首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Trees are the dominant species in agroforestry systems, profoundly affecting the performance of understory crops. Proximity to trees is a key factor in crop performance, but rather little information is available on the spatial distribution of yield and yield components of crop species under the influence of trees in agroforestry systems. Also, little information is available on how crop density may be exploited to optimize the yield in such systems. Here we studied the performance of cotton in jujube/cotton agroforestry. Field experiments were conducted in 2012 and 2013 in Hetian, Xinjiang, China. Cotton was grown at a row distance of 60 cm in three densities, 13.5, 18.0 and 22.5 plants m−2 in six m wide paths between tree lines in a jujube plantation. Plant density affected both cotton aboveground dry matter and yield significantly. The highest yield was attained at the intermediate density of 18.0 plants m−2 (20.0 plants m−2 corresponding in sole cotton), lower than the optimal density in sole cotton (25.0 plants m−2). Yield at the lower density was constrained by the low number of bolls per m2 as a direct consequence of the low density, whereas at the high plant density yield was constrained by a lower allocation of assimilates to cotton seed and lint, as a consequence of intraspecific and interspecific competitions. There were strong gradients in yield and yield components in relation to the distance from the tree rows. Leaf area and total dry matter of cotton in rows close to the tree lines were reduced, especially in the rows next to the trees. Moreover, biomass allocation to cotton fruits was reduced in these rows. Competitive influences from the trees on cotton performance extended two rows deep in a six-year old jujube stand, and even three rows deep in a seven-year old stand. Shading effects on cotton yield were compensated by increasing plant density as a result of greater boll numbers per unit ground area. Data from this study help guide the design of optimal plant density of cotton in jujube plantations and give insight in the spatial distribution and dynamics of competitive effects in agroforestry systems in general.  相似文献   

2.
Robust associations between yield and crop growth rate in a species-specific critical developmental window have been demonstrated in many crops. In this study we focus on genotype-driven variation in crop growth rate and its association with chickpea yield under drought. We measured crop growth rate using Normalised Difference Vegetative Index (NDVI) in 20 diverse chickpea lines, after calibration of NDVI against biomass accounting for morphological differences between Kabuli and Desi types. Crops were grown in eight environments resulting from the combination of seasons, sowing dates and water supply, returning a yield range from 152 to 366 g m−2. For both sources of variation – environment and genotype – yield correlated with crop growth rate in the window 300 °Cd before flowering to 200 °Cd after flowering. In the range of crop growth rate from 0.07 to 0.91 g m−2 °Cd−1, the relationship was linear with zero intercept, as with other indeterminate grain legumes. Genotype-driven associations between yield and crop growth rate were stronger under water stress than under favourable conditions. Despite this general trend, lines were identified with high crop growth rate in both favourable and stress conditions. We demonstrate that calibrated NDVI is a rapid, inexpensive screening tool to capture a physiologically meaningful link between yield and crop growth rate in chickpea.  相似文献   

3.
Effects of vineyard row orientation (NS, EW, NE-SW, NW-SE) and harvesting dates/grape ripeness levels (23 °B, 25 °B and 27 °B) on vegetative and reproductive growth characteristics of vertically trellised, shoot positioned Vitis vinifera L. cv. Shiraz, grafted onto rootstock 101–14 Mgt, were investigated for seven consecutive seasons on a flat site of approximately 3 ha with uniform clayey loam soil at the experiment farm of ARC Infruitec-Nietvoorbij in the Breede River Valley, Robertson, South Africa. Primary and secondary shoot characteristics showed minor differences between row orientations and canopy sides. Primary shoot lengths and primary leaf area:secondary leaf area ratios averaged 110–120 cm and 0.80–0.90, respectively. Secondary leaf area of primary shoots on S and SW sides tended to be lower. The SW canopy side displayed generally lower values for most characteristics. Higher cane mass was obtained for NS and EW orientations. Bud fertility, berry set and general morphology of bunches were largely unaffected by row orientation. Bunch and berry mass and volume progressively decreased during ripening for all row orientation treatments. The EW row orientation resulted in consistently higher berry mass and volume. Leaf area (10–12 cm2)/g fresh mass values showed equal balance for differently orientated vines, aligned with generally acknowledged criteria. Average yields of three ripeness levels over row orientations and seasons were 19.2, 17.4 and 15.9 tons/ha. Overall total yield losses from ripeness level 1–2 and 2–3 averaged 9.5% and 8.6%, respectively, with an overall total yield loss from ripeness level 1–3 of 17.3%. This is mainly attributed to a decrease in berry mass; rachis mass showed high stability. The NS orientated vines had highest yields over seasons and at all ripeness levels; it also displayed most stable yields over the years of study and may be considered the most ideal row orientation for yield within the terroir of study. Yields of the other row orientations varied according to season/ripeness level: at ripeness level 1, NE-SW was followed by NW-SE and EW; at ripeness level 2, NW-SE was followed by EW and NE-SW; and at ripeness level 3; EW was followed by NW-SE and NE-SW. The NW-SE row orientation was stable at an average level and EW and NE-SW orientations were variable. Overall average yields (over ripeness levels) of NS, EW, NE-SW and NW-SE orientations were 18.2, 17.1, 17.1 and 17.4 ton/ha, respectively. Despite minor differences in vegetative characteristics, yield:cane mass ratios indicated that growth balances were affected by row orientation. These trends are of great significance in considerations of an optimal ripeness level for a specific product objective and are very important aspects of sustainability. Results showed significant trends that can globally be used as guidelines for row orientation choices, even when multiple (straight or curved) row orientations per vineyard are used and when vineyards are established in more complex terrains/terroirs. The study provided the first comprehensive and much needed scientific evidence on the role of row orientation in vegetative and reproductive growth of the grapevine and as viticulture practice.  相似文献   

4.
The effects of radiation and temperature during the seed set period (SSP) on pod number per square metre (PN m−2) and seed number per square metre (SN m−2) and those of temperature during grain filling on unit seed weight (USW, milligram per seed) of field pea (Pisum sativum L.) were examined in experiments involving irrigated crops of three or more cultivars of contrasting maturity sown on two or more dates per year from 1996 to 1998 at Buenos Aires, Argentina. The duration of the seed-setting phase was estimated from records of the progress of flowering on the main stem and an estimate (obtained using an optimisation procedure) of the thermal time from flowering at which the uppermost reproductive node reached the final stage of seed abortion (FSSA). The FSSA at a particular node was assumed to be achieved 200 °C day (Tb=4 °C) after flowering at the same node. The grain-filling phase was assumed to run from the achievement of FSSA at the first reproductive node through to 200 °C day (Tb=0 °C) after the date of achievement of the FSSA by the second flowering node.The treatments (cultivar, sowing date, year) produced important ranges of above-ground biomass (AGB) at maturity (271–782 g m−2), seed yield (SY, 119–331 g m−2), SN (1062–3698 seeds m−2) and USW (67–150 mg seed−1). Seed yield was strongly correlated with SN, and there was full compensation between SN and USW in large-seeded cultivars in the high SN range, but not at lower values of SN or in small-seeded cultivars. Both PN (r=0.83) and SN (r=0.87, P<0.0005) were strongly correlated with the mean daily value of the photothermal quotient (PQ=incident radiation/(mean temperature − base temperature)) for the seed-setting phase. Large- and small-seeded cultivars had PN/PQ and SN/PQ relationships with slopes which did not differ among categories but with significantly different intercepts. When the effects of low temperatures during flowering and early grain growth were allowed for, outliers on the PN/PQ and SN/PQ relationships for unstressed crops fell within the confidence limits of the respective linear regressions. Unit seed weight showed a negative response to mean temperature during the grain-filling phase in large- and small-seeded cultivars. We conclude that the relationships established in these experiments, taken together with previous work by other authors, constitute a robust basis for modelling the yield of unstressed field pea crops.  相似文献   

5.
Three-year field trials were set up on eutric brown soil in northwestern Croatia (Zagreb) with the objective to determine the effect of plant density and nitrogen rates on the formation and size of leaf area of seed sugar beet, and on the yield and seed quality in seed production without transplanting. Investigations should also reveal how much the yield and quality of sugar beet seed depend on the leaf area index (LAI). Four plant densities of seed sugar beet were investigated after crop wintering (40 000, 80 000, 120 000, and 160 000 plants/ha) as well as three nitrogen rates (60, 120, and 180 kg/ha) applied in two identical topdressings: at the beginning of the spring growing period and immediately before shooting of inflorescence stalks. Leaf area formation was strongly influenced by weather conditions. An increase of plant density from 40 000 to 160 000 plants/ha led to a decrease of leaf area per plant. Raised nitrogen rates in topdressing caused an increase of leaf area, depending on the precipitation and soil fertility. Maximum LAI, achieved in the flowering stage, grew almost linearly with increasing plant density (LAI: 1.77–4.85 m2/m2), but was statistically significant only up to 120 000 plants/ha. Raised nitrogen rates in topdressing led to a significant increase of the LAI in the stage of inflorescence stalk shooting, though not in full flowering. On the basis of this research, seed yield and germination of seed sugar beet could not be predicted regarding LAI in the flowering stage.  相似文献   

6.
Integrated no-till crop and livestock production systems may help rejuvenate degraded pastures, increase land use efficiency (LUE), and increase enterprise revenue. Our objectives were to evaluate: (1) planting date effects on seed yield and nutrient concentration of an early-maturing, no-till system (NTS) soybean (Glycine max) when intercropped with palisade grass (Brachiaria brizantha); (2) dry matter production and protein concentration of the grass pasture after soybean harvest; and (3) overall revenue and LUE for the intercrop system. Experiments were performed during two growing seasons in Botucatu, Brazil using a randomized complete block experimental design. When palisade grass and soybean were sown simultaneously, soybean yield averaged 3.28 Mg ha−1. Similar seed yields were observed when palisade grass was planted either 30 d after soybean emergence (DAE) (3.29 Mg ha−1) or at the soybean reproductive stage R6 (full seed) (3.50 Mg ha−1). Monocrop soybean yield averaged 3.50 Mg ha−1. First cut dry matter forage production was greater when palisade grass was sown at the same time as soybean or 30 DAE of soybean. This indicates that interseeding palisade grass with soybean does not significantly affect soybean nutrition or yield. Intercropping did increase LUE and resulted in 1.6 times more revenue than soybean alone. However, sowing palisade grass at the soybean reproductive stage R6 (full seed) significantly reduced the forage yield compared to early planting.  相似文献   

7.
A rapid warming of 2.8–5.3 °C by the end of this century is expected in South Korea. Considering the current temperature during the spring potato growing season (emergence to harvest; ca. 18 °C), which is near the upper limit of the optimum temperature for potato yield, the anticipated warming will adversely affect potato production in South Korea. The present study assessed the impact of high temperature on the marketable tuber yield and related traits of cv. Superior (which makes up 71% of the annual potato production in South Korea) in four temperature-controlled plastic houses and an outdoor field (37.27°N, 126.99°E) during 2015–2016. The target temperatures of the four plastic houses were set to ambient (AT), AT+1.5 °C, AT+3.0 °C, and AT+5.0 °C. The marketable tuber yield was significantly reduced by 11% per 1 °C increase over a temperature range of 19.1–27.7 °C. The negative impact of high temperature was associated not only with the yield loss of total tubers, which was mostly explained by the slower tuber bulking rate, but also the reduced marketable tuber ratio under temperatures above 23 °C, which was mainly attributed to the reduced number of marketable tubers (r = 0.79***). Under moderate temperatures below 23 °C, the source limited the number of marketable tubers without reducing the marketable tuber ratio. In contrast, the number of marketable tubers was limited by the marketable tuber set at the early growth stage rather than the source under the higher temperatures, which resulted in the reduction in the marketable tuber ratio below 56%. These results suggest that the objectives of breeding and agronomic management for adapting to the rapid warming in South Korea should include maintaining the ability to form tubers at the early growth stage under high temperatures, as well as the photosynthetic capacity and sink strength of the tubers.  相似文献   

8.
Maize breeding during the past 50 years has been associated with a delay of leaf senescence, but it is not clear whether this trait is likewise associated with higher grain yield in modern hybrids. Post-silking growth, leaf area dynamics, photosynthetic parameters and yield were compared in modern maize hybrids differing in canopy senescence rate. In the first two experiments, four hybrids were grown in the field at Balcarce, Argentina (37°45′ S, 58°18 W). In spite of differences in chlorophyll retention and photosynthesis of the ear leaf, post-silking growth and grain yield were very similar in all four hybrids while kernel N concentration was lower in the later-senescing hybrids. In a third experiment, a later-senescing (NK870) and an earlier-senescing (DK682) hybrid were grown to analyze the potential photosynthetic contribution of delayed leaf senescence. Leaf area and chlorophyll content were larger in NK870, especially at the lower canopy level (0.75 m above the ground). However, hybrids did not differ for canopy light interception. Because photosynthetic photon flux density below 1 m above the ground was less than 10% of incident radiation and photosynthesis quantum yield did not change during senescence, the potential photosynthetic output of lower leaves below 1 m was very low. Lower leaves of NK870 had N concentrations higher than those needed to sustain photosynthesis at the light conditions below 1 m. Therefore, we show that delayed senescence does not necessarily improve post-silking C accumulation because: (i) canopy light interception is not reduced by senescence except at very late stages of grain filling; (ii) contrasting hybrids show more pronounced senescence differences at canopy levels receiving less than 10% of incident radiation; (iii) delayed senescing hybrids present lower kernel N concentrations while extra N is retained in leaves exposed to a light limiting micro-environment. Delayed senescence at lower canopy levels may be unproductive, at least under non-stressing conditions.  相似文献   

9.
Irrigated crops of ‘Grasslands Kaituna’ lucerne were grown for 5 years in a temperate climate at Lincoln University, Canterbury, New Zealand (43°38′S, 172°28′E). From these the response of the components of leaf area index (LAI) to environmental factors was determined. A broken stick temperature threshold with a base temperature (Tb) of 1 °C at air temperatures (Ta) <15 °C and a Tb = 5 °C for Ta  15 was required to accumulate thermal time (Tt). Using this, the appearance of nodes on the main-stem (phyllochron) was constant in Tt within a re-growth cycle (30–42 days). The phyllochron was 37 ± 7 °Cd but declined from 60 to 37 °Cd as photoperiod decreased from 15.7 to 11.4 h. Branching began at the appearance of the fifth main-stem node with 2.5 secondary nodes produced per main-stem node in spring re-growth cycles but only 1.7 produced in summer. Leaf senescence increased from 0.3 to 1.08 leaves per main-stem node after the appearance of the ninth node. Spring re-growth cycles had a mean individual leaf area of 170 mm2 compared with 400 mm2 for summer re-growth cycles. These results demonstrate systematic variation in LAI components and suggest they need to be considered separately in response to environmental factors to provide a quantitative framework for crop simulation analyses of lucerne canopy development.  相似文献   

10.
The distribution of flower and pod production during flowering may be an important determinant of pod and seed number in grain crops. We characterized the dynamics of small pod production and survival to maturity on indeterminate and determinate soybean [Glycine max (L.) Merrill)] cultivars growing in the field or greenhouse. Two soybean cultivars (maturity group IV, indeterminate and determinate) were grown in the field near Lexington, KY (38°N latitude) in 2001 and 2002 in 0.76 cm rows using late May and late June (2002 only) planting dates, and normal (24 plants m−2) and low (9 plants m−2, 2002 only) plant populations. Cultivar Elgin 87 (indeterminate, maturity group II) was grown in a greenhouse in 3.0 L pots with one plant per pot. All unmarked pods that were ≥10 mm long were marked with acrylic paint at the base of the pod at 3-day intervals. Paint color was changed at each marking to provide a temporal profile of pod production and pod survival. The pod production (marked pods) period was longer in the indeterminate cultivar (nearly 50 days after R1) than the determinate cultivar (≤40 days after R1). Delayed planting shortened the pod-production period, but a two- to three-fold difference in pods per plant, created by changing plant population, did not affect it. The temporal distribution of small pods that survived to maturity (full sized pods with at least one normal seed) closely followed the distribution of pod production in all experiments. Some surviving pods initiated growth after the beginning of seed filling (i.e., between growth stage R5 and R6), but most of the pods were initiated in a much shorter interval (up to 84% were initiated in <40% of the period) before R5. Abortion of pods >10 mm long was relatively low (20–30%), so production of a pod ≥10 mm long seems to be a key event in the pod set process. The average length of the pod set period at individual nodes on the main stem was larger for the determinate cultivar (14 days) than for the indeterminate (9 days), so the longer total period in the indeterminate cultivar resulted from the delay in initating pod production at the upper nodes on the main stem. Temporal profiles of pod production and pod set seem to be more sensitive to changes in flower and main stem node production than to changes in photosynthesis per plant (created by varying plant population). These results provide some of the information needed to integrate time into models predicting pod and seed number.  相似文献   

11.
Cotton (Gossypium hirsutum L.) is the leading cash crop being grown across the globe including Pakistan. By the inclusion of insect resistant transgenic cotton (BT cotton), the cotton production has mounted many folds in Pakistan. BT cotton is mostly grown in Southern Punjab in cottonwheat cropping system of Pakistan; however there exists a time conflict among wheat harvest and BT cotton sowing in this system. Wheat is harvested during late April but the ideal sowing time of BT cotton is early-mid March indicating a time conflict of 46 weeks which is becoming the main concern leading to wheat exclusion from this system. Intercropping of BT cotton in standing wheat is one of the possible options to manage this overlapping period. This two year field study was, therefore, conducted at two locations (Multan, Vehari) to evaluate the economic feasibility of relay intercropping of BT cotton through different sowing methods in BT cottonwheat cropping system. BT cottonwheat cropping systems included in the study were: conventionally tilled cotton (CTC) on fallow land during early and late March, CTC during late April after harvest of flat sown wheat (FSW), bed sown wheat (BSW) + intercropped cotton during early and late March, and ridge sown wheat (RSW) + intercropped cotton during early and late March. Planting cotton in fallow land with conventional tillage during early March had more seed cotton yield; whereas planting in the same way during April after wheat harvest had minimum seed cotton yield. Likewise, FSW had more yield than ridge and bed sown wheat with intercropped BT cotton during early or late March. However, the system productivity in terms of net income, benefit: cost ratio and marginal rate of return of BSW + intercropped BT cotton during early March was the highest during both years at both locations. However, the system with sole crop of BT cotton sown on fallow land during late or early March was the least economical even than the system with CTC during late April after harvest of FSW. In conclusion, BSW + intercropped cotton during early March may be opted to manage the time conflict and improve the economic productivity of BT cottonwheat cropping system without wheat exclusion from the system.  相似文献   

12.
Under irrigated Mediterranean conditions, no-tillage permanent bed planting (PB) is a promising agriculture system for improving soil protection and for soil carbon sequestration. However, soil compaction may increase with time up to levels that reduce crop yield. The aim of this study was to evaluate the mid-term effects of PB on soil compaction, root growth, crop yield and carbon sequestration compared with conventionally tilled bed planting (CB) and with a variant of PB that had partial subsoiling (DPB) in a Typic Xerofluvents soil (Soil Survey Staff, 2010) in southern Spain. Traffic was controlled during the whole study and beds, and furrows with (F + T) and without traffic (F  T), were spatially distinguished during measurements. Comparisons were made during a crop sequence of maize (Zea mays L.)—cotton (Gossypium hirsutum L.)—maize, corresponding to years 4–6 since trial establishment. After six years, soil compaction was higher in PB than in CB, particularly under the bed (44 and 27% higher in top 0.3- and 0.6-m soil layers, respectively). Around this time, maize root density at early grain filling was 17% lower in PB than in CB in the top 0.6-m layer. In DPB, the subsoiling operation was not effective in increasing root density. Nevertheless, root density appeared to maintain above-ground growth and yield in both PB and DPB compared to CB. Furthermore, at the end of the study, more soil organic carbon was stocked in PB than in CB and the difference increased significantly with a depth down to 0.5 m (5.7 Mg ha−1 increment for the top 0.5-m soil layer). Residues tended to accumulate on furrows, and this resulted in spatial and temporal differences in superficial soil organic carbon concentration (SOC) in the permanent planting systems. In PB, SOC in the top 0.05-m layer increased with time faster in furrows than on beds, and reached higher stable values (1.67 vs. 1.09% values, respectively). In CB, tillage homogenized the soil and reduced SOC in the top 0.05-m layer (average stable value of 0.96% on average for beds and furrows).  相似文献   

13.
Questions as to which crop to grow, where, when and with what management, will be increasingly challenging for farmers in the face of a changing climate. The objective of this study was to evaluate emergence, yield and financial benefits of maize, finger millet and sorghum, planted at different dates and managed with variable soil nutrient inputs in order to develop adaptation options for stabilizing food production and income for smallholder households in the face of climate change and variability. Field experiments with maize, finger millet and sorghum were conducted in farmers’ fields in Makoni and Hwedza districts in eastern Zimbabwe for three seasons: 2009/10, 2010/11 and 2011/12. Three fertilization rates: high (90 kg N ha−1, 26 kg P ha−1, 7 t ha−1 manure), low (35 kg N ha−1, 14 kg P ha−1, 3 t ha−1 manure) and a control (zero fertilization); and three planting dates: early, normal and late, were compared. Crop emergence for the unfertilized finger millet and sorghum was <15% compared with >70% for the fertilized treatments. In contrast, the emergence for maize (a medium-maturity hybrid cultivar, SC635), was >80% regardless of the amount of fertilizer applied. Maize yield was greater than that of finger millet and sorghum, also in the season (2010/11) which had poor rainfall distribution. Maize yielded 5.4 t ha−1 compared with 3.1 t ha−1 for finger millet and 3.3 t ha−1 for sorghum for the early plantings in the 2009/10 rainfall season in Makoni, a site with relatively fertile soils. In the poorer 2010/11 season, early planted maize yielded 2.4 t ha−1, against 1.6 t ha−1 for finger millet and 0.4 t ha−1 for sorghum in Makoni. Similar yield trends were observed on the nutrient-depleted soils in Hwedza, although yields were less than those observed in Makoni. All crops yielded significantly more with increasing rates of fertilization when planting was done early or in what farmers considered the ‘normal window’. Crops planted early or during the normal planting window gave comparable yields that were greater than yields of late-planted crops. Water productivity for each crop planted early or during the normal window increased with increase in the amount of fertilizer applied, but differed between crop type. Maize had the highest water productivity (8.0 kg dry matter mm−1 ha−1) followed by sorghum (4.9 kg mm−1 ha−1) and then finger millet (4.6 kg mm−1 ha−1) when a high fertilizer rate was applied to the early-planted crop. Marginal rates of return for maize production were greater for the high fertilization rate (>50%) than for the low rate (<50%). However, the financial returns for finger millet were more attractive for the low fertilization rate (>100%) than for the high rate (<100%). Although maize yield was greater compared with finger millet, the latter had a higher content of calcium and can be stored for up to five years. The superiority of maize, in terms of yields, over finger millet and sorghum, suggests that the recommendation to substitute maize with small grains may not be a robust option for adaptation to increased temperatures and more frequent droughts likely to be experienced in Zimbabwe and other parts of southern Africa.  相似文献   

14.
Extreme temperatures cause spikelet sterility in rice and thus yield losses. Predicting sterility is difficult because organ temperature may differ from air temperature. Four rice genotypes were planted under irrigated flooded conditions in a similar replicated design in four environments: the relatively humid dry season in the Philippines, the summer season in southern France and the cold-dry and hot-dry seasons in northern Senegal. Panicle temperature was measured by IR photography on ca. 4000 images, complemented with simultaneous monitoring of micro-climatic variables on the floodwater-canopy-air continuum. Spikelet sterility was observed at the population scale at grain maturity, and canopy morphology was also characterized (plant height, leaf area index, panicle position within the canopy and panicle exertion). The period and time of day of anthesis (TOA) was estimated using a model developed on the same experiments as described in a previous paper. Panicle temperature varied between 9.5 °C below and 2 °C above air temperature at 2 m. During TOA it was on average slightly warmer than the air in the Philippines and significantly colder in Senegal. Spikelet sterility was disaggregated into three components caused by chilling at microspore stage, incomplete panicle exertion at anthesis and high panicle temperature at anthesis. Chilling caused up to 100% and heat up to 40% sterility, the former mainly in the Senegal cool-dry season and the latter in the Philippines. All genotypes avoided heat sterility in the hot-dry season in Senegal despite air temperatures up to 40 °C, by a combination of escape (early TOA) and avoidance (transpiration cooling). Only one genotype had no chilling induced sterility due to physiological tolerance. It is concluded that heat stress causing sterility is more likely to occur in warm-humid than hot-arid environments due to humidity effects on transpiration cooling. Models predicting global warming effects on sterility losses need to consider microclimate and organ temperature, and research is now needed on the genetic control of panicle transpiration cooling  相似文献   

15.
In a long-term series of on-farm tillage trials (10 loessial sites in southern and eastern Germany; annual mouldboard ploughing 0.25–0.3 m deep, mulching with a rigid-tine cultivator 0.1–0.15 m deep, direct drilling with no tillage except seedbed preparation for sugar beet solely) sugar beet yield was significantly decreased by direct drilling compared to ploughing. This study was conducted to (i) show that the lower plant density caused by mulching and direct drilling contributes to yield decrease but explains effects just partially, and (ii) determine the relation between soil structural properties and sugar beet yield. In 2003–2005 plant density experiments (53,000, 65,000 and 82,000 plants ha?1) were introduced to tillage plots on five selected environments. Yield and soil structural properties of four layers representing 0–0.43 m soil depth were determined.White sugar yield (WSY) significantly declined with direct drilling compared to ploughing treatment, whereas mulching treatment diminished WSY less pronounced. Moreover, decreasing plant density significantly lowered WSY. No interactions between tillage and plant density occurred, revealing that both factors additively affected WSY.Decreasing tillage depth increased penetration resistance (PR) and dry bulk density (DBD), and diminished air filled pore volume (AFPV) in the topsoil down to 0.27 m depth. Several soil structural parameters were closely correlated with each other as well as WSY. Variation of single parameters explained up to 60% of WSY variance attributed to tillage. Combining DBD from 0.03 to 0.07 m depth, average PR from 0.03 to 0.27 m and AFPV from 0.03 to 0.18 m soil depth explained 77% of the tillage effect. Nevertheless, multi-collinearity of soil physical parameters allowed no clear conclusions on the cause-and-effect mechanisms.Conclusively, lowered plant density and soil structure degradation due to reduced tillage may independently decrease sugar beet yield. When grown on loessial soils this crop requires mechanical loosening down to 0.15–0.20 m depth to produce high yields.  相似文献   

16.
Weather plays a critical role in eco-environmental and agricultural systems. Limited availability of meteorological records often constrains the applications of simulation models and related decision support tools. The Vegetation/Ecosystem Modeling and Analysis Project (VEMAP) provides daily weather variables on a 0.5 latitude–longitude grid across the conterminous USA. Daily weather data from the VEMAP (1961–1990) for the state of Georgia were compared with data from 52 individual ground stations of the National Weather Service Cooperative Observer Program (COOP). Additionally, simulated crop grain yields of soybean (Glycine max) were compared using the two data sources. Averaged daily maximum and minimum temperatures (Tmax and Tmin, respectively), solar radiation (SRAD), and precipitation (PPT) differed by 0.2 °C, ?0.2 °C, 1.7 MJ m?2 d?1, and 0 mm, respectively. Mean absolute errors (MAEs) for Tmax, Tmin, SRAD, and PPT were 4.2 °C, 4.4 °C, 4.4 MJ m?2 d?1, and 6.1 mm, respectively, and root mean squared errors (RMSEs) for Tmax, Tmin, SRAD, and PPT were 5.5 °C, 5.9 °C, 5.8 MJ m?2 d?1, and 13.6 mm, respectively. Temperature differences were lowest during summer months. Simulations of grain yield using the two data sources were strongly correlated (r = 0.68, p < 0.01). The MAE of grain yield was 552 kg ha?1. The RMSE of grain yield was 714 kg ha?1. Hybrid analyses indicated that the variation of simulated yield was mainly associated with the differences in rainfall. The results showed that the VEMAP daily weather data were able to be adequately applied to crop growth simulation at spatial and temporal scales, especially for long-term climate change research. Overall, the VEMAP weather data appears to be a promising source for crop growth modeling concerned with scale to 0.5° coordinate grid.  相似文献   

17.
Sustainable soil and crop management practices that reduce soil erosion and nitrogen (N) leaching, conserve soil organic matter, and optimize cotton and sorghum yields still remain a challenge. We examined the influence of three tillage practices (no-till, strip till and chisel till), four cover crops {legume [hairy vetch (Vicia villosa Roth)], nonlegume [rye (Secaele cereale L.)], vetch/rye biculture and winter weeds or no cover crop}, and three N fertilization rates (0, 60–65 and 120–130 kg N ha−1) on soil inorganic N content at the 0–30 cm depth and yields and N uptake of cotton (Gossypium hirsutum L.) and sorghum [Sorghum bicolor (L.) Moench]. A field experiment was conducted on Dothan sandy loam (fine-loamy, siliceous, thermic, Plinthic Paleudults) from 1999 to 2002 in Georgia, USA. Nitrogen supplied by cover crops was greater with vetch and vetch/rye biculture than with rye and weeds. Soil inorganic N at the 0–10 and 10–30 cm depths increased with increasing N rate and were greater with vetch than with rye and weeds in April 2000 and 2002. Inorganic N at 0–10 cm was also greater with vetch than with rye in no-till, greater with vetch/rye than with rye and weeds in strip till, and greater with vetch than with rye and weeds in chisel till. In 2000, cotton lint yield and N uptake were greater in no-till with rye or 60 kg N ha−1 than in other treatments, but biomass (stems + leaves) yield and N uptake were greater with vetch and vetch/rye than with rye or weeds, and greater with 60 and 120 than with 0 kg N ha−1. In 2001, sorghum grain yield, biomass yield, and N uptake were greater in strip till and chisel till than in no-till, and greater in vetch and vetch/rye with or without N than in rye and weeds with 0 or 65 kg N ha−1. In 2002, cotton lint yield and N uptake were greater in chisel till, rye and weeds with 0 or 60 kg N ha−1 than in other treatments, but biomass N uptake was greater in vetch/rye with 60 kg N ha−1 than in rye and weeds with 0 or 60 kg N ha−1. Increased N supplied by hairy vetch or 120–130 kg N ha−1 increased soil N availability, sorghum grain yield, cotton and sorghum biomass yields, and N uptake but decreased cotton lint yield and lint N uptake compared with rye, weeds or 0 kg N ha−1. Cotton and sorghum yields and N uptake can be optimized and potentials for soil erosion and N leaching can be reduced by using conservation tillage, such as no-till or strip till, with vetch/rye biculture cover crop and 60–65 kg N ha−1. The results can be applied in regions where cover crops can be grown in the winter to reduce soil erosion and N leaching and where tillage intensity and N fertilization rates can be minimized to reduce the costs of energy requirement for tillage and N fertilization while optimizing crop production.  相似文献   

18.
The perennial grass giant reed (Arundo donax L.) has been proposed as a promising biomass energy crop in southern Europe. The aim of this study was to investigate the effects of two fertilisation levels (F = 200–80–200 N–P–K kg ha?1; UF = 0–0–0 N–P–K kg ha?1) and two harvest times (A: autumn, W: winter) on the biomass quality of giant reed as a solid fuel for combustion. Different aged crops grown in central Italy (latitude 43°40′N, and longitude10°19′E) in the period of 1996–2005 were collected and analysed. Our results confirmed that giant reed biomass is characterized by a high content of ash and silicon. Giant reed showed an increase in ash content from F to UF and from A to W. The production of biomass from fertilised crops harvested in the autumn may thus be a good method for reducing the ash content by about 20%. The results also showed an improvement in biomass combustion quality in 10-year-old crops due to a lower ash content and higher SiO2/K2O and CaO/K2O ratios, which could contribute to a lower slagging tendency. This research should help to improve our knowledge of the chemical composition of giant reed and presents possible agronomic strategies to combine a high biomass yield with good combustion quality.  相似文献   

19.
Persimmon production in Brazil is concentrated from February to June. The large amount of this fruit available in the market influences its price during this period. This study was carried out to evaluate the effect of different packaging plastic materials on extending the storage life of ‘Fuyu’ persimmons kept under refrigeration. ‘Fuyu’ persimmon fruits were harvested on the mature-green stage and enclosed in groups of three (750 ± 30 g) in different packaging materials: 58-μm multilayer polyolephynic film (PO); 50-μm low density polyethylene film (LDPE) and 38-μm microperforated PO. Unpacked fruit stored in corrugated cardboard boxes were used as control. Fruit were stored at 1 ± 1 °C/90 ± 5% RH for 90 d. Every 7 d, five replicates of each treatment were evaluated for headspace gas composition (O2, CO2) and then transferred to 25 ± 1 °C/70 ± 5% RH for five more days. Then they were evaluated as to headspace gas composition (O2, CO2, acetaldehyde and ethanol), firmness, weight loss, skin and flesh color, total soluble solids, titratable acidity, pH, decay, discoloration and sensory attributes. The gas composition in the steady-state established in the 58-μm PO and 50-μm LDPE films extended the storage period up to 84 d at 1 °C plus 5 d at 25 °C differing significantly (P  0.05) from the control fruit as well as from those in the 38-μm microperforated PO, which were stored for 21 and 28 d, respectively. Off-flavors were not detected by sensory analysis. These results suggest that the 58-μm PO and 50-μm LDPE films are suitable for atmosphere modification and packaging of ‘Fuyu’ persimmon fruit stored under refrigeration with an additional period of time at ambient temperature.  相似文献   

20.
We studied the interaction between Eucalyptus saligna woodlots and maize crop in southern Rwanda. Three sites were selected and in each, a eucalypt woodlot with mature trees and a suitable adjoining crop field of 12.75 m × 30 m was selected. This was split into two plots of 6 m × 12 m and further subdivided into nine sub-plots running parallel to the tree-crop interface. Maize was grown in both 6 m × 12 m plots and one of these received fertiliser. Soil moisture, nutrients and solar radiation were significantly reduced near the woodlots, diminishing grain yield by 80% in the 10.5 m crop-field strip next to the woodlot. This reduction however affects only 10.5% of the maize crop field, leaving 89.5% unaffected. Spreading the loss to a hectare crop field, leads to an actual yield loss of 0.21 t ha−1, equivalent to 8.4%. Expressing yield loss in tree-crop systems usually presented as a percentage of yield recorded near the trees to that obtained in open areas may be misleading. Actual yields should be reported with corresponding crop field areas affected. Variation in grain yield coincided with those for soil moisture, soil N and K; all increasing from the woodlot-maize interface up to 10.5 m and remaining similar to the values in open areas thereafter. Solar radiation continued to increase with distance up to 18 m from the woodlot-maize interface. Harvest index in unfertilised maize exceeded that in the fertilised treatment reflecting the crop’s strategy to allocate resources to grain production under unfavourable conditions. Fertilisation increased maize yield from 1.3–2.6 t ha−1 but the trend in the woodlot effects on maize remained unaltered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号