrimental influences of an unfavorable preceding crop on the grain yield of the subsequent wheat crop.  相似文献   

5.
In semiarid Kenya, field productivity of maize has been at a low integrity level due to insufficient use of rainwater use. From 2012 to 2013, an innovative ridge-furrow mulching system (RFMs) was tested using local maize (Zea mays L.) hybrid, KCB in KARI-Katumani Farm, Kenya in long and short rainy seasons. Field experiments were conducted in a randomized complete block design with four treatments: 1) RFMs with transparent polyethylene film (RFT), 2) RFMs with black polyethylene film (RFB), 3) RFMs with grass straw mulching (RFS), and 4) RFMs without mulching (CK). Soil moisture & temperature, grain yield, water use and economic benefit were determined and analyzed. The results indicated that both RFT and RFB treatments significantly increased soil water storage amount in the depth of 0–60 cm. Grain yield and water use efficiency (WUE) in both treatments were increased by 66.5–349.9% and 72.9–382% respectively, compared with those of CK over two growing seasons. In addition, grain yield and WUE in RFS treatment were only increased by from 4.2–127.1% compared with those of CK. Particularly, two types of plastic films displayed different effects on modifying topsoil temperature. Transparent film mulching significantly increased topsoil temperature by 1.3 °C (p < 0.05) higher than CK, to facilitate growth and grain formation in long (but cool) growing season. In contrast, black film mulching lowered soil temperature by 0.3 °C lower than CK in short (but warm) growing season, which led to better soil thermal balance. Overall, RFMs with film mulching could serve as an effective solution to increase maize productivity, and hence a promising strategy to cope with food security under climate change in semiarid Kenya.  相似文献   

6.
The effects of radiation and temperature during the seed set period (SSP) on pod number per square metre (PN m−2) and seed number per square metre (SN m−2) and those of temperature during grain filling on unit seed weight (USW, milligram per seed) of field pea (Pisum sativum L.) were examined in experiments involving irrigated crops of three or more cultivars of contrasting maturity sown on two or more dates per year from 1996 to 1998 at Buenos Aires, Argentina. The duration of the seed-setting phase was estimated from records of the progress of flowering on the main stem and an estimate (obtained using an optimisation procedure) of the thermal time from flowering at which the uppermost reproductive node reached the final stage of seed abortion (FSSA). The FSSA at a particular node was assumed to be achieved 200 °C day (Tb=4 °C) after flowering at the same node. The grain-filling phase was assumed to run from the achievement of FSSA at the first reproductive node through to 200 °C day (Tb=0 °C) after the date of achievement of the FSSA by the second flowering node.The treatments (cultivar, sowing date, year) produced important ranges of above-ground biomass (AGB) at maturity (271–782 g m−2), seed yield (SY, 119–331 g m−2), SN (1062–3698 seeds m−2) and USW (67–150 mg seed−1). Seed yield was strongly correlated with SN, and there was full compensation between SN and USW in large-seeded cultivars in the high SN range, but not at lower values of SN or in small-seeded cultivars. Both PN (r=0.83) and SN (r=0.87, P<0.0005) were strongly correlated with the mean daily value of the photothermal quotient (PQ=incident radiation/(mean temperature − base temperature)) for the seed-setting phase. Large- and small-seeded cultivars had PN/PQ and SN/PQ relationships with slopes which did not differ among categories but with significantly different intercepts. When the effects of low temperatures during flowering and early grain growth were allowed for, outliers on the PN/PQ and SN/PQ relationships for unstressed crops fell within the confidence limits of the respective linear regressions. Unit seed weight showed a negative response to mean temperature during the grain-filling phase in large- and small-seeded cultivars. We conclude that the relationships established in these experiments, taken together with previous work by other authors, constitute a robust basis for modelling the yield of unstressed field pea crops.  相似文献   

7.
Long term investigations on the combined effects of tillage systems and other agronomic practices such as mineral N fertilization under Mediterranean conditions on durum wheat are very scanty and findings are often contradictory. Moreover, no studies are available on the long term effect of the adoption of conservation tillage on grain yield of maize and sunflower grown in rotation with durum wheat under rainfed Mediterranean conditions. This paper reports the results of a 20-years experiment on a durum wheat-sunflower (7 years) and durum wheat–maize (13 years) two-year rotation, whose main objective was to quantify the long term effects of different tillage practices (CT = conventional tillage; MT = minimum tillage; NT = no tillage) combined with different nitrogen fertilizer rates (N0, N1, N2 corresponding to 0, 45 and 90 kg N ha−1 for sunflower, and 0, 90 and 180 kg N ha−1 for wheat and maize) on grain yield, yield components and yield stability for the three crops. In addition, the influence of meteorological factors on the interannual variability of studied variables was also assessed. For durum wheat, NT did not allow substantial yield benefits leading to comparable yields with respect to CT in ten out of twenty years. For both sunflower and maize, NT under rainfed conditions was not a viable options, because of the unsuitable (i.e., too wet) soil conditions of the clayish soil at sowing. Both spring crops performed well with MT. No significant N × tillage interaction was found for the three crops. As expected, the response of durum wheat and maize grain yield to N was remarkable, while sunflower grain yield was not significantly influenced by N rate. Wheat yield was constrained by high temperatures in January during tillering and drought in April during heading. The interannual yield variability of sunflower was mainly associated to soil water deficit at flowering and air temperature during seed filling. Heavy rains during this latter phase strongly constrained sunflower grain yield. Maize grain yield was negatively affected by high temperatures in June and drought in July, this latter factor was particularly important in the fertilized maize. Considering both yield and yield stability, durum wheat and sunflower performed better under MT and N1 while maize performed better under both CT and MT and with N2 rates. The results of this long term study are suitable for supporting policies on sustainable Mediterranean rainfed cropping systems and also for cropping system modelling.  相似文献   

8.
The performance of a crop simulation model (agricultural production systems simulator model, APSIM-Nwheat) was tested using data obtained from several locations in the rain-fed environments of West Asia and North Africa (WANA) in Morocco and Jordan. The model was able to simulate wheat grain yields reasonably well except at one site in one season in Morocco. The model was subsequently used to analyze the effect of soil type (soil water-holding capacity), rate and timing of nitrogen (N) fertiliser, initial soil moisture storage, cultivars (early versus late), sowing dates and density and supplemental irrigation (SI) in optimizing wheat production using 20 years of historical weather records from Morocco. The simulation indicated that yields were often limited by the amount and timing of rainfall. While the effect of N fertiliser was minimal or detrimental in dry years, it improved grain yields in wet years and when crops were sown early combined with pre-sown stored plant available water in the soil. The analysis showed that early sowing is important for achieving high yields by avoiding terminal water deficit. There is little difference between grain yields when current practice of about 300 plants/m2 was compared with a density of 150 plants/m2. This implies that there is scope for reducing current planting density to save seeds without reducing yields. The simulation analysis highlighted that 40 mm of SI at sowing significantly improved average grain yields as a result of enabling early crop establishment, in particular with a N fertiliser application of 40 kg N/ha. The analysis indicated that wheat grain yields in the arid and semi-arid rain-fed regions of WANA can be improved compared to current yield levels by adjusting N management to soil type, pre-sowing soil water availability, sowing opportunity and the availability of SI.  相似文献   

9.
The aims of these field experiments were to investigate the effectiveness of soil application of rubber tire ash in comparison with soil and foliar applications of zinc (Zn) sulfate to increase Zn and decrease cadmium (Cd) concentrations in wheat grain. A two-year field experiment was conducted during the 2007–2008 and 2007–2008 growing seasons at Isfahan research field, Iran. Ten different Zn-efficiency bread wheat cultivars (Triticum aestivum L.) commonly cultivated in different parts of Iran were subjected to no Zn fertilizer addition (control), soil application of 40 kg ha−1 ZnSO4, soil application of 100 (for the first year) and 250 (for the second year) kg ha−1 waste rubber tire ash, foliar application of Zn at the mid tillering stage, and foliar application of Zn at the early anthesis stage. In the foliar application, ZnSO4 was sprayed at a rate of 0.66 kg Zn/ha. Foliar spray of zinc sulfate at early anthesis, in general, had no significant effect on the yield and grain Cd while significantly increased grain Zn concentrations of most cultivars. On average, the foliar Zn treatment at the mid tillering stage (0.66 kg Zn/ha), decreased the mean grain Cd concentration from 0.032 mg kg−1 in the control treatment to 0.024 mg kg−1. While the grain Zn concentrations of some cultivars increased with soil application of Zn sulfate, they were not affected or even decreased in other cultivars. For most studied wheat cultivars, pre-planting application of rubber tire ash in soil resulted in a significant decrease of grain Cd concentrations. The results show that the effectiveness of soil and foliar application of Zn on yield and grain Zn and Cd concentrations greatly depends on the cultivar. The currently recommended rates of soil applications of Zn to ameliorate Zn deficiency are sufficient to increase grain Zn and decrease grain Cd concentrations in some wheat cultivars, while they do not in the others. In this study, soil application of 250 kg rubber tire ash/ha and foliar spray of 0.66 kg Zn/ha at tillering stage were the most effective treatments to ameliorate Zn deficiency and to increase Zn and decrease Cd concentration in grains of most wheat cultivars.  相似文献   

10.
The effect of spring application of separated liquid pig manure (LPM) in combination with medium to high levels of inorganic nitrogen (N) to winter wheat was investigated in a field trial study at two sites in two successive growing seasons (2007–2008). The key crop parameters examined were crop N uptake (CNU), N use efficiency and grain yield. The LPM product (3.5–4.0 g/kg total N) was applied at three application rates: 15, 30 and 45 m3/ha using a band spread application technique. The LPM was used in combination with reduced and recommended inorganic N levels; a zero N control was also included. Weather conditions in both seasons were similar with below average rainfall levels in spring followed by above average summer rainfall levels. The zero N control gave lowest CNU levels in both growing seasons (70–88 kg N/ha). Inorganic N application at the reduced and recommended N rates increased CNU levels by approximately 100 kgN/ha and 112 kgN/ha, respectively compared to the untreated control. Liquid pig manure application resulted in an additional crop uptake of 58 kgN/ha. Nitrogen use efficiencies for LPM ranged from 23 to 56% while inorganic N use efficiency levels were higher ranging from 58 to 73%. Lowest grain yield levels were measured from the zero N control (range 3.95–5.01 t/ha). The application of inorganic N increased grain yield levels by a minimum of 4.05 t/ha with LPM usage increasing grain yield levels by an additional 0.2–1.09 t/ha. This study showed that LPM could be successfully used in combination with inorganic fertilisers for the improved N nutrition of winter wheat in spring as part of an integrated nutrient programme.  相似文献   

11.
Maize production plays an essential role in global food security. In order to maintain both high quality and maize production, there is a great demand for fertilizers. The main objective of this work was to study, over two experimental seasons, the effect of a biofertilizer obtained from sewage sludge (SS) on the yield and on the quality of maize crops (Zea mays L.). The biofertilizer was applied in two ways: (i) to soil, at rates of 0, 10 and 20 Mg ha−1 before sowing, and (ii) via foliar fertilization, applying 0, 3.6 and 7.2 l ha−1 three times during each growing season accounting for a total rate of 0, 10.8 l ha−1 and 21.6 l ha−1. This study is novel because there are no previous studies of the effect of this biofertilizer on any agricultural crops. The results obtained show that, when the SS was applied directly to the soil, the macro- and micronutrients analyzed in both soil and leaves showed no significant differences between either of the fertilizer treatments. Foliar application of SS, however, increased the leaf concentrations of macro- and micronutrients. When the SS rate was 7.2 l ha−1, grain protein concentration increased significantly by about 30% and the yield increased significantly by about 17% compared with the control treatment (SS not applied). These results suggested that, in order to improve agricultural maize yields, quality and nutritional, this SS should be applied as a foliar fertilizer instead of applying it to soil.  相似文献   

12.
This study investigated trade-offs between parameters determining water use efficiency of wheat under elevated CO2 in contrasting growing seasons and a semi-arid environment. We also evaluated whether previously reported negative relationships between nutrient content and transpiration efficiency among wheat genotypes will be maintained under elevated CO2 conditions. Two cultivars of wheat (Triticum aestivum L.), Scout and Yitpi, purportedly differing in water use efficiency related traits (e.g. transpiration efficiency) but with common genetic backgrounds were studied in a high yielding, high rainfall (2013), and in a low yielding, very dry growing season (2014) under Free-Air CO2 Enrichment (FACE, CO2 concentration of approximately 550 μmol mol−1) and ambient (approximately 390 μmol mol−1) CO2. Gas exchange measurements were collected diurnally between stem elongation and anthesis. Aboveground biomass and nutrient content (sum of Ca, K, S, P, Cu, Fe, Zn, Mn and Mg) were determined at anthesis. Yield, yield components and harvest index were measured at physiological maturity. Cultivar Scout showed transiently greater transpiration efficiency (measured by gas exchange) over cultivar Yitpi under both ambient and elevated CO2 conditions, mainly expressed in the high yielding but not in the low yielding season. Nutrient content was on average 13% greater for the lower transpiration efficiency cultivar Yitpi than the cultivar with higher transpiration efficiency (Scout) in the high yielding season across both CO2 concentrations. Elevated CO2 stimulated grain yield to a greater extent in the high yielding season than in the low yielding season where increased aboveground biomass earlier in the season did not translate into fertile tillers in cultivar Yitpi. Yield increased 27 and 33% in the high yielding and 0 and 19% in the low yielding season for cultivars Yitpi and Scout, respectively. Intraspecific variation in CO2 responsiveness related mechanisms of grain yield were observed. These results suggest CO2-driven trade-offs between traits governing water use efficiency are related to both growing season and intraspecific variations, and under very dry finishes, the trade-offs may even reverse. The negative relationship between nutrient content and transpiration efficiency among wheat genotypes will be maintained under elevated CO2 conditions.  相似文献   

13.
Soil acidity and low natural fertility are the main limiting factors for grain production in tropical regions such as the Brazilian Cerrado. The application of lime to the surface of no-till soil can improve plant nutrition, dry matter production, crop yields and revenue. The present study, conducted at the Lageado Experimental Farm in Botucatu, State of São Paulo, Brazil, is part of an ongoing research project initiated in 2002 to evaluate the long-term effects of the surface application of lime on the soil’s chemical attributes, nutrition and kernel/grain yield of peanut (Arachis hypogaea), white oat (Avena sativa L.) and maize (Zea mays L.) intercropped with palisade grass (Urochloa brizantha cv. Marandu), as well as the forage dry matter yield of palisade grass in winter/spring, its crude protein concentration, estimated meat production, and revenue in a tropical region with a dry winter during four growing seasons. The experiment was designed in randomized blocks with four replications. The treatments consisted of four rates of lime application (0, 1000, 2000 and 4000 kg ha−1), performed in November 2004. The surface application of limestone to the studied tropical no-till soil was efficient in reducing soil acidity from the surface down to a depth of 0.60 m and resulted in greater availability of P and K at the soil surface. Ca and Mg availability in the soil also increased with the lime application rate, up to a depth of 0.60 m. Nutrient absorption was enhanced with liming, especially regarding the nutrient uptake of K, Ca and Mg by plants. Significant increases in the yield components and kernel/grain yields of peanut, white oat and maize were obtained through the surface application of limestone. The lime rates estimated to achieve the maximum grain yield, especially in white oat and maize, were very close to the rates necessary to increase the base saturation of a soil sample collected at a depth of 0–0.20 m to 70%, indicating that the surface liming of 2000 kg ha−1 is effective for the studied tropical no-till soil. This lime rate also increases the forage dry matter yield, crude protein concentration and estimated meat production during winter/spring in the maize-palisade grass intercropping, provides the highest total and mean net profit during the four growing seasons, and can improve the long-term sustainability of tropical agriculture in the Brazilian Cerrado.  相似文献   

14.
The distribution of flower and pod production during flowering may be an important determinant of pod and seed number in grain crops. We characterized the dynamics of small pod production and survival to maturity on indeterminate and determinate soybean [Glycine max (L.) Merrill)] cultivars growing in the field or greenhouse. Two soybean cultivars (maturity group IV, indeterminate and determinate) were grown in the field near Lexington, KY (38°N latitude) in 2001 and 2002 in 0.76 cm rows using late May and late June (2002 only) planting dates, and normal (24 plants m−2) and low (9 plants m−2, 2002 only) plant populations. Cultivar Elgin 87 (indeterminate, maturity group II) was grown in a greenhouse in 3.0 L pots with one plant per pot. All unmarked pods that were ≥10 mm long were marked with acrylic paint at the base of the pod at 3-day intervals. Paint color was changed at each marking to provide a temporal profile of pod production and pod survival. The pod production (marked pods) period was longer in the indeterminate cultivar (nearly 50 days after R1) than the determinate cultivar (≤40 days after R1). Delayed planting shortened the pod-production period, but a two- to three-fold difference in pods per plant, created by changing plant population, did not affect it. The temporal distribution of small pods that survived to maturity (full sized pods with at least one normal seed) closely followed the distribution of pod production in all experiments. Some surviving pods initiated growth after the beginning of seed filling (i.e., between growth stage R5 and R6), but most of the pods were initiated in a much shorter interval (up to 84% were initiated in <40% of the period) before R5. Abortion of pods >10 mm long was relatively low (20–30%), so production of a pod ≥10 mm long seems to be a key event in the pod set process. The average length of the pod set period at individual nodes on the main stem was larger for the determinate cultivar (14 days) than for the indeterminate (9 days), so the longer total period in the indeterminate cultivar resulted from the delay in initating pod production at the upper nodes on the main stem. Temporal profiles of pod production and pod set seem to be more sensitive to changes in flower and main stem node production than to changes in photosynthesis per plant (created by varying plant population). These results provide some of the information needed to integrate time into models predicting pod and seed number.  相似文献   

15.
Rice (Oryza sativa L.) grain yields vary considerably between seasons under subtropical irrigated conditions. Reports on comparisons of grain yield between early- and late-season rice in subtropical environments are lacking. In order to evaluate the role of climatic and physiological factors under double rice-cropping system in determining rice grain yield in farmers’ fields, six field experiments were conducted in both early and late seasons from 2008 to 2010 in Wuxue County, Hubei province, China. For early season crop, the attainable yield was highest under dense planting (38.5 hills m−2) when N was applied at a rate of 120–180 kg ha−1. However, the effect of hill density on grain yield was relatively smaller for late season crop, while moderate hill density (28.1 hills m−2) and nitrogen rate (120 kg ha−1) were advantageous in terms of grain yield and lodging resistance. Remarkably higher grain yields were achieved in late season crops compared with early season crops, as the former had superiority over the latter in sink size (sink capacity, such as spikelets per m2) and biomass production. The comparatively lower yield under early season mainly resulted from slower growth during the vegetative phase, which can be attributed to the lower temperature rather than reduced mean daily radiation. Summary statistics suggested that there was ample opportunity to improve rice yield in early season crops, compared with late season crops. Correlation analysis further showed that spikelets per m2, panicles per m2, leaf area index at panicle initiation and flowering, biomass at physiological maturity and biomass accumulation after flowering should be emphasized for increasing grain yield, especially in early season crops under the double rice-cropping system in central China. Current breeding programs need to target strong tillering ability, large panicle size and greater grain filling (%) for early season crops, and high yield potential and lodging-resistance for late season crops as primary objectives.  相似文献   

16.
This work was aimed at providing a sustainable approach in the use of manure in irrigated maize crop under Mediterranean climatic conditions. To this end, the effect of continuous annual applications of dairy cattle manure, combined or not with mineral N fertilizer, on the following parameters was studied: grain yield, grain and plant N concentration, N uptake by plant, N use efficiency, and soil N and organic carbon. The experiment was conducted in a furrow-irrigated sandy soil under dry Mediterranean conditions during seven years. Three different rates of cattle manure (CM): 0, 30 and 60 Mg ha−1, were applied each year before sowing. These CM rates were combined with four mineral N rates (0, 100, 200 and 300 kg N ha−1) applied at sidedress.On average, the highest grain yields during the 7 years were obtained with the combination of CM at 30 Mg ha−1 and mineral fertilizer and with CM at 60 Mg ha−1 without mineral fertilizer. With CM at 30 Mg ha−1, mineral fertilizer increased yields during most of the growing seasons, meanwhile with CM at 60 Mg ha−1, there was not any significant effect of the joint application of mineral fertilizer on yields. Overall, best results were obtained exceeding maximum rates according to present legislation. The mean apparent nitrogen recovery (ANR) fraction during the 7 seasons was 29% for N exclusively applied as CM. Overall, increased N rates applied as CM resulted in decreased ANRs. However, ANR with CM at 30 and 60 Mg ha−1 increased during the first two seasons. This increased ANR ascribed to mineralization of residual organic N applied in previous seasons explained the increasing yields observed in the treatments along the study.The application of CM during 7 years increased the soil organic carbon in the first 30 cm by 5.7 and 9.9 Mg ha−1 with CM at 30 and 60 Mg ha−1, respectively, when compared to the initial stock. Thus, manure-based fertilization could be an alternative to mineral fertilizer in order to achieve high maize yields while improving soil quality under dry Mediterranean conditions.  相似文献   

17.
The potential for alfalfa to be a valuable rainfed pasture option that can be used to increase livestock and crop production in central-south Chile is demonstrated for the first time. The persistence, productivity and water use efficiency of alfalfa (Medicago sativa) cultivars was evaluated at four sites in dryland Mediterranean environments of Chile between 2012 and 2015. Nine alfalfa cultivars were evaluated for plant persistence, winter growth, forage yield, shoot water potential (Ψ), stomatal conductance (gs), and carbon (δ13C) and oxygen (δ18O) compositions. The percentage of plant survival after four years varied between 69 and 97% of the established plants. Alfalfa forage yield was >9 t ha−1yr−1 at Yungay (Andes foothills) in year two, and at Cauquenes (interior dryland site) in years three and four. The highest forage yield was obtained in cultivars SARDI Ten and Aquarius and the lowest in WL326HQ. In 2015, the forage yield during late spring and early summer (November 2015–January 2016) ranged from 3170 to 3570 kg ha−1 (average of the nine cultivars), which represented between 29% and 38% of the total production. The response of gs to Ψ was different among cultivars but all cultivars exhibited a strong decline when Ψ was <−1.0 MP. Shoot water potential evaluated in October–November was negatively correlated with δ13C and δ18O in shoot biomass. The apparent water use efficiency (kg DM/ha/mm of rainfall) across the nine cultivars was highest in Cauquenes in the three years evaluated (>16 kg mm−1). It is concluded that alfalfa is a high yielding forage that can extend the growing season into early summer and autumn in dryland Mediterranean environments.  相似文献   

18.
Low root zone temperature (RZT) in early spring is a major constraint for maize production in Central and Northern Europe. Nutrient acquisition, nutrient uptake and particularly root growth are severely reduced at low RZT and the consequences of these growth depressions are frequently not completely compensated until final harvest. Perspectives to overcome these limitations by seed priming treatments with different micronutrients (Fe, Zn, Mn) were studied with maize seedlings exposed to low RZT (12 °C).Model experiments were performed in nutrient solution and soil culture using rhizo-boxes with root observation windows under green house conditions. To observe effects on final grain yield, additionally two field experiments were conducted in 2010 and 2011. Nutrient seed priming resulted in a significant increase in seed contents of the respective nutrients, i.e. Fe (25%), Zn (500%) and Mn (800%). At low RZT, biomass production and total root length of maize plants were significantly increased after Fe and Zn + Mn priming treatments, both in nutrient solution and in rhizo-box culture. There was no prominent difference in shoot Fe, Zn, Mn and P concentrations but total shoot contents per plant were significantly increased after nutrient seed priming. Plant growth promotion and improved micronutrient status was detectable also under field conditions at 5 weeks after sowing. This offers perspectives for using micronutrient seed priming for improving early seedling development and plant nutrient status of maize under low temperature climatic conditions.  相似文献   

19.
Winter barley is the major crop on semiarid drylands in central Aragon (NE Spain). In this study we compared, under both continuous cropping (BC) (5–6-month fallow) and a crop–fallow rotation (BF) (16–18-month fallow), the effects of three fallow management treatments (conventional tillage, CT; reduced tillage, RT; no-tillage, NT) on the growth, yield and water use efficiency (WUE) of winter barley during three consecutive growing seasons in the 1999–2002 period. Daily precipitation measurements and monthly measurements of soil water storage to a depth of 0.7 m were used to calculate crop water use (ET) and its components. The average growing season precipitation was 195 mm. Above-ground dry matter (DM) and corresponding WUE were high in years with high effective rainfalls (>10 mm day−1) either in autumn or spring. However, the highest values of WUE for grain yield were mainly produced by effective rainfalls during the time from stem elongation to harvest. Despite the similarity in ET for the three tillage treatments, NT provided the lowest DM production, corresponding to a higher soil water loss by evaporation and lower crop transpiration (T), indicated by the lowest T/ET ratio values found under this treatment. No clear differences in crop yield were observed among the tillage treatments in the study period. On average, and regardless of the type of tillage, BF provided the highest values of DM and WUE and yielded 49% more grain than BC. These differences between cropping systems increased when water-limiting conditions occurred in the early stages of crop growth, probably due to the additional soil water storage under BF at sowing. Although no significant differences in precipitation use efficiency (PUE) were observed between BC and BF, PUE was higher under the BC system, which yielded 34% more grain than the BF rotation when yields were adjusted to an annual basis including the length of the fallow. The crop yield under BF was not dependent on the increase in soil water storage at the end of the long fallow. In conclusion, this study has shown that, although conventional tillage can be substituted by reduced or no-tillage systems for fallow management in semiarid dryland cereal production areas in central Aragon, the practice of long-fallowing to increase the cereal crop yields is not longer sustainable.  相似文献   

20.
The major objective for clover in a winter wheat/white clover intercropping system is to supply nitrogen (N) for the wheat. A field experiment was repeated in 2 years on a loamy sand in Denmark to investigate the possibilities for increasing N supply to the winter wheat by cutting and mulching the clover between the wheat rows. The clover was cut with a weed brusher on three different dates in each year.Intercropped wheat with unbrushed clover had a lower grain yield than wheat as a sole crop. Brushing increased wheat N uptake and wheat grain yields. Intercropping with two or three brushing dates gave higher wheat yields than wheat as the sole crop. The largest increases in grain N uptake, 21–25 kg N ha−1, were obtained for the brushings around wheat flag leaf emergence. The highest yield increases with a single brushing, 0.98–1.11 Mg DM ha−1, were obtained when brushing was performed during the stem elongation phase. The largest grain yields for treatments with two brushings were obtained with a first brushing at start of stem elongation and a second around flag leaf emergence. The first brushing probably provided N to increase the wheat leaf area index and thus the light interception, while the second brushing provided N to sustain the leaf area during grain filling and reduced clover biomass and therefore competition for water. Intercropping wheat and clover increased grain N concentrations by 0.11–0.39%-point compared with wheat as a sole crop. Intercropping may thus offer possibilities for improving the bread-making quality of organically grown wheat.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号