共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract. Nitrate leaching under newly planted Miscanthus grass was measured for three years. The crop received either no fertilizer-N or an annual spring application of 60 kg or 120 kg N ha-1 . During three winters soil water was collected from porous cup probes installed 90 cm deep. Nitrate leaching was calculated from the mean drain flow recorded in two drain gauges multiplied by the mean nitrate-N concentration in the soil water solutions collected. In the first year soil water nitrate concentrations were high on all treatments and N losses were 154, 187 and 228 kg ha-1 respectively on the unfertilized treatment and those that received 60 or 120 kg N ha-1 . Leaching losses in the second and third years were, in turn, 8, 24 and 87 kg ha-1 and 3, 11 and 30 kg ha-1 for the unfertilized treatment and for the 60 and 120 kg N ha-1 treatments respectively. Leaching losses were closer to those recorded under extensively managed grassland than arable land. The large losses in the first year were probably due to the previous agricultural management at the site and excessive inputs of N on the fertilized plots. In the second and third year, lower drainage volumes may also have influenced losses. The results show that Miscanthus , once established, can lead to low levels of nitrate leaching and improved groundwater quality compared with growing arable crops. 相似文献
2.
不同耕作方式对中国东北黑土有机碳的短期影响 总被引:4,自引:0,他引:4
A tillage experiment, consisting of moldboard plow (MP), ridge tillage (RT), and no-tillage (NT), was performed in a randomized complete block design with four replicates to study the effect of 3-year tillage management on SOC content and its distribution in surface layer (30 cm) of a clay loam soil in northeast China. NT did not lead to significant increase of SOC in topsoil (0-5 cm) compared with MP and RT; however, the SOC content in NT soil was remarkably reduced at a depth of 5-20 cm. Accordingly, short-term (3-year) NT management tended to stratify SOC concentration, but not necessarily increase its storage in the plow layer for the soil. 相似文献
3.
Abstract. Trafficked and non-trafficked (12 m gantry) crop production systems, which had been maintained on an Evesham series 60% clay soil since 1986, were used again in 1993 during the cultivation and sowing of winter wheat. After a one year set-aside break, mouldboard ploughing, tine cultivation and rotary digging were compared. Measurements were made of tillage energy, soil tilth, cone penetration resistance, biological activity and crop performance, and on specific plots, soil density, seedbed tilth and water release characteristics. Despite the one year's set-aside break, the effect of the previously applied traffic treatments remained and resulted in a smaller specific plough resistance and tillage energy on the non-trafficked soil. Tine cultivator draught however was greater on the non-trafficked compared with the trafficked plots. The specific energy required for rotary digging on non-trafficked soil was similar to that required during the ploughing of similar plots. A measure of indefinite biotic activity indicated that this was apparently greater on the non-traffficked soil, while soil density was decreased by up to 18% in these conditions compared with the trafficked land. Average cone resistance over the depth range 0 to 0.5 m was 1.51 MPa on the trafficked, compared with 1.24 MPa on the non-trafficked soil. Cone resistance also tended to be greater after tine cultivation compared with that after ploughing. Water release curves were interpreted as showing more macropores within the topsoil of the non-trafficked compared with the trafficked plots. Tine cultivation on trafficked soil had more smaller pores than mouldboard plough cultivation. Winter wheat yield was increased by 25% (from 8 to 10 t/ha) on non-trafficked compared with trafficked soil. 相似文献
4.
草甸黑土团聚体稳定性对耕作与炭基肥施用的响应 总被引:2,自引:6,他引:2
为了阐明东北草甸黑土典型区域短期耕作深度及炭基肥料施入对土壤团聚体稳定性影响,2016-2018年连续3 a翻耕秸秆全量还田玉米地上,设置深耕(DCF)与旋耕(SCF),配施有机肥(M)和生物炭(C),共6个处理:DCF、DCF+M、DCF+B、SCF、SCF+M、SCF+B。利用干湿筛法获得土壤团聚体6个粒级组,分析了平均重量直径(mean weight diameter,MWD)、水稳性团聚体比例(water-stable aggregate,WSA)、团聚体破坏度(percentage of aggregate destruction,PAD)、水稳性团聚体几何直径(geometric mean diameter,GMD)以及土壤团聚体有机碳组成和游离结晶态铁铝氧化物(FeDCB和AlDCB)、无定性态铁铝氧化物(Feoxa和Aloxa)。结果表明,耕作方式和施肥显著影响土壤团聚体组成,影响程度表现为旋耕>深耕,增施有机肥>常规施肥>增施生物炭。不同形态铁铝氧化物质量分数在0.10~2.45 g/kg之间,游离结晶态铁铝氧化物含量显著高于无定形态铁铝氧化物含量。除FeDCB外,DCF处理铁铝氧化物含量均高于DCF+B处理,SCF处理Aloxa含量显著高于SCF+M、SCF+B处理19.35%和12.12%; Feoxa和Aloxa与>0.25 mm团聚体、WSA相关性大于其他影响因素,Feoxa对变异解释贡献率为61.3%。土壤有机碳含量与<0.25 mm团聚体负相关,而与>0.25 mm团聚体成正相关,其贡献率为33.0%。AlDCB、Aloxa及>0.25 mm团聚体的形成呈正相关关系,二者总贡献率为9.3%;铁铝氧化物及有机碳改变共同解释74.9%土壤团聚体稳定性和粒级分布,铁铝氧化物单独贡献率为7.9%,有机碳组分单独贡献率为9.2%;综上所述,短期耕作与炭基肥料施入对土壤结构稳定性影响显著,SCF+M是比较理想的耕作模式,在草甸黑土改良中具有一定应用价值。 相似文献
5.
The distribution of soil phosphorus (P) between different organic and inorganic forms depends on, among other factors, the tillage systems. The evaluation of soil P fractions is essential to determine if they are related to available P. The objective was to characterize the P forms from a soil under no tillage (NT) and conventional tillage (CT). Soil samples were taken at 0–5, 5–10 and 10–20 cm depth from a fine, mixed, thermic Petrocalcic Paleoudoll, after 8 years under NT and CT. Inorganic and organic P was measured in the anion exchange membrane (AEM), NaHCO3, NaOH, NaOH after sonication, HCl and residual fractions extracted sequentially. Microbial P was determined by fumigating with chloroform after P extraction with AEM. The tillage systems did not affect the total P content but the distribution of P among fractions changed between NT and CT. No tillage system had significantly higher microbial P at all soil depths and ranged from 34 mg P kg−1 at 0–5 cm to 10 mg P kg−1 at 10–20 cm. In the upper 10 cm of soil, NT tended to have higher AEM-Pi and NaHCO3-Pi comparing to CT system. The increase in AEM-Pi was closely related to organic carbon increases and pH decreases. The was a consistently higher concentration of NaOH-Po but the increase was significant al 5–10 and 10–20 cm, and represented on average about 35% of total P. The residual P which was considered mostly organic was also an important pool in both NT and CT, and accounted for about 30% of total P. Therefore, P availability is mainly controlled by organic P which makes up a larger proportion of total P. 相似文献
6.
Phosphorus losses from arable land in England 总被引:7,自引:0,他引:7
J. A. Catt K. R. Howse R. Farina D. Brockie A. Todd B. J. Chambers R. Hodgkinson G. L. Harris J. N. Quinton 《Soil Use and Management》1998,14(S4):168-174
Abstract. Concentrations and annual loadings of molyhdate reactive P (MRP) and total (including particulate) P (TP) are reported from field drainage, catchment and erosion experiments in England. Annual losses through field drains and in catchment runoff were 0.037-0.74 kg MRP/ha and 0.37-2.64 kg TP/ha, but those in surface runoff from experimental plots measuring erosion were generally much greater (often > 3 kg MRP/ha and up to 32 kg TP/ha in a wet year). Amounts of TP in drainflow and catchment runoff depended upon factors influencing soil dispersibility, such as particle size distribution and calcium carbonate content. The results to date suggest that P losses in surface runoff and erosion from arable fields to water are best limited by: (a) maximizing crop cover, using minimal cultivation practices and where possible planting crop rows across rather than up and down the slope, (b) avoiding cultivation practices that result in dispersion of soil particles, and (c) avoiding application of P fertilizer to wet soils when rainfall is likely soon after application. Consideration should he given to maintaining field drains below peak efficiency to reduce subsurface P losses. 相似文献
7.
Changes in soil chemical characteristics with different tillage practices in a semi-arid environment 总被引:3,自引:0,他引:3
We examined the effects of various tillage intensities: no-tillage (NT), minimum tillage with chisel plow (MT), conventional tillage with mouldboard plow (CT), and zone-tillage subsoiling with a paraplow (ZT) applied in alternate years in rotation with NT, on the topsoil profile distribution (0–30 cm) of pH, soil organic carbon (SOC), organic N and available nutrients on a semi-arid soil from Central Spain. The equivalent depth approach was used to compare SOC, N and nutrient stocks in the various tillage treatments. Measurements made at the end of 5 years showed that in the 0–30 cm depth, SOC and N had increased under NT and ZT compared with MT and CT. Most dramatic changes occurred within the 0–5 cm depth where plots under NT and ZT had respectively 7.0 Mg ha−1 and 6.2 Mg ha−1 more SOC and 0.5 Mg ha−1 and 0.3 Mg ha−1 more N than under MT or CT. No-tillage and ZT plots, however, exhibited strong vertical gradients of SOC and N with concentrations decreasing from 0–5 to 20–30 cm. In the 0–20 cm layer, higher concentrations of P and K under NT and ZT than under MT or CT were also found. Soil pH under NT and ZT was 0.3 units lower than under MT or CT at a depth of 0–5 cm. This acidifying effect was restricted at the surface layer and in the 20–30 cm interval, pH values under NT and ZT were higher than in MT and CT plots. These results suggest that in the soil studied, ZT in rotation with NT maintain most advantages associated with NT, and present a definite potential for use as a partial-width rotational tillage practice. 相似文献
8.
Phosphorus cycling in UK agriculture and implications for phosphorus loss from soil 总被引:15,自引:0,他引:15
Abstract. Phosphorus (P) use in UK agriculture is reviewed and a P balance sheet presented. The productive grassland and arable area has accumulated an average P surplus of c. 1000 kg ha–1 over the last 65 years. Over the period 1935–1970, the annual P surplus more than doubled due to an increase in animal numbers and associated requirements for inorganic fertilizers and livestock feeds. Since 1970, surplus P has declined by c . 40% as crop yields and P offtake have continued to increase while fertilizer and manure P inputs have remained relatively constant. In 1993, P use efficiency (P imports/P exports) in UK agriculture was estimated at 25% leading to an average annual surplus of 15 kg P ha–1 yr–1 , although the latter has since decreased slightly due to reduced fertilizer use. Intensification and specialization of agriculture has also increased the range in P surpluses that are likely between livestock and arable dominated systems. The largest P surpluses occur in the relatively limited areas of arable soils which receive manure from intensive pig and poultry units, whilst farms without manure inputs generate only small surpluses, or are in balance. The cumulative P surplus has led to a build-up of soil total and easily-exchangeable P, especially in areas receiving both fertilizers and manures. Fundamental differences in P use efficiency, surplus P accumulation and the potential for P loss to water, exist between arable and grassland farms and it is important to separate these, due to the marked regionalization of UK agriculture. More judicial use of feeds and fertilizers is required to further reduce the P surplus and minimize the long-term risk of water eutrophication. 相似文献
9.
Development and testing of a model for predicting tillage effects on nitrate leaching from cracked clay soils 总被引:2,自引:0,他引:2
A. M. Matthews A. C. Armstrong P. B. Leeds-Harrison G. L. Harris J. A. Catt 《Soil & Tillage Research》2000,53(3-4):245-254
Both water movement and nitrate leaching in structured soils are strongly influenced by the nature of the macro-porosity. That macro-porosity can however also be manipulated by choice of tillage operations. In order to investigate the potential impacts of tillage on rates of nitrate leaching from structured soils, a model specific to these soils, CRACK-NP was developed. The model, its application and validation for an experimental site on a heavy clay soil (Verti-Eutric Gleysoil) at Brimstone Farm, Oxfordshire, UK, is described. The model considers the soil as a series of aggregates whose size is also the spacing of the macro-porosity. Water and solutes move in the macro-pores, but within the peds they move only by diffusion, internal infiltration and root uptake (evaporation). The model reflects the influence of diffusion limitation in the release of solutes to by-passing water. The model was then used to investigate the influence of variable ped spacings which were created by variations in tillage practices. The results both from the model and from the field data demonstrated that finer soil structures, which have larger surface contact areas and shorter diffusion path lengths, present greater opportunities for interaction between peds and the water moving around them, and so release more nitrates through the drainage waters. 相似文献
10.
Effects of tillage and management practices on soil crust morphology under a Mediterranean environment 总被引:4,自引:0,他引:4
Soil crust formation can be affected by soil tillage. Alternative soil conservation practices consisting of reduced tillage were tested against traditional tillage, which involves mechanical weeding by frequent ploughing in rainfed vineyard soils in Catalonia, Spain. After 2 years of the experiment (1994–1996), thin sections of the surface crusts were studied to evaluate the effects of the soil management treatments on crust morphology and genesis, using micromorphological observations and pore characterisation with image analysis. Reduced tillage caused thicker and more complex crusts consisting of layers with different degrees of sorting and pore types, compared to traditional tillage. Total porosity of crusts did not differ from that of non-crusted areas, but pores in crusts were less interconnected, more horizontally distributed and more elongated than in the underlying non-crusted material. The soil type, especially structure and texture, affected crust morphology and played an important role in the process of crusting. The results show that reduced tillage may be limited as an alternative management practice when used to reduce crust formation in Mediterranean conditions, due to the difficulty to establish an effective groundcover. 相似文献
11.
Movement of suspended matter and a bromide tracer to field drains in tilled and untilled soil 总被引:1,自引:0,他引:1
C.T. Petersen S. Hansen H.E. Jensen J. Holm C. Bender Koch 《Soil Use and Management》2004,20(3):271-280
Abstract. Drainage water was sampled intensively during a four-year field experiment on a sandy loam soil subjected to four unreplicated tillage treatments: (1) harrowing with a springtine harrow, drilling; (2) direct drilling; (3) ploughing with light subsurface compaction, one pass with a PTO-driven rotary harrow, drilling; (4) ploughing, one pass with a springtine harrow, drilling. In all years, the losses of suspended matter with drainage water (0.1–4.3 kg ha−1 yr−1 ) were smaller by a factor of 1.9 or more from direct drilled plots than from plots subjected to the other tillage treatments, strongly suggesting that tillage increased the losses. Annual bromide losses were governed by the amount of drainage water rather than by the tillage treatments. However, after one drainage season, more bromide was left in the soil at 0–100 cm depth with ploughless tillage than with ploughing, thus indicating more bypass flow without ploughing. The study demonstrated very changeable patterns of suspended matter and bromide concentrations in drainage water sampled from large field plots, and questions the representativeness of drainage water samples for water reaching the subsoil or shallow groundwater. 相似文献
12.
Abstract. Degradation of isoproturon in a heavy clay soil followed first-order reaction kinetics with half-lives at 15 °C of 27 and 208 days in the topsoil and subsoil, respectively. Adsorption when shaken with 3 mm sieved samples of the soil fitted the empirical Freundlich relationship with k values of 3.25 in the topsoil and 1.06 in the subsoil. Adsorption in a static system with different sized aggregates of soil did not reach equilibrium, even after 24 hours contact, and the rate of adsorption was slower with larger aggregates. Following an adsorption period of 24 hours, desorption equilibrium was reached more rapidly with larger (6–10 mm) than with smaller (<3 mm) aggregates. Adsorption isotherms measured in a static system with a soil:water ratio typical of field conditions in winter also indicated less adsorption than that measured in shaken, laboratory systems with low soil:water ratios. The rate of change in water extractable residues of the herbicide was more rapid than that of total extract-able residues following application of isoproturon to the heavy clay soil in the field. The implications of the results for isoproturon leaching under field conditions are discussed. 相似文献
13.
利用最小水分限制范围评价东北黑土区免耕和垄作的土壤水分稳定性 总被引:1,自引:1,他引:1
为明确耕作方式对黑土土壤水分稳定性的作用,提高黑土区雨养农业对气候变化的适应性,该研究基于黑土区长期免耕定位试验,利用最小水分限制范围(Least Limiting Water Range, LLWR)评价免耕(NT)和垄作(CT)管理下土壤含水率有效性及其变异特征。结果表明:1)在0~5、5~10、10~20和20~40 cm 4个土层中,NT处理显著降低了5~10 cm的LLWR,其他3个土层LLWR差异均不显著;2)在平水年(2014)、枯水年(2015)和丰水年(2016),NT管理下作物生育期内0~40 cm平均土壤含水率正常率分别为48%、72%和85%,年间变异系数为0.23;CT的土壤含水率正常率分别为56%、20%和51%,年间变异系数为0.38;3)在丰水年,NT与CT的平均有效储水量差值最小,NT比CT高8.95mm;在枯水年相差最大,NT的平均有效储水量比CT高13.99mm。因此,NT管理下土壤水分更稳定地分布在LLWR内,在极端降雨年份(枯水年和丰水年)优势尤其明显。 相似文献
14.
Abstract. Nutrient losses from arable land are important contributors to eutrophication of surface waters, and phosphorus (P) and nitrogen (N) usually act together to regulate production of Cyanobacteria. Concentrations and losses of both nutrients in drainage water from pipe drains were studied and compared in 15 crop rotations on a clay soil in southwest Sweden. Special emphasis was placed on P and it was possible to evaluate critical components of the crop rotations by flow-proportional water sampling. Total P concentrations in drainage water were generally small (0.04–0.18 mg L−1 ), but during two wetter years out of six, high P concentrations were measured following certain management practices, including ploughing-in lucerne ( Medicago sativa L.) and fertilizing in advance without incorporation into the soil to meet the needs of several subsequent crops. This resulted in average flow-weighted concentrations of total P between 0.3 and 0.7 mg L−1 . In crop rotations containing green manures, green fallow or leguminous leys, there was also a risk for increased P losses after these crops were ploughed in. The losses increased in the order: cash crops < dairy with grass < dairy with lucerne < monoculture with barley < organic farming with cattle slurry < stockless organic farming with green manure. P balances varied between −9 and +8 kg P ha−1 and N balances between +4 and +35 kg N ha−1 . The balances were not related to actual leaching losses. Phosphorus losses in drainage from set-aside were 67–82% of those from cash crops grown in ploughed and P-fertilized soil at the same site, indicating a high background P loss from this clay soil. 相似文献
15.
Paulo Sergio Pavinato Alexandre Merlin Ciro Antonio Rosolem 《Soil & Tillage Research》2009,105(1):149-155
No-tillage systems lead to physical, chemical and biological changes in soil. Soil fertility is responsive to changes in tillage as it depends on nutrient status, soil water content and biological characteristics. This work aimed to determine long term changes in phosphorus forms and availability in the profile of two tropical soils under conventional and no-till systems, and to discuss the significance of these changes on plant growth and demand for P fertilizers. Undisturbed soil cores with 20 cm in diameter were collected to a depth of 40 cm, accommodated in PVC tubes and taken to a greenhouse, where the experiment was conducted. Two soils were collected in Central Brazil, in areas under Cerrado. Both soils had been cropped for at least 10 years under conventional tillage and no-till. In the greenhouse, pots received phosphorus fertilization or not at 43.7 kg ha−1, and soybean was grown for 60 days, when soil P fractions were determined. Labile P fractions in the soil profile were not affected by management systems, and there was no accumulation of available P under no-till. A large amount of P added as fertilizer was adsorbed in soil and remained in moderately labile fractions, mainly on uppermost soil layers. Therefore, the phosphate fertilizer has promoted P accumulation on less available fractions in soil, remaining P on the soil after crop harvest. Eventually this phosphorus could migrate to more labile fractions and be available for crops grown in succession. 相似文献
16.
传统耕作和免耕的红壤生态系统土壤动物种群的分异 总被引:2,自引:0,他引:2
In a field experiment ,the popultions of major soil fauna groups including earthworms,enchytraeids,arthropods and nematodes were examined in conventional tillage(CT) and no-tillage(NT) red soil ecosystems to evaluate their responses to tillage disturbance.Earthworms,macro- and micro-arthropods were stimulated under NT with earthworms showing the highest population increase by four times ,while enchytraeids and nematodes favored CT system predicting certain adaptability of these animals to plow-disturbed soil envi-ronment ,On the basis of relative response index it was found that soil fauna was more sensitive to tillage than soil resource base(C and N pools) and microflora.The population structure of soil fauna was also affected by tillage treatments.Analysis on nematode trophic groups showed that bacteria-feeding and plant parasitic nematodes were more abundant in CT soil whereas the proportions of fungivores and onmivore-predators increased in NT soil.Possible reasons for the differentiaion in both size and structure of the fauna populaion were discussed and the ecological significance involved in these changes was emphasized. 相似文献
17.
我国4种土壤磷素淋溶流失特征 总被引:4,自引:1,他引:4
磷素是水体富营养化的主要限制因子,地表水磷的污染负荷主要来源于农业面源污染。采集黑土、潮土、红壤和水稻土4种土壤,采用土柱模拟的试验方法,研究磷素在4种土壤剖面中空间分布特征,以及土壤渗漏液中TP、TDP的含量、动态变化以及流失量特征。结果表明:(1)不同类型土壤全磷和有效磷含量差异性显著,由高到低依次为水稻土潮土黑土红壤;黑土、红壤和水稻土土壤全磷和有效磷含量都表现出,随土壤深度的增加,不断降低;而潮土剖面呈上下层高,中间低的分布格局。(2)4种土壤渗漏液中占主导的磷形态不一致,潮土以MRP占主导,黑土和水稻土以DOP为主,而红壤则以PP为主。土壤磷素动态变化方面,潮土表现为TP含量先减后增再减,TDP含量先增后减;黑土表现为TP含量先增后减,TDP含量持续下降;红壤和水稻土TP和TDP含量变化不显著。(3)相关分析表明,4种土壤中Olsen-P与渗漏液中TP呈指数关系,具有极显著相关性。(4)4种土壤TP、TDP下渗流失量都以潮土最高,其次是黑土和水稻土,红壤流失量最小,磷素流失以TDP为主。 相似文献
18.
Seasonal variations in soil erosion resistance during concentrated flow for a loess-derived soil under two contrasting tillage practices 总被引:2,自引:0,他引:2
Soil erodibilty during concentrated flow (Kc) and critical flow shear stress (τcr), both reflecting the soil's resistance to erosion by concentrated runoff, are important input parameters in many physically-based soil erosion models. Field data on the spatial and temporal variability of these parameters is limited but crucial for accurate prediction of soil loss by rill or gully erosion. In this study, the temporal variations in Kc and τcr for a winter wheat field on a silt loam soil under three different tillage practices (conventional ploughing, CP; shallow non-inversion tillage, ST; deep non-inversion tillage, DT) in the Belgian Loess Belt were monitored during one growing season. Undisturbed topsoil samples (0.003 m3) were taken every three weeks and subjected to five different flow shear stresses (τ = 4–45 Pa) in a laboratory flume to simulate soil detachment by concentrated flow. To explain the observed variation, relevant soil and environmental parameters were measured at the time of sampling. Results indicated that after two years of conservation tillage, Kc(CP) > Kc(DT) > Kc(ST). Kc values can be up to 10 times smaller for ST compared to CP but differences strongly vary over time, with an increasing difference with decreasing soil moisture content. The beneficial effects of no-tillage are not reflected in τcr. Kc values vary from 0.006 to 0.05 sm−1 for CP and from 0.0008 to 0.01 sm−1 for ST over time. Temporal variations in Kc can be mainly explained by variations in soil moisture content but consolidation effects, root growth, residue decomposition and the presence of microbiotic soil crusts as well play a role. τcr values increase with increasing soil shear strength but Kc seems more appropriate to represent the temporal variability in soil erosion resistance during concentrated flow. The large intra-seasonal variations in Kc, which are shown to be at least equally important as differences between different soil types reported in literature, demonstrate the importance of incorporating temporal variability in soil erosion resistance when modelling soil erosion by concentrated flow. 相似文献
19.
降雨条件下耕作方式对地表糙度的溅蚀效应 总被引:4,自引:4,他引:4
地表糙度是影响坡耕地土壤侵蚀的主要因素之一,为了进一步明确耕作方式对地表糙度的侵蚀效应,该文通过室内人工模拟降雨的方法,就单雨强与组合雨强条件下耕作方式对溅蚀的作用以及地表糙度的变化进行了研究。结果表明,从对照坡面,经耙耱地、人工锄耕、人工掏挖到等高耕作方式的坡面,在雨强0.62 mm/min条件下,不同耕作方式坡面向上坡溅蚀量呈先增加再减小的变化,向下坡和总溅蚀量均呈先增加再减小最后增加的变化;除耙耱地外,其他耕作方式坡面的地表糙度呈减小的变化。在雨强1.53 mm/min条件下,不同耕作方式坡面向上坡、向下坡和总溅蚀量均呈先增加再减小最后增加的变化;地表糙度与对照坡面相反,均呈增加的变化。组合雨强条件下,随降雨强度的增加,耙耱地总溅蚀量与地表糙度呈一直增加的变化趋势;其他耕作方式下,随降雨强度的增加,坡面总溅蚀量呈先增加后减小的变化趋势,地表糙度却呈先减小后增大的变化。这为揭示地表糙度的侵蚀特征提供了一定的理论依据,同时也可服务于黄土高原坡耕地的水土流失治理。 相似文献
20.
转变耕作方式对长期旋免耕农田土壤有机碳库的影响 总被引:3,自引:6,他引:3
土壤深松是解决长期旋免耕农田耕层浅薄化、亚表层(>15~30 cm)容重增加等问题的有效方法之一,而将长期旋免耕农田进行深松必然导致农业生态系统中土壤有机碳(soil organic carbon,SOC)及碳固定速率的变化。因此,为对比将长期旋免耕转变为深松前后农田土壤有机碳库变化,该研究利用连续12a 的旋耕和免耕长期定位试验以及在此基础上连续6 a旋耕-深松和免耕-深松定位试验,对比了转变耕作方式对农田土壤0~30 cm有机碳含量、周年累积速率及其固碳量的影响。研究结果表明,经过连续12 a的旋耕和免耕处理(2002-2014),2014年免耕处理土壤0~30 cm有机碳储量比试验初期(2002年)提高38%,旋耕处理降低了30%,而对照常规处理无显著差异。免耕处理土壤0~30 cm有机碳储量比旋耕处理高约2.6倍(2014年)。长期免耕显著提高了土壤0~30 cm的有机碳含量,2002~2014年其土壤0~30 cm固碳量为16.69 t/hm2,但长期旋耕导致土壤0~30 cm SOC含量显著降低,表现为土壤有机碳的净损耗,年损耗速率为?0.75 t/hm2。而长期旋耕后进行深松(旋耕-深松处理)6年其土壤0~30 cm的有机碳含量较原旋耕处理提高32%~67%,且显著提高了土壤固碳量及周年累积速率;免耕-深松土壤0~30 cm的有机碳周年累积速率较免耕处理下降了42%。长期旋耕造成有机碳水平下降的条件下,将旋耕处理转变为深松处理在短期内更有利于促进土壤有机碳的积累,而将长期免耕处理转变为深松措施,降低了土壤有机碳的累积速率和固碳量。 相似文献