首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
Lidocaine is the most commonly used prokinetic after gastrointestinal surgery in horses. Cardiovascular status, hepatic function, and duration of therapy are the primary determinants of lidocaine metabolism, and these factors could affect equine patients after colic surgery. This study examined the systemic concentrations of lidocaine and its active metabolites monoethylglycinexylidide (MEGX) and glycinexylidide (GX), in horses that had undergone colic surgery and subsequently received prolonged postoperative lidocaine infusions. The mean lidocaine concentration increased over the course of treatment but did not exceed the therapeutic range. Concentrations of MEGX and GX increased progressively, and concentrations exceeding 1,000 ng/ml were observed frequently after 72 hours of infusion. None of the horses in the study developed severe signs of toxicity; however, the progressively increasing concentrations of lidocaine, MEGX, and GX are cause for concern in clinically ill patients receiving prolonged lidocaine therapy. The potential contribution of MEGX and GX should be considered when evaluating adverse reactions to prolonged lidocaine infusions.  相似文献   

2.
OBJECTIVE: To determine the influence of a low-dose constant rate infusion (LCRI; 50 microg kg(-1) minute(-1)) and high-dose CRI (HCRI; 200 microg kg(-1) minute(-1)) lidocaine infusion on the minimum alveolar concentration (MAC) of isoflurane (I) in dogs. STUDY DESIGN: Prospective experimental study. ANIMALS: Ten mongrel dogs (four females, six males), weighing 20-26.3 kg. METHODS: Dogs were anesthetized with I in oxygen and their lungs mechanically ventilated. Baseline MAC was determined using mechanical or electrical stimuli. Lidocaine (2 mg kg(-1) IV) was administered over 3 minutes, followed by the LCRI and MAC determination commenced 30 minutes later. Once MAC was determined following LCRI, the lidocaine infusion was stopped for 30 minutes. A second bolus of lidocaine (2 mg kg(-1), IV) was administered, followed by the HCRI and MAC re-determined. Concentrations of lidocaine and its metabolites were measured at end-tidal I concentrations immediately above and below MAC. Heart rates and blood pressures were measured. RESULTS: Minimum alveolar concentration of I was 1.34 +/- 0.11 (%; mean +/- SD) for both types of stimulus. The LCRI significantly reduced MAC to 1.09 +/- 0.13 (18.7% reduction) and HCRI to 0.76 +/- 0.10 (43.3% reduction). Plasma concentrations (ng mL(-1), median; value below and above MAC, respectively) for LCRI were: lidocaine, 1465 and 1537; glycinexylidide (GX), 111 and 181; monoethylglycinexylidide (MEGX), 180 and 471 and for HCRI were: lidocaine, 4350 and 4691; GX, 784 and 862; MEGX, 714 and 710. Blood pressure was significantly increased at 30 minutes after high dose infusion. CONCLUSION AND CLINICAL RELEVANCE: Lidocaine infusions reduced the MAC of I in a dose-dependent manner and did not induce clinically significant changes on heart rate or blood pressure.  相似文献   

3.
REASONS FOR PERFORMING STUDY: Lidocaine and ketamine are administered to horses as a constant rate infusion (CRI) during inhalation anaesthesia to reduce anaesthetic requirements. Morphine decreases the minimum alveolar concentration (MAC) in some domestic animals; when administered as a CRI in horses, morphine does not promote haemodynamic and ventilatory changes and exerts a positive effect on recovery. Isoflurane-sparing effect of lidocaine, ketamine and morphine coadministration has been evaluated in small animals but not in horses. OBJECTIVES: To determine the reduction in isoflurane MAC produced by a CRI of lidocaine and ketamine, with or without morphine. HYPOTHESIS: Addition of morphine to a lidocaine-ketamine infusion reduces isoflurane requirement and morphine does not impair the anaesthetic recovery of horses. METHODS: Six healthy adult horses were anaesthetised 3 times with xylazine (1.1 mg/kg bwt i.v.), ketamine (3 mg/kg bwt i.v.) and isoflurane and received a CRI of lidocaine-ketamine (LK), morphine-lidocaine-ketamine (MLK) or saline (CTL). The loading doses of morphine and lidocaine were 0.15 mg/kg bwt i.v and 2 mg/kg bwt i.v. followed by a CRI at 0.1 mg/kg bwt/h and 3 mg/kg bwt/h, respectively. Ketamine was given as a CRI at 3 mg/kg bwt/h. Changes in MAC characterised the anaesthetic-sparing effect of the drug infusions under study and quality of recovery was assessed using a scoring system. Results: Mean isoflurane MAC (mean ± s.d.) in the CTL, LK and MLK groups was 1.25 ± 0.14%, 0.64 ± 0.20% and 0.59 ± 0.14%, respectively, with MAC reduction in the LK and MLK groups being 49 and 53% (P<0.001), respectively. No significant differences were observed between groups in recovery from anaesthesia. Conclusions and clinical relevance: Administration of lidocaine and ketamine via CRI decreases isoflurane requirements. Coadministration of morphine does not provide further reduction in anaesthetic requirements and does not impair recovery.  相似文献   

4.
This study aimed to evaluate the effects of a constant rate infusion (CRI) of xylazine or xylazine in combination with lidocaine on nociception, sedation, and physiologic values in horses. Six horses were given intravenous (IV) administration of a loading dose (LD) of 0.55 mg/kg of xylazine followed by a CRI of 1.1 mg/kg/hr. The horses were randomly assigned to receive three treatments, on different occasions, administered 10 minutes after initiation of the xylazine CRI, as follows: control, physiologic saline; lidocaine low CRI (LLCRI), lidocaine (LD: 1.3 mg/kg, CRI: 0.025 mg/kg/min); and lidocaine high CRI (LHCRI), lidocaine (LD: 1.3 mg/kg, CRI: 0.05 mg/kg/min). A blinded observer assessed objective and subjective data for 50 minutes during the CRIs. In all treatments, heart and respiratory rates decreased, end-tidal carbon dioxide concentration increased, and moderate to intense sedation was observed, but no significant treatment effect was detected in these variables. Ataxia was significantly higher in LHCRI than in the control treatment at 20 minutes of infusion. Compared with baseline values, nociceptive threshold increased to as much as 79% in the control, 190% in LLCRI, and 158% in LHCRI. Nociceptive threshold was significantly higher in LLCRI (at 10 and 50 minutes) and in LHCRI (at 30 minutes) than in the control treatment. The combination of CRIs of lidocaine with xylazine produced greater increases in nociceptive threshold compared with xylazine alone. The effects of xylazine on sedation and cardiorespiratory variables were not enhanced by the coadministration of lidocaine. The potential to increase ataxia may contraindicate the clinical use of LHCRI, in combination with xylazine, in standing horses.  相似文献   

5.
REASONS FOR PERFORMING STUDY: Lidocaine constant rate infusions (CRIs) are common as an intraoperative adjunct to general anaesthesia, but their influence on quality of recovery has not been thoroughly determined. OBJECTIVES: To determine the effects of an intraoperative i.v. CRI of lidocaine on the quality of recovery from isoflurane or sevoflurane anaesthesia in horses undergoing various surgical procedures, using a modified recovery score system. HYPOTHESIS: The administration of intraoperative lidocaine CRI decreases the quality of recovery in horses. METHODS: Lidocaine (2 mg/kg bwt bolus followed by 50 microg/kg bwt/min) or saline was administered for the duration of surgery or until 30 mins before the end of surgery under isoflurane (n = 27) and sevoflurane (n = 27). RESULTS: Horses receiving lidocaine until the end of surgery had a significantly higher degree of ataxia and a tendency towards significance for a lower quality of recovery. There was no correlation between lidocaine plasma concentrations at recovery and the quality of recovery. CONCLUSIONS: Intraoperative CRI of lidocaine affects the degree of ataxia and may decrease the quality of recovery. POTENTIAL RELEVANCE: Discontinuing lidocaine CRI 30 mins before the end of surgery is recommended to reduce ataxia during the recovery period.  相似文献   

6.
Lidocaine is administered as an intravenous infusion to horses for a variety of reasons, but no study has assessed plasma lidocaine concentrations during a 12-h infusion to horses. The purpose of this study was to evaluate the plasma concentrations and pharmacokinetics of lidocaine during a 12-h infusion to postoperative horses. A second purpose of the study was to evaluate the in vitro plasma protein binding of lidocaine in equine plasma. Lidocaine hydrochloride was administered as a loading dose, 1.3 mg/kg over 15 min, then by a constant rate IV infusion, 50 microg/kg/min to six postoperative horses. Lidocaine plasma concentrations were measured by a validated high-pressure liquid chromatography method. One horse experienced tremors and collapsed 5.5 h into the study. The range of plasma concentrations during the infusion was 1.21-3.13 microg/mL. Lidocaine plasma concentrations were significantly increased at 0.5, 4, 6, 8, 10 and 12 h compared with 1, 2 and 3 h. The in vitro protein binding of lidocaine in equine plasma at 2 microg/mL was 53.06+/-10.28% and decreased to 27.33+/-9.72% and 29.52+/-6.44% when in combination with ceftiofur or the combination of ceftiofur and flunixin, respectively. In conclusion, a lower lidocaine infusion rate may need to be administered to horses on long-term lidocaine infusions. The in vitro protein binding of lidocaine is moderate in equine plasma, but highly protein bound drugs may displace lidocaine increasing unbound concentrations and the risk of lidocaine toxicity.  相似文献   

7.
OBJECTIVE: To describe the pharmacokinetics of lidocaine and its active metabolite, monoethylglycinexylidide (MEGX), after i.v. administration of a single bolus of lidocaine in cats that were awake in phase 1 and anesthetized with isoflurane in phase 2 of the study. ANIMALS: 8 healthy adult cats. PROCEDURE: During phase 1, cats were administered lidocaine (2 mg/kg, i.v.) as a bolus injection (time 0). During phase 2, cats were anesthetized with isoflurane and maintained at 0.75 times the minimum alveolar concentration of isoflurane for each specific cat. After a 15-minute equilibration period, lidocaine (2 mg/kg, i.v.) was administered as a bolus injection to each cat (time 0). In both phases, plasma concentrations of lidocaine and MEGX were measured at various time points by use of liquid chromatography-mass spectrometry. RESULTS: Anesthesia with isoflurane significantly decreased the volume of the central compartment, clearance, and elimination half-life of lidocaine and significantly increased the extrapolated plasma drug concentration at time 0, compared with values for awake cats. Pharmacokinetics of MEGX were also changed by isoflurane-induced anesthesia because the maximum observed plasma concentration (C(max)), area under the concentration-time curve extrapolated to infinity, and time to C(max) were significantly higher in anesthetized cats, compared with values for awake cats. CONCLUSIONS AND CLINICAL RELEVANCE: Pharmacokinetics of lidocaine and MEGX were substantially altered in cats anesthetized by use of isoflurane. When pharmacokinetic variables are used to determine loading and infusion doses in awake or anesthetized cats, they should be measured in cats that are awake or anesthetized, respectively.  相似文献   

8.
OBJECTIVE: To determine the disposition of lidocaine after IV infusion in anesthetized horses undergoing exploratory laparotomy because of gastrointestinal tract disease. ANIMALS: 11 horses (mean +/- SD, 10.3 +/- 7.4 years; 526 +/- 40 kg). PROCEDURE: Lidocaine hydrochloride (loading infusion, 1.3 mg/kg during a 15-minute period [87.5 microg/kg/min]; maintenance infusion, 50 microg/kg/min for 60 to 90 minutes) was administered IV to dorsally recumbent anesthetized horses. Blood samples were collected before and at fixed time points during and after lidocaine infusion for analysis of serum drug concentrations by use of liquid chromatography-mass spectrometry. Serum lidocaine concentrations were evaluated by use of standard noncompartmental analysis. Selected cardiopulmonary variables, including heart rate (HR), mean arterial pressure (MAP), arterial pH, PaCO2, and PaO2, were recorded. Recovery quality was assessed and recorded. RESULTS: Serum lidocaine concentrations paralleled administration, increasing rapidly with the initiation of the loading infusion and decreasing rapidly following discontinuation of the maintenance infusion. Mean +/- SD volume of distribution at steady state, total body clearance, and terminal half-life were 0.70 +/- 0.39 L/kg, 25 +/- 3 mL/kg/min, and 65 +/- 33 minutes, respectively. Cardiopulmonary variables were within reference ranges for horses anesthetized with inhalation anesthetics. Mean HR ranged from 36 +/- 1 beats/min to 43 +/- 9 beats/min, and mean MAP ranged from 74 +/- 18 mm Hg to 89 +/- 10 mm Hg. Recovery quality ranged from poor to excellent. CONCLUSIONS AND CLINICAL RELEVANCE: Availability of pharmacokinetic data for horses with gastrointestinal tract disease will facilitate appropriate clinical dosing of lidocaine.  相似文献   

9.
OBJECTIVES: To measure serum polymyxin B concentration after single and repeated IV infusions in horses. ANIMALS: 5 healthy horses. PROCEDURES: In study 1, 1 mg (6,000 U) of polymyxin B/kg was given IV and blood samples were collected for 24 hours. In study 2, 1 mg of polymyxin B/kg was given IV every 8 hours for 5 treatments and blood samples were collected until 24 hours after the last dose. Polymyxin B concentration was measured as the ability to suppress nitrite production by murine macrophages stimulated with lipopolysaccharide and interferon-alpha. Urine was collected prior to the first drug infusion and 24 hours after the fifth drug infusion for determination of urinary gamma-glutamyl transferase (GGT)-to-creatinine ratios. RESULTS: In study 1, mean +/- SEM maximal serum polymyxin B concentration was 2.93 +/- 0.38 microg/mL. Polymyxin B was undetectable 18 hours after infusion. In study 2, maximal polymyxin B concentrations after the first and fifth doses were 2.98 +/- 0.81 microg/mL and 1.91 +/- 0.50 microg/mL, respectively. Mean trough concentration for all doses was 0.22 +/- 0.01 microg/mL. A significant effect of repeated administration on peak and trough serum concentration was not detected. Urine GGT-to-creatinine ratios were not affected by polymyxin B administration. CONCLUSIONS AND CLINICAL RELEVANCE: Polymyxin B given as multiple infusions to healthy horses by use of this protocol did not accumulate in the vascular compartment and appeared safe. Results support repeated IV use of 1 mg of polymyxin B/kg at 8-hour intervals as treatment for endotoxemia.  相似文献   

10.
OBJECTIVE: To compare the disposition of lidocaine administered IV in awake and anesthetized horses. ANIMALS: 16 horses. PROCEDURE: After instrumentation and collection of baseline data, lidocaine (loading infusion, 1.3 mg/kg administered during 15 minutes (87 microg/kg/min); constant rate infusion, 50 microg/kg/min) was administered IV to awake or anesthetized horses for a total of 105 minutes. Blood samples were collected at fixed times during the loading and maintenance infusion periods and after the infusion period for analysis of serum lidocaine concentrations by use of liquid chromatography with mass spectral detection. Selected cardiopulmonary parameters including heart rate (HR), mean arterial pressure (MAP), arterial pH, PaCO2, and PaO2 were also recorded at fixed time points during lidocaine administration. Serum lidocaine concentrations were evaluated by use of standard noncompartmental analysis. RESULTS: Serum lidocaine concentrations were higher in anesthetized than awake horses at all time points during lidocaine administration. Serum lidocaine concentrations reached peak values during the loading infusion in both groups (1,849 +/- 385 ng/mL and 3,348 +/- 602 ng/mL in awake and anesthetized horses, respectively). Most lidocaine pharmacokinetic variables also differed between groups. Differences in cardiopulmonary variables were predictable; for example, HR and MAP were lower and PaO2 was higher in anesthetized than awake horses but within reference ranges reported for horses under similar conditions. CONCLUSIONS AND CLINICAL RELEVANCE: Anesthesia has an influence on the disposition of lidocaine in horses, and a change in dosing during anesthesia should be considered.  相似文献   

11.
Eight adult horses were used in a study to determine ketamine's ability to reduce halothane requirement. To obtain steady-state plasma concentrations of 0.5, 1.0, 2.0, 4.0, and 8.0 micrograms/ml, loading doses and constant infusions for ketamine were calculated for each horse on the basis of data from other studies in which the pharmacokinetic properties of ketamine were investigated. Blood samples for determination of plasma ketamine concentrations were collected periodically during each experiment. Plasma ketamine concentrations were determined by capillary gas chromatography/mass spectrometry under electron-impact ionization conditions, using lidocaine as the internal standard. Halothane minimal alveolar concentration (MAC; concentration at which half the horses moved in response to an electrical stimulus) and plasma ketamine concentration were determined after steady-state concentrations of each ketamine infusion had been reached. Plasma ketamine concentrations > 1.0 microgram/ml decreased halothane MAC. The degree of MAC reduction was correlated directly with the square root of the plasma ketamine concentration, reaching a maximum of 37% reduction at a plasma ketamine concentration of 10.8 +/- 2.7 micrograms/ml. Heart rate, mean arterial blood pressure, and the rate of increase of right ventricular pressure did not change with increasing plasma ketamine concentration and halothane MAC reduction. Cardiac output increased significantly during ketamine infusions and halothane MAC reduction. Our findings suggest that plasma ketamine concentrations > 1.0 micron/ml reduce halothane MAC and produce beneficial hemodynamic effects.  相似文献   

12.
ObjectiveTo compare, in horses undergoing laparotomy for colic, the effects of administering or not administering a loading intravenous (IV) bolus of lidocaine prior to its constant rate infusion (CRI). Effects investigated during isoflurane anaesthesia were end-tidal isoflurane concentration (Fe’ISO), cardiovascular function, anaesthetic stability and the quality of recovery.Study designProspective, randomized clinical study.AnimalsThirty-six client-owned horses.MethodsHorses were assigned randomly to receive lidocaine as a CRI (50 μg kg−1 minute−1) either preceded (LB) or not preceded (L) by a loading dose (1.5 mg kg−1 IV over 15 minutes). Lidocaine infusion (LInf) was started (T0) within 20 minutes after induction of general anaesthesia and discontinued approximately 30 minutes before the end of surgery. Anaesthetic depth, Fe’ISO, intra-operative physiological parameters and quality of recovery were assessed or measured. Data were analysed using one-way anova, t-test, Fisher test, Wilcoxon and Kruskal–Wallis tests as appropriate (p < 0.05).ResultsMean ± SD Fe’ISO was 1.21 ± 0.08% in group LB and 1.23 ± 0.06% in group L. Heart rate was significantly higher in group L than in group LB at times T5-T15, T25, T35 and T95. No difference was found between groups in other measured physiological values, nor in any measure taken to improve these parameters. Recovery phase was comparable and satisfactory in all but one full term pregnant horse in group L which fractured a femur during recovery.ConclusionPreloading with a lidocaine bolus prior to a CRI of lidocaine did not influence isoflurane requirements, cardiopulmonary effects (other than a reduction in heart rate at some time points) or recovery compared to no preloading bolus.Clinical relevanceA loading dose of lidocaine prior to CRI does not confer any advantage in horses undergoing laparotomy for colic.  相似文献   

13.
A randomized, controlled, blinded clinical trial was performed to determine whether butorphanol administered by continuous rate infusion (CRI) for 24 hours after abdominal surgery would decrease pain and surgical stress responses and improve recovery in horses. Thirty-one horses undergoing exploratory celiotomy for abdominal pain were randomly assigned to receive butorphanol CRI (13 microg/kg/h for 24 hours after surgery; treatment) or isotonic saline (control). All horses received flunixin meglumine (1.1 mg/kg IV q12h). There were no significant differences between treatment and control horses in preoperative or operative variables. Treatment horses had significantly lower plasma cortisol concentration compared with control horses at 2, 8, 12, 24, 36, and 48 hours after surgery. Mean weight loss while hospitalized was significantly less for treatment horses than control horses, whether expressed as total decrease in body weight (13.9+/-3.4 and 27.9+/-4.5 kg, respectively) or as a percentage decrease in body weight (2.6+/-0.7 and 6.3+/-1.1%, respectively). Treatment horses were significantly delayed in time to first passage of feces (median times of 15 and 4 hours, respectively). Treatment horses had significantly improved behavior scores during the first 24 hours after surgery, consistent with the conclusion that they experienced less pain during that time. Butorphanol CRI during the immediate postoperative period significantly decreased plasma cortisol concentrations and improved recovery characteristics in horses undergoing abdominal surgery.  相似文献   

14.
Ketamine (KET) possesses analgesic and anti-inflammatory activity at sub-anesthetic doses, suggesting a benefit of long-term KET treatment in horses suffering from pain, inflammatory tissue injury and/or endotoxemia. However, data describing the pharmacodynamic effects and safety of constant rate infusion (CRI) of KET and its pharmacokinetic profile in nonpremedicated horses are missing. Therefore, we administered to six healthy horses a CRI of 1.5 mg/kg/h KET over 320 min following initial drug loading. Cardiopulmonary parameters, arterial blood gases, glucose, lactate, cortisol, insulin, nonesterified fatty acids, and muscle enzyme levels were measured, as were plasma concentrations of KET and its metabolites using liquid chromatography-tandem mass spectrometry (LC-MS/MS). Levels of sedation and muscle tension were scored. Respiration and heart rate significantly increased during the early infusion phase. Glucose and cortisol significantly varied both during and after infusion. During CRI all horses scored 0 on sedation. All but one horse scored 0 on muscle tension, with one mare scoring 1. All other parameters remained within or close to physiological limits without significant changes from pre-CRI values. The mean plasma concentration of KET during the 1.5 mg/kg/h KET CRI was 235 ng/mL. The decline of its plasma concentration-time curve of both KET and norketamine (NKET) following the CRI was described by a two-compartmental model. The metabolic cascade of KET was NKET, hydroxynorketamine (HNK), and 5,6-dehydronorketamine (DHNK). The KET median elimination half-lives (t1/2alpha and t1/2beta) were 2.3 and 67.4 min, respectively. The area under the KET plasma concentration-time curve (AUC), elimination was 76.0 microg.min/mL. Volumes of C1 and C2 were 0.24 and 0.79 L/kg, respectively. It was concluded that a KET CRI of 1.5 mg/kg/h can safely be administered to healthy conscious horses for at least 6 h, although a slight modification of the initial infusion rate regimen may be indicated. Furthermore, in the horse KET undergoes very rapid biotransformation to NKET and HNK and DHNK were the major terminal metabolites.  相似文献   

15.

Objectives

To compare the effects of a lidocaine constant rate infusion (CRI) combined with 1% isoflurane versus those of 2% isoflurane alone on cardiovascular variables in anaesthetized horses, and to estimate the sample size required to detect a difference in recovery quality.

Study design

Prospective, randomized, blinded, crossover study.

Animals

Twelve healthy experimental horses.

Methods

Horses were anaesthetized twice using an intravenous (IV) administration of acepromazine, romifidine, diazepam and ketamine. Horses were placed in dorsal recumbency and ventilated mechanically. During the first 10 minutes (P1), anaesthesia was maintained with a 2% inspired isoflurane fraction (FIIso). During the following 20 minutes (P2), horses received IV lidocaine (1.5 mg kg?1) (group IL) or saline (group I). During the last 60 minutes (P3), group IL received a lidocaine CRI (50 μg kg?1 minute?1 IV) and FIIso 1%, whereas group I received a saline CRI and FIIso 2%. Three weeks later, the horses received the alternative treatment. Painful stimuli were induced by introducing an 18 gauge needle intramuscularly. Ketamine and dobutamine requirements and physiological variables were recorded. Recoveries were assessed by two anaesthetists unaware of the treatment. Lidocaine plasma concentrations were measured during recovery. Data were analysed with anova.

Results

During P3, group IL had a lower heart rate (p = 0.002), higher mean arterial pressure (p < 0.001) and lower dobutamine requirement (p < 0.001) than group I. One horse had lidocaine plasma concentrations above toxic levels. Recoveries did not differ significantly between groups. Sample sizes of 208 horses in each group would be necessary to detect a statistically significant difference (85% statistical power) in recovery quality.

Conclusions and clinical relevance

A lidocaine CRI combined with FIIso 1% rather than FIIso 2% alone may improve cardiovascular variables in healthy anaesthetized horses.  相似文献   

16.
The effects of constant rate infusion (CRI) of lidocaine on sevoflurane (SEVO) requirements, autonomic responses to noxious stimulation, and postoperative pain relief were evaluated in dogs undergoing opioid-based balanced anesthesia. Twenty-four dogs scheduled for elective ovariectomy were randomly assigned to one of four groups: BC, receiving buprenorphine without lidocaine; FC, receiving fentanyl without lidocaine; BL, receiving buprenorphine and lidocaine; FL, receiving fentanyl and lidocaine. Dogs were anesthetized with intravenous (IV) diazepam and ketamine and anesthesia maintained with SEVO in oxygen/air. Lidocaine (2mg/kg plus 50μg/kg/min) or saline were infused in groups BL/FL and BC/FC, respectively. After initiation of lidocaine or saline CRI IV buprenorphine (0.02mg/kg) or fentanyl (4μg/kg plus 8μg/kg/h CRI) were administered IV in BC/BL and FC/FL, respectively. Respiratory and hemodynamic variables, drug plasma concentrations, and end-tidal SEVO concentrations (E'SEVO) were measured. Behaviors and pain scores were subjectively assessed 1 and 2h post-extubation. Lidocaine CRI produced median drug plasma concentrations <0.4μg/mL during peak surgical stimulation. Lidocaine produced a 14% decrease in E'SEVO in the BL (P<0.01) but none in the FL group and no change in cardio-pulmonary responses to surgery or postoperative behaviors and pain scores in any group. Thus, depending on the opioid used, supplementing opioid-based balanced anesthesia with lidocaine (50μg/kg/min) may not have any or only a minor impact on anesthetic outcome in terms of total anesthetic dose, autonomic responses to visceral nociception, and postoperative analgesia.  相似文献   

17.
Background: Ketamine as continuous rate infusion (CRI) provides analgesia in hospitalized horses. Objective: Determine effects of prolonged CRI of ketamine on gastrointestinal transit time, fecal weight, vital parameters, gastrointestinal borborygmi, and behavior scores in healthy adult horses. Animals: Seven adult Thoroughbred or Thoroughbred cross horses, with permanently implanted gastric cannulae. Methods: Nonblinded trial. Random assignment to 1 of 2 crossover designed treatments. Ketamine (0.55 mg/kg IV over 15 minutes followed by 1.2 mg/kg/h) or lactated Ringer's solution (50 mL IV over 15 minutes followed by 0.15 mL/kg/h) treatments. Two hundred 3 × 5 mm plastic beads administered by nasogastric tube before drug administration. Every 2 hours vital parameters, behavior scores recorded, feces collected and weighed, and beads retrieved. Every 6 hours gastrointestinal borborygmi scores recorded. Study terminated upon retrieval of 180 beads (minimum 34 hours) or maximum 96 hours. Nontransit time data analyzed between hours 0 and 34. Results: No significant (P < .05) differences detected between treatments in vital signs or gastrointestinal borborygmi. Significant (P = .002) increase in behavior score during ketamine infusion (0.381) from hours 24–34 compared with placebo (0). Ketamine caused significant delay in passage of 25, 50, and 75% of beads (ketamine = 30.6 ± 5.3, 41.4 ± 8.4, 65.3 ± 13.5 hours versus placebo = 26.8 ± 7.9, 34.3 ± 11.1, 45.8 ± 19.4 hours), and significant (P < .05) decrease in fecal weight from hours 22 (12.6 ± 3.2 versus 14.5 ± 3.8 kg) through 34 (18.5 ± 3.9 versus 12.8 ± 6.4 kg) of infusion. Conclusions and Clinical Importance: Ketamine CRI delayed gastrointestinal transit time in healthy horses without effect on vital parameters.  相似文献   

18.
Lidocaine patches have been used to provide local analgesia in dogs and cats. We conducted this study to assess the systemic and local absorption of lidocaine from topical patches in cats. Eight 2-year-old cats received either intravenous lidocaine at 2 mg/kg or one 700 mg lidocaine patch placed on the lateral thorax for 72 h, in a cross-over randomized repeated measures design. Plasma was collected at specific times and the skin was biopsied at the time of patch removal for the quantitative analysis of lidocaine and its major metabolite, monoethylglycinexylidide (MEGX), by gas chromatography with mass spectrometry. Percent absorption time plots for systemic lidocaine appearance were constructed using the Loo-Riegelman method. Approximately, constant rate absorption was observed from 12-72 h after patch application at a mean +/- SD rate of 109 +/- 49 microg/kg/h, resulting in steady-state lidocaine plasma concentrations of 0.083 +/- 0.032 microg/mL and MEGX concentrations of 0.012 +/- 0.009 microg/mL. Overall bioavailability of transdermal lidocaine was 6.3 +/- 2.7%, and only 56 +/- 29% of the total lidocaine dose delivered by the patch reached systemic circulation. Skin lidocaine concentrations were much higher than plasma concentrations, at 211 +/- 113 microg/g in the thoracic skin beneath the patch and 2.2 +/- 0.6 microg/g in the contralateral thoracic skin without the patch. As both lidocaine and MEGX were recovered from contralateral skin, it is likely that lidocaine accumulated in the skin from low systemic concentrations of circulating lidocaine over the 72-h period of patch application. Plasma lidocaine concentrations remained well below systemically toxic concentrations, and no obvious clinical side effects were observed in any of the cats. The low systemic absorption rate coupled with high local lidocaine concentrations on the skin support the safe use of lidocaine patches in cats.  相似文献   

19.
OBJECTIVE: To determine the pharmacokinetics and clinical effects of a subanesthetic, continuous rate infusion of ketamine administered to healthy awake horses. ANIMALS: 8 adult horses. PROCEDURES: Ketamine hydrochloride was administered to 2 horses, in a pilot study, at rates ranging from 0.4 to 1.6 mg/kg/h for 6 hours to determine an appropriate dose that did not cause adverse effects. Ketamine was then administered to 6 horses for a total of 12 hours (3 horses at 0.4 mg/kg/h for 6 hours followed by 0.8 mg/kg/h for 6 hours and 3 horses at 0.8 mg/kg/h for 6 hours followed by 0.4 mg/kg/h for 6 hours). Concentration of ketamine in plasma, heart rate, respiratory rate, blood pressure, physical activity, and analgesia were measured prior to, during, and following infusion. Analgesic testing was performed with a modified hoof tester applied at a measured force to the withers and radius. RESULTS: No signs of excitement and no significant changes in the measured physiologic variables during infusion rates of 0.4 and 0.8 mg of ketamine/kg/h were found. At 6 hours following infusions, heart rate and mean arterial pressure were decreased, compared with preinfusion measurements. An analgesic effect could not be demonstrated during or after infusion. Pharmacokinetic variables for 0.4 and 0.8 mg/kg/h infusions were not significantly different. CONCLUSIONS AND CLINICAL RELEVANCE: Ketamine can be administered to awake horses at 0.4 or 0.8 mg/kg/h without adverse behavioral effects. The observed pharmacokinetic values are different than those reported for single-dose IV bolus administration of this drug.  相似文献   

20.
REASONS FOR PERFORMING STUDY: Absorption of endotoxin across ischaemic-injured mucosa is a major cause of mortality after colic surgery. Recent studies have shown that flunixin meglumine retards mucosal repair. Systemic lidocaine has been used to treat post operative ileus, but it also has novel anti-inflammatory effects that could improve mucosal recovery after ischaemic injury. HYPOTHESIS: Systemic lidocaine ameliorates the deleterious negative effects of flunixin meglumine on recovery of mucosal barrier function. METHODS: Horses were treated i.v. immediately before anaesthesia with either 0.9% saline 1 ml/50 kg bwt, flunixin meglumine 1 mg/kg bwt every 12 h or lidocaine 1.3 mg/kg bwt loading dose followed by 0.05 mg/kg bwt/min constant rate infusion, or both flunixin meglumine and lidocaine, with 6 horses allocated randomly to each group. Two sections of jejunum were subjected to 2 h of ischaemia by temporary occlusion of the local blood supply, via a midline celiotomy. Horses were monitored with a behavioural pain score and were subjected to euthanasia 18 h after reversal of ischaemia. Ischaemic-injured and control jejunum was mounted in Ussing chambers for measurement of transepithelial electrical resistance (TER) and permeability to lipopolysaccharide (LPS). RESULTS: In ischaemic-injured jejunum TER was significantly higher in horses treated with saline, lidocaine or lidocaine and flunixin meglumine combined, compared to horses treated with flunixin meglumine. In ischaemic-injured jejunum LPS permeability was significantly increased in horses treated with flunixin meglumine alone. Behavioural pain scores did not increase significantly after surgery in horses treated with flunixin meglumine. CONCLUSIONS: Treatment with systemic lidocaine ameliorated the inhibitory effects of flunixin meglumine on recovery of the mucosal barrier from ischaemic injury, when the 2 treatments were combined. The mechanism of lidocaine in improving mucosal repair has not yet been elucidated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号