首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The possibility of producing transgenic buffalo embryos by chimera and nuclear transfer (NT) using buffalo embryonic germ (EG)‐like cells expressing enhanced green fluorescent protein (EGFP) has been explored in this study. Buffalo EG‐like cells and fibroblasts with two to eight passages were transfected with the lined plasmid (pCE‐EGFP‐IRES‐Neo‐dNdB) using LipofectamineTM 2000 and selected by culturing in 200 μg/ml G418 for 6–8 days. G418 resistant fibroblasts and EG‐like cells were used for embryo chimera and NT. To produce blastocysts by chimera, 8–16 cells embryos were injected with EG‐like and fibroblast cells. Then, to produce blastocysts by NT, in vitro maturated oocytes were enucleated and afterwards EG‐like/fibroblast cells transferred into the perivitelline space. No statistical differences were observed for the total blastocyst produced by the chimeric method, using EG‐like and fibroblasts as donor cells, resulting on an accomplishment of 35.6% vs 33.3%, respectively. Nevertheless, besides from the 37 blastocysts produced, 23 (62.2%) from EG‐like cells expressed EGFP, none of blastocysts from foetal fibroblasts expressed this protein. When the NT method was used, no statistical difference among different generations was observed in the percentage of oocytes fused, cleaved, and developed to blastocysts after NT for EG‐like cells. On average, the percentage of oocytes fused, cleaved, and developed to blastocysts after NT was respectively 81.8%, 67.7% and 10.7%. For the expression of EGFP, from the 12 blastocysts produced by NT, 7 of them were positive, while none of NT embryos from EGFP positive fibroblasts developed to blastocysts. Results of the present study clearly demonstrated that gene transfected buffalo EG‐like cells have the ability to form chimeric embryos after injecting into buffalo early embryos and reprogramming ability after NT, which can be employed to produce transgenic buffalos through either embryo chimera or NT.  相似文献   

2.
To improve the efficiency of transgenesis, we investigated the effects of a radical scavenger during microinjection on the development to blastocysts or pups of mouse pronuclear embryos, microinjected with the enhanced green fluorescent protein (EGFP) transgene. When embryos were microinjected in medium containing 0-1,000 units/ml catalase, the developmental rate to blastocysts was significantly higher (P<0.01) in 100-units/ml catalase (81%) than those in 0 and 1,000 units/ml (56 and 65%). To investigate the ontogenetic ability of DNA-injected embryos, EGFP-injected embryos manipulated under 0 or 100 units/ml catalase were transferred separately to recipient mice. The proportion of fetuses derived from EGFP-injected embryos manipulated under 100 units/ml catalase (29%) was significantly higher (P<0.05) than that manipulated under 0 units/ml catalase (19%). Furthermore, the numbers of transgenic pups were 17 in 100 units/ml catalase and 14 in 0 units/ml catalase. The results of the present study indicate that scavenging reactive oxygen species during in vitro micromanipulation is beneficial for the development of DNA-injected embryos.  相似文献   

3.
This study was conducted to examine the potential for implantation and sustainable fetal development of mouse embryos cultured from the pronuclear to blastocyst stage. Pronuclear embryos from ICR mice (Harlan Sprague‐Dawley) were cultured in Sydney IVF sequential media (Cook) to the blastocyst stage in medium only or co‐cultured with autologous cumulus cells. We also experimented with co‐culture in 100 µL drops. Drop co‐culture produced blastocyst formation rates with a mean of 47.0%, which was significantly higher (P < 0.05) compared to embryos cultured in identical culture conditions except without cumulus cells at 27.3%. Blastocysts obtained in vitro in Cook medium only and co‐cultured in Cook medium with cumulus cells were transferred to pseudopregnant females of ICR strain. The day of blastocyst transfer into surrogate females was designated as post‐transfer of blastocyst day 1 (PT 1). The implantation and fetal development was compared to embryo transfer of in vivo derived blastocysts, which served as controls. There were no statistical differences for implantation and fetal development rates for blastocysts cultured in vitro in either Cook medium only or co‐culture in Cook medium with cumulus cells compared to in vivo‐derived blastocysts. The advantage of the co‐culture system is in generating more blastocysts available for transfer.  相似文献   

4.
The effects of bisphenol A (BPA) on placentation have not been fully determined. The aim of this study was to clarify the structural changes of the placenta, abortion rate, and survival of neonates after BPA administration in mice. BPA (10 mg/kg/day) was administered to pregnant mice (BPA mice) subcutaneously from the first day of pregnancy (Day 0) to Day 7 (8 days total). The number of embryos and weights of whole uteri were measured on Days 10 and 12. Morphological changes in the placentae were examined by light microscopy on the corresponding days of pregnancy. The number of neonates was also counted. Survival rates were periodically calculated for neonates from the first day after parturition (P-Day 0) to P-Day 56. The number of embryos and weight of the uterus on Days 10 and 12 were significantly decreased by BPA injection. No notable differences were recognized between the left and right uteri. The proportion of the labyrinthine zone per whole placenta in the BPA mice became lower than that in the controls, and that of the metrial gland was higher in the BPA mice. The intervillous spaces of the placenta were narrower in the BPA mice. Degenerative changes were found in the trophoblastic giant cells and spongiotrophoblast layers of the BPA mice. The number of BPA mouse neonates was drastically decreased within 3 days after birth, and no mice survived after P-Day 56. The results suggest that BPA not only disrupts placental functions and leads to abortion through chronic stimulation of gene expression by binding to DNA but that it also affects the mortality of neonates through indirect exposure of embryos.  相似文献   

5.
Most studies of mouse cloning successfully achieved activation of the reconstructed oocytes by strontium (Sr) combined with cytochalasin B (CB) treatment. A protein kinase inhibitor, 6‐dimethylaminopurine (6‐DMAP), was used to inhibit the activity of maturation promoting factor for activation of oocytes, but it has never been successfully applied in mouse cloning. This study investigates the activation efficiency of 6‐DMAP in mouse somatic cell nuclear transfer (SCNT). Higher parthenogenetic blastocyst rates (71–72%, p < 0.05) were achieved in the oocytes treated with Sr6D (10 mM Sr combined with 2 mM 6‐DMAP for 4 h) and Sr6D + SrCB (Sr6D for 2 h then Sr combined with 5 μg/ml CB for another 2 h), and a higher rate of hatching and hatched blastocyst was observed in the Sr6D + SrCB group (31%, p < 0.01) compared with other treatment groups (1–8%). For mouse cloning, cumulus cells of enhanced green fluorescent protein (EGFP)‐expressed ESC chimera F1 were used as donor nuclei. Following activation, better development of the cloned embryos was observed in Sr6D + SrCB treatment. Moreover, different media, i.e. KSOM‐AA, MEM‐α and MK, for culturing cloned embryos were also compared in this study. Better morula/blastocyst (40%) and blastocyst (29%) rates were achieved in the embryos cultured in MEM‐α medium (p < 0.05). Consequently, four EGFP cloned mice were generated in the activation treatment containing 6‐DMAP following embryo transfer. In conclusion, treatment with 6‐DMAP in combination with other activation stimuli successfully activates mouse reconstructed oocytes and support full‐term development of the transgenic SCNT cloned embryos.  相似文献   

6.
Viability of maternally heat-stressed mouse zygotes in vivo and in vitro   总被引:3,自引:0,他引:3  
Mammalian preimplantation embryos are susceptible to heat stress. This present study examined how maternal heat stress affects the development of mouse zygotes in vivo and in vitro. In Experiment 1, zygotes collected from female mice that were heat‐stressed for 12 h on day 1 of pregnancy were cultured in vitro. Maternally heat‐stressed zygotes developed normally to the two‐cell stage, but the majority of embryos failed to develop into morulae or blastocysts. In Experiment 2, pregnant mice were heat‐stressed on day 1 or from day 1 to day 3 of pregnancy. The number of living fetuses on day 14 of pregnancy was lower in heat‐stressed mice than in non‐stressed mice, but the difference was significant only in successively heat‐stressed mice. These results demonstrate that maternally heat‐stressed zygotes have reduced in vitro viability, but this phenomenon does not necessarily lead to embryo loss in the maternal environment.  相似文献   

7.
The objective of this study was to examine whether high concentrations of epidermal growth factor (EGF) and/or insulin-like growth factor I (IGF-I) would have a beneficial effect on bovine embryo development in vitro and to obtain normal calves by using an ovum pick up method and embryo culture in a chemically defined medium. When compared with controls, EGF (100 or 200 ng/ml) or IGF-I (50 or 100 ng/ml) significantly increased the rate of embryos that developed into blastocysts during an 8-day culture after the in vitro fertilization of oocytes obtained from ovaries from a slaughterhouse. IGF-I induced a dose-dependent increase in cell number in both the inner cell mass and the trophectoderm, whereas EGF stimulated proliferation only in the inner cell mass. A combination of EGF (100 ng/ml) and IGF-I (50 ng/ml) produced an additive effect, and embryos developed into blastocysts at a comparatively high rate (27.9%) compared with controls (12.0%). A similar rate of development was achieved using a combination of EGF and IGF-I in the culture of embryos following ovum pick up by ultrasound-guided transvaginal follicular aspiration and in vitro fertilization, and 5 blastocysts that developed after the culture were transferred into uteri; two embryos implanted, and normal calves were born. These results suggest that the combined use of EGF and IGF-I makes bovine embryo culture in a chemically defined medium a practical and useful procedure for producing blastocysts, and its application to embryo culture following ovum pick up and in vitro fertilization could be useful for producing normal calves.  相似文献   

8.
The present study was conducted to establish an efficient production system for bovine transgenic somatic cell nuclear transfer (SCNT) embryos, the effect of various conditions of donor cells including cell type, size, and passage number on the developmental competence of transgenic SCNT embryos were examined with their expression rates of a marker gene. An expression plasmid for human prourokinase was constructed by inserting a bovine beta-casein promoter, a green fluorescent protein (GFP) marker gene, and a human prourokinase target gene into a pcDNA3 plasmid. Three types of bovine somatic cells including two adult cells (cumulus cells and ear fibroblasts) and fetal fibroblasts were prepared and transfected with the expression plasmid using a liposomal transfection reagent, Fugene6, as a carrier. In Experiment 1, three types of bovine cells were transfected at passages 2 to 4, and then trypsinized and GFP-expressing cells were randomly selected and used for SCNT. Developmental competence and rates of GFP expression in bovine transgenic SCNT embryos reconstructed with cumulus cells were significantly higher than those from fetal and ear fibroblasts. In all cell types used, GFP expression rates of SCNT embryos gradually decreased with the progression of embryo development. In Experiment 2, the effect of passage number of cumulus cells in early (2 to 4) and late (8 to 12) passages was investigated. No significant differences in the development of transgenic SCNT embryos were observed, but significantly higher GFP expression was shown in blastocysts reconstructed with cumulus cells at early passage. In Experiment 3, different sizes of GFP-expressing transfected cumulus cells [large (>30 microm) or small cell (<30 microm)] at passages 2 to 4 were used for SCNT. A significant improvement in embryo development and GFP expression was observed when small cumulus cells were used for SCNT. Taken together, these results demonstrate that (1) adult somatic cells as well as fetal cells could serve as donor cells in transgenic SCNT embryo production and cumulus cells with small size at early passage were the optimal cell type, and (2) transgenic SCNT embryos derived from adult somatic cells have embryonic development potential.  相似文献   

9.
This study was designed to examine the effects of age and developmental stage of in vitro‐produced bovine embryos on the cell number of the embryos and to investigate the correlation between the cell number and diameter in the embryos. The diameter and cell number in blastocysts and expanded blastocysts collected on days 7–9 after in vitro fertilization (IVF) were examined. Although the diameters of the blastocysts collected on days 7 and 8 after IVF were smaller than those of the expanded blastocysts collected on day 9, the cell number in both types of embryos was similar. The cell numbers of the blastocysts and expanded blastocysts decreased with increasing embryo age. There were positive correlations between the cell number and diameter in bovine embryos at each stage collected on each day after IVF. However, the value of the correlation coefficient in the day‐9 expanded blastocyst group tended to be higher than that in the other groups. These results indicate that the cell number of in vitro‐produced embryos is affected by the embryonic stage and age. The diameter of the embryo may be potentially used for the viability testing of the expanded blastocysts collected on day 9 after IVF.  相似文献   

10.
The detection of specific cellular components using fluorescent agents such as green fluorescent protein (GFP), red fluorescent protein or Hoechst dyes provides a powerful tool for studying cell biology. However, specimens must be exposed to high-intensity light, which might cause cellular damage. Here, we exposed mouse metaphase stage (M) II oocytes to fluorescent mercury vapor light at three wavelengths (539 nm, 488 nm and 341 nm) to determine the maximum exposure time that would avoid damage. When oocytes were activated parthenogenetically after exposure to these wavelengths for more than 20 min, 5 min or 4 sec, respectively, the percentages of dead oocytes after activation increased, and none of the surviving embryos developed to blastocysts. However, embryos fertilized by intracytoplasmic sperm injection (ICSI) were more tolerant to light damage, even though the quality of blastocysts, judged by cell number and cell allocation to the inner cell mass and trophectoderm measured by immunostaining for Oct4 and Cdx2, was reduced as exposure times increased. Live, healthy offspring were obtained when these exposed embryos were transferred into recipient pseudopregnant females at the 2-cell stage. In addition, MII oocytes collected from GFP-expressing transgenic mice after 5 min of irradiation with 488-nm light were also able to develop to full term following ICSI. Thus, we determined the safe period of exposure to several wavelengths for oocyte manipulation or observation that would permit subsequent development.  相似文献   

11.
Histone deacetylase inhibitors (HDACis) can change the histone acetylation and significantly enhance the developmental competence of the pre‐implantation SCNT embryo. To select a proper histone deacetylase inhibitor to improve the success rate and potentially developmental ability of handmade cloning (HMC) embryos of miniature porcine, we compared the effect of two histone deacetylase inhibitors (SAHA vs. VPA) on HMC embryo development, their histone acetylation level and the expression level of relevant genes. The blastocyst rate and number of blastocyst cells of HMC embryos treated with SAHA (SAHA‐HMC) or VPA (VPA‐HMC) were significantly higher than those of control (Control‐HMC), respectively, but there were no significant difference between SAHA‐HMC and VPA‐HMC groups. In addition, the acetylation level (AcH4K8) of Control‐HMC and VPA‐HMC embryos at the blastocyst stage, respectively, was significantly lower than that of in vitro fertilized (IVF) and SAHA‐HMC embryos. However, the acetylation H4K8 of the blastocysts had no significant difference between SAHA‐HMC and the IVF groups. The SAHA‐HMC blastocysts indicated comparative expression levels of Oct4 and HDAC1 (histone deacetyltransferase gene) with those of IVF blastocysts. In contrast, the expression levels of Oct4 were lower and those of HDAC1 were higher in the VPA‐HMC and Control‐HMC blastocysts, respectively, compared to those of the IVF blastocysts. Our results demonstrated that the HMC embryos treated by SAHA could promote the pre‐implantation development and increase the levels of histone H4K8 acetylation and the expression of the OCT4 gene, yet decrease the expression of the HDAC1 gene to the comparable level of the IVF embryos. Our results proved that SAHA may be a better histone deacetylase inhibitor for porcine HMC compared to VPA, and furthermore, it may indicate that SAHA can effectively correct the abnormal histone acetylation during the HMC embryo development and subsequently improve the full‐term developmental potential of the HMC embryos after embryo transplantation.  相似文献   

12.
本试验旨在优化小鼠超排后的合笼时间,高效获取小鼠孵化囊胚。试验选用150只ICR系8周龄雌性小鼠,随机分为5组,同一时间超排处理后雌、雄按1:1于18:00、19:00、20:00、21:00合笼过夜,次日上午08:00查栓,发现阴道栓这为妊娠第1天(D1)。取妊娠第5天(D5)小鼠处死,剪取双侧子宫角,冲取胚胎。统计每组冲取胚胎的总数及孵化囊胚/未孵化囊胚的比值,作为胚胎获取效率的评价指标;统计内细胞团数/滋养外胚层细胞团数,作为评价胚胎质量的参考指标。结果发现,在数量上组Ⅰ、组Ⅱ、组Ⅲ囊胚数差异不显著(P>0.05),但有增高趋势,组Ⅳ囊胚数显著高于其他3组(P<0.05)。组Ⅰ、组Ⅱ、组Ⅲ、组Ⅳ内细胞团数/滋养外胚层细胞团数分别为23.18%、23.55%、21.72%和23.28%,各组间差异不显著(P>0.05)。结果表明,组Ⅳ所对应的合笼时间获取小鼠孵化囊胚获取效率最高,胚胎囊胚质量无明显差异。  相似文献   

13.
This study was performed to investigate the effects, in terms of nuclear material and actin cytoskeleton quantities (fluorescent pixel counts), of four different bovine blastocyst culturing techniques (in vitro, stepwise in vitro‐to‐in vivo, or purely in vivo). Cumulus oocyte complexes from abattoir‐sourced ovaries were matured in vitro and allocated to four groups: IVP‐group embryos developed up to blastocyst stage in vitro. Gamete intra‐fallopian transfer (GIFT)‐group oocytes were co‐incubated with semen for 4 h before transfer to oviducts of heifers. Following in vitro fertilization, cleaved embryos (day 2 of embryo development, day 2–7 group) were transferred into oviducts on day 2. Multiple ovulation embryo transfer (MOET)‐group embryos were obtained by superovulating and inseminating heifers; the heifers’ genital tracts were flushed at day 7 of blastocyst development. Within each group, ten blastocysts were selected to be differentially dyed (for nuclei and actin cytoskeleton) with fluorescent stains. A novel computer program (ColorAnalyzer) provided differential pixel counts representing organelle quantities. Blastocysts developed only in vivo (MOET group) showed significantly more nuclear material than did blastocysts produced by any other technique. In terms of actin cytoskeleton quantity, blastocysts produced by IVP and by day 2–7 transfer did not differ significantly from each other. Gamete intra‐fallopian transfer‐ and MOET‐group embryos showed significantly larger quantities of actin cytoskeleton when compared with any other group and differed significantly from each other. The results of this study indicate that culturing under in vitro conditions, even with part time in vivo techniques, may adversely affect the quantity of blastocyst nuclear material and actin cytoskeleton. The software employed may be useful for culture environment evaluation/developmental competence assessment.  相似文献   

14.
The persent study was aimed to investigate the optimization of mice cage time after superovulation, and efficient acquisition of mouse hatched blastocysts.The experiment selected 150 ICR female mice aged 8 weeks, were randomly divided into 5 groups, the same time superovulation treatment according to 1:1, after the male and female in 18:00, 19:00, 20:00, 21:00 alloy cage overnight, the next day as early as 08:00 check, found that vaginal suppository for the first day of the pregnancy (D1).Take the pregnant the fifth day (D5) mice were sacrificed, their bilateral uterine horns, rushed from the embryonic.Statistics each thrust ratio and the total number of embryos hatched blastocysts/take not hatched blastocysts, was used as the index to evaluate embryos to obtain efficiency;Statistical trophectoderm cell number/inner cell mass number, as a reference index to evaluate the quality of embryo.The results found that groups of Ⅰ, Ⅱ and Ⅲ were no significant difference in the blastocyst number (P>0.05), but there was increasing trend, group Ⅳ was significantly higher than the other three groups (P<0.05).Groups Ⅰ, Ⅱ, Ⅲ and Ⅳ within the cell mass cells number/trophectoderm cell number were 23.18%, 23.55%, 21.72% and 23.28%, there was no significant difference in each group (P>0.05).The results showed that the corresponding set of Ⅳ cage got the time of mouse hatched blastocysts to obtain the highest efficiency, there was no significant differences in embryonic blastocyst quality.  相似文献   

15.
This study aimed to explore the expression patterns of autophagy regulators Atg5 and Beclin1 in the early embryonic development and the effects of different embryonic production methods on the expression of the two factors. Female mice aged 6-8 weeks were subjected to superovulation and divided into 2 groups. The mouse oocytes of one group were collected, and cultured in vitro after parthenogenetic activation. The other group of female mice were caged with male mice (1:1), and the next day, the mouse fertilized eggs were collected for in vitro culture. Parthenogenetic activated embryos and naturally fertilized embryos were collected at 2 cell stage, 4-8 cell stage, mulberry embryo stage and blastocyst stage, respectively. RNA and protein were extracted, real-time fluorescence quantitative PCR, Western blot and other methods were used to detect the expression of key autophagy factors Atg5 and Beclin1. And indirect immunofluorescence was used to detect the expression and location of Atg5 and Beclin1 in mouse blastocysts. The results showed that Atg5 and Beclin1 were expressed in all development stages of naturally fertilized and parthenogenetic activated embryos in mice, and showed a high level in the early stage of embryonic development. The expression of Atg5 and Beclin1 were gradually reduced from the 2 cell stage in mouse naturally fertilized embryos. The expression levels of Atg5 and Beclin1 in parthenogenetic activated embryos were the highest in the 4-8 cell stage, which was extremely significantly different from the naturally fertilized embryos of the same period (P<0.01). From the 4 cell stage, the expression levels of Atg5 and Beclin1 in parthenogenetic activated embryos were higher than naturally fertilized embryos at all subsequent stages, the difference was extremely significantly different (P<0.01). In mouse blastocysts, the fluorescence of Atg5 and Beclin1 protein could be detected in the trophoblast cells and the inner cell mass, but the fluorescence intensity in the inner cell mass was higher than that in the trophoblast cells. In addition, the fluorescence intensity of Beclin1 protein in the inner cell mass of parthenogenetic activated embryos was higher than that in naturally fertilized embryos. Atg5 and Beclin1, the key autophagy factors, are expressed at different levels in the early development of mouse embryos from different sources. It is suggested that the regulation of autophagy on early embryonic development is related to embryo production modes. The results will provide a theoretical basis for further exploring the role of autophagy in the physiological regulation of mammalian embryo development.  相似文献   

16.
旨在探究自噬调节因子Atg5和Beclin1在胚胎早期发育过程中的表达模式及胚胎的不同生产方式对两种因子表达的影响。本研究将6~8周龄雌性小鼠进行超数排卵,分为2组,一组收集小鼠卵母细胞,孤雌激活处理后进行体外培养;另一组超排小鼠与公鼠1:1合笼,第2天收集小鼠受精卵进行体外培养;分别在2细胞期、4~8细胞期、桑葚胚期和囊胚期收集不同阶段小鼠孤雌激活胚胎和自然受精胚胎。提取RNA和蛋白,通过实时荧光定量PCR、Western blot等方法检测自噬关键因子Atg5和Beclin1的表达,通过间接免疫荧光法检测Atg5和Beclin1在小鼠囊胚中的表达定位。结果显示,小鼠自然受精和孤雌激活胚胎在发育各时期均可表达Atg5和Beclin1,表达量在胚胎发育的早期呈现出较高的水平,其中二者的表达在小鼠自然受精胚胎中从2细胞期起逐渐降低,而在孤雌激活胚胎的4~8细胞阶段表达量最高,与同期自然受精胚胎差异极显著(P<0.01);从4细胞期开始,各时期孤雌激活胚胎中Atg5和Beclin1蛋白表达水平均高于自然受精胚胎,差异极显著(P<0.01);在囊胚中,滋养层细胞和内细胞团中均可检测到Atg5和Beclin1蛋白的荧光,但内细胞团中的荧光强度高于滋养层细胞,且Beclin1蛋白在孤雌激活胚胎囊胚内细胞团中荧光强度高于自然受精胚胎。自噬关键因子Atg5和Beclin1在不同来源小鼠胚胎早期发育各时期均有不同程度的表达,提示自噬对早期胚胎发育的调控作用与胚胎的生产方式存在一定关联,研究结果为进一步探索细胞自噬参与哺乳动物胚胎发育的生理调控提供理论依据。  相似文献   

17.
为获得具有植酸酶腮腺特异性表达的猪转基因克隆胚胎,本研究使用植酸酶腮腺特异性表达的DNA质粒(包含腮腺分泌蛋白(parotid secretary protein,PSP)启动子与终止子序列、Neo筛选基因、绿色荧光蛋白(EGFP)报告基因和高比活的植酸酶appA基因),采用脂质体转染和基因素418(G418)药物抗性筛选的方法获取稳转细胞系,并利用体细胞核移植技术获得植酸酶转基因胚胎。结果表明,本研究构建的DNA质粒可用于细胞筛选,且质粒越小,细胞的转染效率越高,14.89 kb的YM6552仅获得了7.1%的转染率,EGFP质粒则获得了43.4%的转染效率。在单克隆形成上,较小的pYN3600也获得了更高的单克隆形成数(25个),其中表达EGFP的单克隆有14个,植酸酶PCR阳性集落有11个,高于YM6552的单克隆数(19、8和6)。转基因细胞构建重构胚胎后,所有的胚胎均能表达绿色荧光蛋白,虽其体外发育能力有所下降,但差异不显著(P>0.05)。综上所述,本研究所采用的植酸酶质粒、细胞筛选方法和核移植技术可生产植酸酶重构胚。  相似文献   

18.
Fluorescence expression by bovine embryos was examined after pronuclear microinjection with an enhanced green fluorescent protein (EGFP) cDNA under control of the chicken beta-actin promoter and cytomegalovirus enhancer, as a first step in evaluating the applicability of EGFP for non-invasive selection of transgenic bovine embryos. After injection, developmental competence of the embryos was reduced, and light was emitted in 11.9% of them (37/310) under a fluorescence microscope. Although 2.9% of the injected embryos developed to the fluorescent blastocysts (9/310), a majority of the fluorescent embryos showed mosaic expression including the negative blastomeres (26/37, 70.3%). These results suggest the feasibility of EGFP for in vitro selection of transgenic bovine embryos by fluorescence microscopy. However, the impaired development and high frequency of mosaicism were observed in these injected embryos.  相似文献   

19.
The objective of this study was to determine if the transfection of human prourokinase (ProU) gene and passage number of transfected ear fibroblasts affected in vitro development of bovine transgenic nuclear transfer (NT) embryos. An expression plasmid for human ProU was constructed by inserting a bovine beta-casein promoter, a green fluorescent protein (GFP) marker and human ProU gene into a pcDNA3 plasmid and transfected into bovine ear fibroblasts using a lipid mediated method. Abattoir derived oocytes were enucleated at 18-20 hr post maturation and a single donor cell was transferred into the perivitelline space of a recipient oocyte. After fusion and activation, the couplets were cultured in modified synthetic oviductal fluid (mSOF) medium for 168 hr. In Experiment 1, significantly lower rate in blastocysts formation (10.3%) was observed in transfected donor cells at early passage than that in nontransfected counterparts (22.1%, P<0.05). In Experiment 2, development to blastocysts and GFP expression in blastocysts were not significantly different between early (3-7) and late (8-12) passage donor cells (10.3 vs. 11.3% and 54.5 vs. 41.7%, respectively). This study indicates that in vitro development of bovine transgenic NT embryos is negatively influenced by transfection of human ProU gene into donor fibroblasts. However, passage number of transfected ear fibroblasts does not affect in vitro development of bovine transgenic NT embryos.  相似文献   

20.
In the past, several strategies have been used to generate transgenic birds. The most successful method has proven to be injection of lentiviral vector into the subgerminal cavity of the newly laid egg. In this study, we directly injected lentiviral vector into the blood vessel of HH13–15 quail embryos to produce transgenic chimeras. In the manipulated, hatched birds, the green fluorescent protein (GFP) gene driven by a cytomegalovirus (CMV) promoter was extensively expressed. All tissues analyzed were GFP‐positive, and gonad cells from some of the manipulated embryos expressed GFP. The semen genome of 21.4% of mature male birds was determined to be GFP‐positive by PCR, indicating these male birds were transgenic chimeras.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号