首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 843 毫秒
1.
为揭示库姆塔格沙漠东南部柽柳的水分传输过程,探究柽柳的耗水特性,本研究利用PS-TDP8树木茎流监测系统对柽柳的树干液流速率进行测定,分析土壤因子与液流速率在不同季节的差异。结果表明,夏季树干液流的启动时间最早,为7:20,峰值最大(6.93 cm·h-1),春季启动时间为7:40,峰值为6.46 cm·h-1,秋季启动时间最晚,为8:40,峰值最小(4.22 cm·h-1)。在日尺度上,春、夏、秋季柽柳树干液流速率与土壤含水量及土壤温度呈正相关,土壤温度分别单独能解释61.1%、65.6%、64.0%的树干液流变化,土壤含水量与土壤温度分别共同能解释73.4%、74.1%、76.9%的树干液流变化。在小时尺度上,春、夏、秋季树干液流与20、50 cm层土壤含水量及土壤温度呈显著负相关,50 cm层土壤温度是影响树干液流的主导因子。本研究建立了不同季节柽柳液流速率与土壤因子之间的回归方程,能够较好地解释不同季节树干液流速率变化,为柽柳树干液流速率预测与耗水量估算提供了很好的途径,明确了在不同季节通过土壤因子估算柽柳树干液流速率的可行性,可为制定水分管理措施提供参考。  相似文献   

2.
【目的】研究土壤因子对柽柳液流的影响及存在时间尺度差异,为不同时间尺度下更为准确的分析柽柳液流的变化规律。【方法】利用PS-TDP8树木液流监测系统及5TM土壤温度与湿度传感器对库姆塔格沙漠东南部柽柳液流速率及土壤因子(土壤含水量SWC及土壤温度Ts)持续 5个月同步观测。【结果】月尺度下,Ts20cm是液流速率变化的主要影响因子,单独能解释91.7%的液流速率变化;日尺度下,进入的土壤因子依次为Ts20cm、Ts200cm、SWC50cm、SWC150cm、SWC20cm,Ts20cm可以解释液流速率变化的72.1%,5个因子共同可以解释82.9%的液流速率变化,日尺度下对柽柳液流速率影响最大的也是20 cm层土壤温度;小时尺度下,对液流影响最大的是Ts20cm,Ts20cm可以解释液流速率变化的37.6%,6个因子共同可以解释55.9%的液流速率变化。随着时间尺度的扩大,与柽柳树干液流显著相关的土壤因子个数有减少的趋势,而对其解释程度则有增加的趋势。【结论】土壤因子模拟计算小时尺度柽柳液流速率需要的参数较多,预测月尺度液流速率需要的参数最少,可靠性最大,能够较好地解释柽柳液流速率变化,月尺度预测柽柳液流速率更加准确。  相似文献   

3.
为探究主要影响樟子松树干液流速率的环境因子在不同时间尺度(小时、日、月)上的变化,于2016年生长季(5~10月)采用热扩散式液流探针(FLGS-TDP)对辽西北樟子松人工林的树干液流速率以及林内多个环境因子进行同步连续监测。结果表明:樟子松的树干液流速率在小时尺度上均呈"几"字型变化趋势;在日变化尺度上树干液流速率呈现不规则的波动且波动程度差异明显,8月份和7月份波动范围较大,分别为94.14~1492.00g·h~(-1)和117.47~1151.278g·h~(-1),5月份波动范围较小,为305.09~926.26g·h~(-1);树干液流日累积量以6,7,8月份最大,10月份最小;在月尺度上的变化特征为整体先上升后下降,月平均树干液流速率为8月7月6月5月9月10月,且树干液流月平均速率在6月份开始增大,8月份最高,为870.97g·h~(-1),9月份开始降低,10月份最小,仅为216.44g·h~(-1)。随着时间尺度的变化,光合有效辐射平均值、空气温度、饱和水汽压差、土壤温度与树干液流速率的相关性系数总体上越来越大,相关性系数随时间尺度的扩大而变得越来越显著。空气相对湿度和土壤含水量与树干液流速率的相关性系数随时间尺度的扩大而由明显负相关变为不显著。多元回归分析表明,影响液流速率的主要环境因素具有时间尺度的差异,饱和水汽压差和光合有效辐射平均值是影响液流速率变化的最重要因素。环境因子与树干液流速率的变化具有直接的关系,树干液流速率对环境因子的响应在不同时间尺度上有所不同,说明树干液流速率具有即时性,与各环境因子的相关性程度上有所不同。  相似文献   

4.
油松树干边材液流空间变化规律   总被引:2,自引:0,他引:2  
利用热扩散探针配合自动气象站,于2005年在北京林业大学妙峰山试验林场对油松树干边材液流指标空间变化规律进行了研究。结果表明:油松树干不同高度边材液流速率随树干高度的升高而增加,而且,高层液流峰值的出现时间比低层早,高层液流曲线窄、斜率大,低层液流曲线变化平缓、斜率小。树干不同高度的平均液流速率峰值为:6.6m处为0.0013cm·s-1,4.6m处为0.0010cm·s-1,2.6m处为0.0006cm·s-1,0.6m处为0.0003cm·s-1。在树木生长正常的情况下,无论是液流速率还是连日耗水量,不同直径的单株树干液流都随直径的增加而增加(树干直径和边材面积与日平均液流速率和平均耗水量相关分析表明,除油松直径与液流速率的相关系数为0.867之外,其它相关性都在0.9以上,差异性极其显著),但其变化并不是线性的,在一定范围内,相差一个径阶,液流速率并无明显的变化。土壤的含水量极大地限制着树木的耗水能力,日平均液流通量与土壤含水量呈现良好的指数关系:y=0.597e25.154x(决定系数R2=0.8999),其中,20~40cm土层的这种关系更为密切。不同气象因子对树干的液流影响方式不同:太阳辐射、大气温度、风速与液流指标呈正相关,并且属于第一主分量,对液流的影响较为直接;空气相对湿度和土壤温度与液流指标呈负相关,属于第二主分量,对液流的影响较为缓慢。多元线性回归分析表明:各气象因子和液流相关性都比较高,通过气象因子可以预测树干液流。  相似文献   

5.
绦柳树干液流变化及其影响因子研究   总被引:2,自引:1,他引:1  
该文于2006年4—11月利用Granier热扩散探针观测了绦柳的树干液流速率在生长季节的动态变化,并利用全自动气象站同步监测了环境因子。观测结果显示,在土壤水分充足的8月份,绦柳树干平均液流速率为0.004 1 cm/s,液流峰值为0.014 6 cm/s;而在相对干旱的5月份平均液流速率为0.000 503 cm/s,液流峰值为0.003 47 cm/s;土壤水分充足时期液流速率明显高于相对干旱期。在整个生长季节,绦柳液流速率日变化均为明显的单峰曲线,5—11月份各月的峰值分别为0.002 8、0.002 4、0.004 8、0.008 6、0.006 1、0.005 8、0.004 2 cm/s,启动时间和达到峰值时间具有明显的规律性;以太阳辐射强度、气温、空气湿度、风速、不同层次土温等环境因子作为自变量,以边材液流速率作为因变量,经过逐步回归,建立了绦柳液流速率与环境因子的多元线性模型,回归方程极显著,其主要影响因子为空气温度、空气相对湿度和太阳辐射强度。   相似文献   

6.
利用热扩散式液流探针(TDP)对天目山柳杉树干液流进行连续观测,并对多个环境因子进行同步测定.结果表明:柳杉树干液流晴天、阴天日变化呈单峰曲线,雨天则变化不明显.春季晴天树干液流在6:00启动,13:00达到峰值,启动时间比秋季早1h,春季液流维持时间长于秋季.春、秋季阴天液流变化与晴天相似,但启动时间、达到峰值及开始下降时间的变化节律明显不同.液流速率与光合有效辐射、空气温度、空气湿度、叶面湿度呈显著性相关关系,但与二氧化碳浓度的关联性较低,而且不同季节液流速率与叶面湿度的关联属性相异.利用多元统计方法建立了不同季节树干液流与环境因子的回归方程,春季:Vs=-23.785+0.032PAR+9.944Ta-1.022Rh+1.263Lh,秋季:Vs=29.635+0.069PAR+4.641Ta-0.756Rh-1.072Lh.  相似文献   

7.
采用热扩散树干液流仪监测树干液流,自动气象站同步监测环境因子,研究尾巨桉不同季节液流密度日变化、液流密度日均值和月均值的季节变化及其主导环境影响因子。结果表明,尾巨桉单木液流密度日变化呈现昼高夜低的典型单峰变化规律;不同季节液流密度日变化差异较大,主要表现在液流密度启动并迅速增加时刻、液流密度峰值及到达时刻、白天液流持续时间和液流密度降低并保持微弱时刻;液流密度的季节动态总体表现为春季和夏季最大,秋季其次,冬季最小。光合有效辐射和水汽压亏缺是影响尾巨桉液流密度的主导因子,但研究地区土壤含水率不是限制液流密度的主要因子。以光合有效辐射和水汽压亏缺为自变量拟合的线性回归方程可用于估算尾巨桉液流密度瞬时值,为估算液流通量奠定基础。  相似文献   

8.
园林植被的蒸腾作用对城市生态系统的水量平衡至关重要,并且能够调节小气候环境。本研究通过热扩散探针法(TDP),对校园绿地中29 a和24 a的银杏树干液流速率进行动态监测,量化不同时间尺度城市园林绿地中银杏的蒸腾变化规律,并分析其与环境因子的关系。结果表明,同一时期,29 a银杏的树干液流速率和液流通量均大于24 a银杏,且在生长季旺盛期差异显著(P<0.05)。29 a和24 a银杏蒸腾耗水季节性变动趋势相同,均为夏季>春季>秋季>冬季。除自身生理调节以外,银杏树干液流速率变化受多种因子影响,土壤因子中,树干液流速率对表层土壤温度的变化最为敏感;气象因子中,对太阳辐射的变化最为敏感。不同季节影响银杏树干液流速率的主要环境因子不同,从不同季节出发建立回归模型,能够更好地解释对环境因子的响应。树龄与环境因子的改变,都会影响城市园林植被的蒸腾耗水量,是园林绿化配置与管理应考虑的重要因素。  相似文献   

9.
油松边材液流时空变化及其影响因子研究   总被引:48,自引:8,他引:48  
2000~2001年,利用热扩散式边材液流探针及微型自动气象站对北京林业大学西山实习林场低山阴坡45年生人工油松林单木边材液流速率进行了连续观测.持续的春季干旱导致油松边材液流速率时空变化特征发生很大变化.油松边材液流速率日变化呈现"早晨启动并迅速上升-中午前后出现峰值-峰值后缓慢下降-夜间进入低谷"典型的液流波形特征.树干上位液流波峰值明显大于下位,且峰值和低谷出现时间较早,但二者周期相同.随着时间推移和春季干旱胁迫的加剧,边材液流启动和峰值出现时间提前至17:50和6:00, 峰值进一步减小.灌水后树干液流启动时间和峰值出现时间明显提前,树干边材液流速率显著提高,连续两日树干上位液流峰平均值较灌水前提高40.1%,树干下位液流速率提高95.1%.油松边材液流速率与林内太阳辐射、空气温湿度、土壤温度、风速等环境因子密切相关,其多元线性回归模型达到极显著水平.  相似文献   

10.
依据组织热平衡原理,运用热扩散探针法,于2016年3月1日—2017年3月1日采用捷克生产的Ems 51树干液流测定系统对张家口市崇礼区清水河流域油松(Pinustabulaeformis)、落叶松(Larixprincipis-rupprechtii)混交林中2个树种的树干液流速率进行连续监测,用美国HOBO公司生产的小型自动气象站同步观测环境因子(温度(T_a)、湿度(H)、净辐射(R_n)、总辐射(R_t)、风速(S)、土壤温度(T_s)、土壤含水量(C_s)、水气压亏缺(P_d))的变化,研究油松、落叶松树干液流速率的昼夜变化特征以及与环境因子的关系。结果表明:油松晴天、阴天、雨天树干液流速率日均值分别为0.019、0.008、0.006 kg·h~(-1)·cm~(-1),落叶松分别为0.016、0.006、0.005 kg·h~(-1)·cm~(-1),由大到小的顺序均表现为晴天、阴天、雨天。两树种夜间水分补充主要集中在前半夜(20:00—23:00);生长季初期(4月份)和末期(10月份)后半夜液流速率明显要高于旺盛生长期(7月份),4、10月份后半夜液流速率,油松分别是7月份的3.41和2.38倍,落叶松分别是7月份的1.86和1.61倍。油松、落叶松整树生长季昼间液流速率均值分别为1.12、0.98 kg·h~(-1),夜间液流速率均值分别为0.11、0.09 kg·h~(-1)。旺盛生长期(6—9月份)液流量夜间贡献率小于10%,昼间贡献率大于90%;而在生长初期(4—5月份)和末期(10月份)夜间贡献率有所增加,达到10%以上。两树种昼间液流速率的主要影响因子是T_a和H,夜间液流速率的主要影响因子是T_s。  相似文献   

11.
为揭示土壤因子对胡杨液流的影响是否存在时间尺度差异,对库姆塔格沙漠东南部胡杨液流速率及20、50、100、150和200 cm土层的土壤含水量(soil water content,SWC)、土壤温度(soil temperature,Ts)进行持续 5个月的同步观测。结果表明,月尺度下,SWC200cm是胡杨液流速率变化的主要影响因子,单独能解释94.9%的液流速率变化;日尺度下,Ts200cm、SWC50cm、SWC20cm、SWC200cm4个因子可以共同解释胡杨93.2%的液流速率变化,其中,Ts200cm可以解释液流速率变化的90.3%,对胡杨液流速率影响最大;小时尺度下,Ts200cm对胡杨液流的影响最大,可以解释液流速率变化的51.6%。随着时间尺度的扩大,对液流速率变化的影响因子由多变少,可靠性由小变大。由此表明,根据土壤含水量及土壤温度预测小时尺度胡杨液流速率需要较多的参数,且可靠性较小;而预测月尺度液流速率需要较少的参数,且可靠性较大。因此,预测月尺度胡杨液流速率更为合适。  相似文献   

12.
辽西农林复合系统中杨树水分耗散规律   总被引:3,自引:0,他引:3  
以辽西杨树-烟草复合系统为研究对象,采用Granier热扩散探针法,对杨树-烟草复合系统的杨树树干液流进行连续观测,并对环境因子(空气温度、空气湿度、净辐射、风速、土壤温度和土壤湿度)进行同步观测。结果表明:杨树液流速率具有明显的早晚低、中午高的单峰型日变化特征,并具有从6月到9月逐渐降低的季节性变化规律,6月液流速率月平均的日变化峰值为5.77×10-3cm/s,9月下降至2.34×10-3cm/s。相关分析表明:净辐射、空气温度、空气湿度是杨树液流速率的主要影响因子,风速和土壤温度次之,土壤湿度影响最小,并建立了依据环境因子估算液流速率的逐步回归模型。树干液流与环境因子之间的数量关系能很好地预测杨树的蒸腾耗水量。  相似文献   

13.
为了揭示乌兰布和沙漠人工梭梭水分利用规律,探究人工梭梭的生态适应能力,利用PS TDP8树木茎流监测系统和自动气象站对乌兰布和沙漠1979年人工种植梭梭的液流变化及其周围的环境因子进行观测,采用逐步回归及相关分析法对茎干液流变化规律及其与太阳总辐射、空气温度、相对湿度、风速、土壤温度、土壤含水量的相关关系进行研究。结果表明:梭梭晴天茎干液流日变化呈“单峰型”,雨天茎干液流日变化呈“双峰型”;夏季晴天梭梭茎干液流在7:00左右启动,9:30左右出现峰值,液流在10:20以后开始迅速下降,至21:30基本下降到极低值,夜间仍有液流。直径125和895 cm的梭梭液流日累积量分别为1423 和260 L。晴天,茎干液流速率变化幅度较大,白天的液流速率高于夜间。雨天的液流峰值显著低于晴天,且夜间液流小于晴天。相关性分析表明,晴天,影响梭梭液流速率的环境因子依次为太阳总辐射、土壤含水量、空气温度、空气相对湿度、土壤温度、风速;雨天,影响梭梭液流速率的主要环境因子依次为太阳总辐射、空气温度、空气相对湿度、土壤温度、风速、土壤含水量。研究结果可为人工梭梭林的经营管理提供理论支撑,对沙漠地区人工梭梭的管理和保护有重要的理论和实际意义。  相似文献   

14.
运用Granier热扩散法对杉木Cunninghamia lanceolata树干液流速率进行测定,并结合自动气象站同步连续监测太阳辐射、空气温度、空气相对湿度等气象因子,为杉木人工林的可持续经营和林地水资源的有效管理提供理论依据。结果表明:1晴天液流为典型的单峰曲线,呈明显的季节变化规律,表现为开始启动、到达峰值和保持较大速率的时间不同。雨天液流速率明显低于同时期晴天液流水平,且液流变化节律因降雨时段不同存在差异。2不同月份杉木平均液流速率大小关系依次为:7月(0.001 012 cm·s-1)6月(0.000 999 cm·s-1)8月(0.000 941 cm·s-1)9月(0.000 930 cm·s-1)5月(0.000 731 cm·s-1)4月(0.000 628 cm·s-1)10月(0.000 494 cm·s-1)。3生长季液流速率对平均净辐射的响应存在逆时针方向1 h的时滞,对空气温度、空气相对湿度、水汽压亏缺的响应存在顺时针方向2 h的时滞。液流速率与平均净辐射、空气温度、水汽压亏缺呈显著正相关(P0.05),与空气相对湿度呈显著负相关(P0.05),气象因子对液流速率的影响程度存在季节差异。在考虑时滞效应的情况下,建立各月液流速率与气象因子的多元线性回归方程,经F值检验,均达到极显著水平(P0.01),决定系数R2为0.95左右。  相似文献   

15.
天目山柳杉树干液流动态及其与环境因子的关系   总被引:3,自引:0,他引:3  
以浙江临安天目山森林生态定位观测站160年生柳杉古树为研究对象,于2007年12月—2008年11月,采用热扩散技术对柳杉树干液流进行连续监测,同步测定相关环境因子,研究了树干液流速率的日变化、季节变化及其与各环境因子的关系。结果表明:晴天和阴天,柳杉树干液流速率日变化均呈现为单峰曲线,最大值一般出现在13:30—15:00,而雨天则无明显的日变化规律;冬、春、夏、秋季柳杉日液流量分别为(44.92±3.76)kg/d、(62.86±3.86)kg/d、(56.59±3.85)kg/d、(53.47±3.55)kg/d;在不同月份,柳杉月液流量存在差异,1月份最小为1 064.30 kg,5月份最大为2 122.62 kg,全年柳杉树干液流总量为19 853.19 kg。回归分析表明,树干液流与环境因子的关系随不同的研究尺度而不同,影响瞬时液流速率的环境因子主要是空气温度和10 cm深处的土壤温度,影响日液流量的环境因子主要是光合有效辐射,影响月液流量的环境因子主要为空气温度和光合有效辐射。  相似文献   

16.
元宝枫树干液流的时空变异性研究   总被引:6,自引:0,他引:6  
该研究应用热扩散式边材茎流计,对北京植物园绿地中元宝枫树干液流的时空变异特征进行了观测.研究结果显示:树干液流的日变化和季节差异与太阳辐射日变化和季节差异具有较好的一致性,夏季太阳升起比春秋早,落日比春秋晚,相应地树干液流启动夏季比春秋季早,进入低谷比春秋季晚;元宝枫为春季耗水性树种,树干平均液流速率春季0·00188cm/s、夏季0·00112cm/s、秋季0·00086cm/s;元宝枫树干液流存在明显的方位差异,同一样木,液流最大方位的流速可达平均值的122·1%,最小为平均值的86·3%,在同一株样木上,液流的方位差异较为稳定,不同样木液流最大和最小的方位不同,树干液流的方位差异与冠幅大小无关;在垂直高度上,春夏两季上部液流的波动节律明显早于下部和中部,液流速率上部最大,中部次之,下部最小.  相似文献   

17.
基于热扩散原理,利用TDP茎流计连续测定6—9月西伯利亚落叶松的树液流动速率,分析其季节变化和日变化特征。结果表明:(1)西伯利亚落叶松树干液流的最大速率出现在7月,且其南向树干液流值为是其北向液流值的1.08倍;但二者的变化趋势相同,但变化速率和变化幅度有差异。(2)树干液流的日变化呈"昼高夜低"的多峰型变化规律,12:00—17:00时段的液流处于高水平状态,5:00—8:00夜间液流的为0,夜间补水完成。(3)南向树干液流启动时间较北向的早0.5h,日最大液流速率是北向树干的1.16倍。(4)树干液流速率与气温和太阳辐射呈极显著正相关(P0.01),与相对湿度和土壤温度呈极显著负相关(P0.01),与风速呈显著正相关(P0.05),各因子的影响力排序为:气温空气相对湿度光合有效辐射土壤温度(10~20cm)土壤温度(0~10cm)风速。  相似文献   

18.
  目的  研究刺槐Robinia pseudoacacia生长季树干液流昼夜变化规律,探究气象因子对刺槐蒸腾的影响,为估算林木耗水和林分水资源管理提供理论依据。  方法  在山西省吉县蔡家川流域刺槐样地选择8株样树,于2021年5—9月采用热扩散探针(TDP)对样树树干液流进行连续观测,并同步监测太阳辐射、气温、土壤温度、风速、相对湿度等气象因子,并采用随机森林与逐步线性回归法分析气象因子对树干液流的影响。  结果  ①生长季各月昼间树干液流速率从小到大依次为9月、5月、6月、8月、7月,昼间树干液流速率对整日树干液流速率的贡献率为88%~93%;夜间树干液流速率从小到大依为9月、5月、8月、7月、6月,夜间树干液流速率对整日液流速率的贡献率为7%~12%。②影响昼间树干液流速率的主导气象因子在各月基本一致,主要为太阳辐射和气温;影响夜间液流速率的主导气象因子在各月存在差异,5、6月主要为土壤温度、水汽压亏缺,7月主要为气温,8月主要为水汽压亏缺、相对湿度,9月主要为风速与水汽压亏缺。③采用随机森林回归法构建的各月昼夜树干液流速率模型拟合度优于逐步回归法。  结论  昼夜树干液流速率在各月存在明显差异,夜间树干液流对刺槐耗水的影响不可忽视,气象因子对昼夜树干液流速率的影响程度不同,在根据气象因子模拟树木蒸腾耗水时应该区分昼间和夜间。图3表6参24  相似文献   

19.
应用热扩散式边材液流计,研究了天目山柳杉Cryptomeria fortunei树干液流速率时空变化、蒸腾耗水量及其与环境因子的关系,揭示了柳杉水分生理的内在机制。结果表明:柳杉树干液流速率的日变化呈单峰曲线.春季于6:20左右启动,12:30左右达到峰值,18:50左右开始迅速下降。夏季于7:00左右启动,13:20左右达到峰值.19:40左右开始迅速下降。春季液流启动比夏季早,达到高峰和迅速下降时间均比夏季提前。春季液流峰值、日均液流速率和液流量均显著大于夏季,且胸径越大的柳杉液流速率越大:在柳杉不同方位上.春季柳杉南向液流速率最大,为平均值的187.3%,西向最小仅为平均值的15.4%。夏季东向液流速率最大,为平均值的226.2%.北向最小为平均值的33.1%。同一季节不同测点的液流速率目变化有明显差异.但具有较好的一致性.不同季节液流变化节律表现不同;在柳杉垂直高度上,柳杉春季日均液流速率大小排序为中位(61.71g.min-1)〉上位(48.36g.min-1)〉下位(35.10g·min-1),夏季则为上位(20.65g·min-1)〉下位(14.81g·min-1)〉中位(10.43g·min-1),不同高度的树干液流速率差异明显,且上位液流的波动节律明显早于中位和下位.上位液流峰值出现的时间比下位要早。图5表3参30  相似文献   

20.
不同施氮水平下旱作玉米田土壤呼吸速率与土壤水热关系   总被引:6,自引:0,他引:6  
为探讨不同施氮量对旱作玉米田土壤呼吸速率的影响,设置0(CK)、80、160、240、320kg·hm-25个氮肥水平,分析不同施氮水平下土壤呼吸速率动态变化及其与土壤温度和土壤含水量间的关系。结果表明:夏玉米生长季土壤呼吸速率呈单峰变化曲线,于播种后52d左右达到最大值,成熟收获时降至最低;土壤呼吸总量(Sr)与施氮量(n)满足关系式Sr=1204.09(/1+e-1.69-0.02n)。土壤温度和土壤水分是影响土壤呼吸速率的主要因素,5cm土壤温度与土壤呼吸速率呈显著正相关,土壤呼吸速率随土壤温度升高呈指数增加,土壤温度可以解释旱作农田土壤呼吸速率季节变化的62.31%~78.66%;土壤水分和温度相互协调共同调控土壤呼吸,两者可以解释旱作玉米田土壤呼吸季节变化的79.63%~85.87%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号