首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
选取3种垫料(40%稻壳+60%菌糠、40%稻壳+60%锯木屑、40%稻壳+60%酒糟)为研究对象,分别在育肥猪进栏前和出栏后对垫料和表层土壤进行采样分析,采用物质流分析的方法分析了一个养猪周期内3种垫料TP和TK的损失途径。结果表明:P素在发酵床养殖过程中主要的损失途径为猪采食与淋溶损失,总损失量分别为(FJ:40%稻壳+60%菌糠组合)15.69 kg、(FD:40%稻壳+60%锯木屑组合)16.61 kg、(FW:40%稻壳+60%酒糟组合)14.37 kg;而3种发酵床分别有(FJ)80.74 kg、(FD)52.48 kg、(FW)84.65 kg的总P库存在垫料中,75%~85%的P素会滞留在垫料中,损失率均超过14%。K素的主要损失途径也为猪采食与淋溶损失,总损失量分别为(FJ)45.95 kg、(FD)33.95 kg、(FW)63.95 kg;总库存的K素分别为(FJ)158 kg、(FD)107 kg、(FW)136 kg,68%~78%的K素会留存在垫料中,损失率均超过22%。养殖过后发酵床下部表层土壤会出现P素和K素累积现象,为了防止元素通过淋溶作用渗漏损失,建议发酵床垫料厚度要超过50 cm。  相似文献   

2.
为了研究猪舍不同发酵床垫料及发酵床底部表层土壤中重金属As的累积特征与活性大小,以节约经济成本和适宜猪生长发育为前提选取3种发酵床垫料组合:40%稻壳+60%菌糠(FJ)、40%稻壳+60%锯木屑(FD)、40%稻壳+60%酒糟(FW),采用物质流分析和潜在生态危害评价的方法进行研究。结果表明,经过1个饲养周期,FD组合的发酵床垫料中重金属As的累积量最高;不同垫料组合对As活性大小的影响不同,FJ组合中有效态As显著高于其他两种,所占比例高达14.25%(P0.05);表层土壤中FJ组合中有效态As同样显著高于其他两种,所占比例为8.68%(P0.05),其次是FW组合FD组合。因此从减少As污染角度出发,FD组合优于FJ组合和FW组合。经过生态危害评价分析,3种组合垫料在养殖结束后其潜在生态危害均未超过轻微生态危害临界值(Ei r≤40),在不断补充垫料的前提下发酵床可以使用约3年。  相似文献   

3.
为了研究养猪舍不同发酵床垫料及发酵床底部表层土壤中重金属Zn的累积特征与活性大小,以节约经济成本和适宜猪生长发育为前提选取3种发酵床垫料组合:FJ(40%稻壳+60%菌糠)、FD(40%稻壳+60%锯木屑)、FW(40%稻壳+60%酒糟),采用物质流分析(MFA)和潜在生态危害评价的方法进行研究。结果表明,一个在养猪周期过后,重金属Zn在垫料FD中累积量较大;而不同垫料对Zn活性大小的影响不同,FD中有效态Zn活性显著高于其他2种,所占比例高达25.01%,其次是FJ>FW(P<0.05);表层土壤中,有效态Zn活性高低差异不显著(P>0.05)。所选取的3种垫料中,尽管Zn在FJ中累积量最小,渗漏到土壤中的全量Zn与有效态活性与其他2种垫料无明显差异,然而其潜在生态风险最小,因此从控制Zn污染角度出发,该配比垫料优于FD与FW。经过潜在生态危害评价分析,3种垫料在养殖结束后其潜在生态危害均未超过轻微生态危害临界值(Ei r≤40),在不断补充垫料的前提下发酵床可以使用约10年。  相似文献   

4.
养猪舍不同发酵床重金属累积特征初探   总被引:1,自引:1,他引:0  
以节约经济成本和适宜猪生长发育为前提选取3种发酵床垫料组合:40%稻壳+60%菌糠(FJ)、40%稻壳+60%锯木屑(FD)、40%稻壳+60%酒糟(FW),采用物质流分析的方法分析了在一个养猪周期内3种垫料Zn、Cu、As全量的累积过程;同时测定了不同垫料剖面层次中3种重金属的含量变化;并通过测定有效态Zn、Cu、As含量分析3种重金属在垫料和表层土壤中的活性;最后应用瑞典科学家Hakanson提出的潜在生态危害指数法分析和评价该区域表层土壤的重金属污染指数和潜在生态危害。结果表明,经过一个养殖周期,Zn和Cu含量随垫料层次加深逐层递减,而As含量则随垫料层次加深逐层递增,尽管如此,绝大部分Zn、Cu、As仍作为库存累积在垫料中,只有极少部分通过淋溶作用渗漏到床底表层土壤中;不同垫料对3种重金属的吸纳效果、活性大小的影响均不同;经过生态危害评价分析,3种垫料在养猪结束后其Zn、Cu、As的潜在生态危害均未超过轻微生态危害临界值(RI≤150),为了最好地控制Cu、Zn、As污染并保留有机肥营养,建议发酵床使用年限为3年左右。  相似文献   

5.
猪舍不同发酵床垫料温室气体排放研究   总被引:1,自引:1,他引:0  
为评价生态养猪过程中不同发酵床垫料组成对温室气体排放的影响,在南京六合发酵床养殖基地,设置3种不同垫料的发酵床处理,其垫料组成分别为木屑(S)、木屑+稻壳(SR)、木屑+稻壳+秸秆段(SRS).在一个试验周期内,连续测定垫料中CO2、CH4及N2O等温室气体的排放,以及pH、含水率、铵态氮和硝态氮的动态变化,同时分析了三种垫料温室气体排放差异的机理.结果表明,垫料排放的温室气体以CO2和N2O为主,二者在三种温室气体二氧化碳排放当量中的占比高达99.3%~99.6%;三种垫料N2O的排放主要集中在猪出栏前一个月,占整个试验期间排放总量的61%~68%;在垫料中添加秸秆段(SRS)对CO2和N2O排放总量的影响不显著,但显著增加CH4的排放,其CH4排放总量分别是S和SR的2.30倍和2.46倍;SRS的二氧化碳排放当量亦高于S和SR,而S和SR的二氧化碳排放当量相差不大,三种处理间无显著性差异.  相似文献   

6.
江苏省畜禽养殖温室气体排放估算   总被引:3,自引:0,他引:3  
根据畜禽养殖的活动数据和温室气体排放因子,采用IPCC指南(2006)推荐的排放系数法,估算江苏省2000~2009年畜禽温室气体排放量。结果显示:江苏省畜禽养殖甲烷年平均排放总量为174.63 Gg,氧化亚氮年平均排放总量为20.80 Gg。其中,畜禽肠道发酵是重要甲烷排放源,年平均排放量为106.63 Gg,占畜禽甲烷排放总量的61.06%;粪便管理甲烷排放是畜禽温室气体的另一重要来源,年平均排放量为68 Gg,占甲烷排放总量的38.94%;2000~2009年期间江苏省畜禽温室气体排放量总体呈下降的趋势,肠道发酵羊的甲烷排放量最大,粪便管理中温室气体排放生猪排放贡献最大,前者主要是由排放系数决定,后者取决于饲养量。  相似文献   

7.
为明确漏缝地板发酵床对育肥羊养殖过程氨(NH3)和温室气体排放特征的影响机制,本研究设置地面和漏缝地板发酵床两个试验处理,测定分析了育肥羊养殖过程NH3、氧化亚氮(N2O)、二氧化碳(CO2)和甲烷(CH4)的排放特征,并采用宏基因组学解析了影响上述气体排放的微生物学机理。试验结果表明,与地面相比,漏缝地板发酵床能够显著降低育肥羊养殖过程的NH3排放(P<0.05),其NH3排放速率为21.64~58.92 mg·m-2·h-1,NH3累积排放量为86.36±1.06 g·m-2,减排率达58.60%。漏缝地板发酵床同样也能显著降低育肥羊养殖过程的CH4排放速率(P<0.05),其CH4累积排放量为26.66 g·m-2,减排率可达64.42%。然而,漏缝地板发酵床会使得...  相似文献   

8.
猪发酵床垫料中氮、磷、重金属元素含量   总被引:7,自引:0,他引:7  
发酵床养猪技术是基于控制畜禽粪便排放与污染的一种新的养殖模式,主要是将锯末、稻壳等材料接种生物菌种堆积发酵后用做垫料,在厚的垫料上养猪,使粪便被垫料吸附并被其中的微生物降解,达到降低养殖舍内有害气体浓度和减少养殖污染排放的目的[1-4].发酵床养猪主要降低了粪便对水源环境的污染.但是,有人认为发酵床养猪法无法降解的有机物及无机物(如磷元素)会沉积在粪床垫料中,排放的内容物会被高浓度浓缩;同时认为饲料中添加的铜、锌等元素在粪床里超浓缩富集后,一次性地排放到某一特定环境中,会造成很大的危害[5-6].  相似文献   

9.
依据2012年渔业部门的统计数据及前期研究成果,利用Oak Ridge National Laboratory(ORNL)提出的二氧化碳(CO2)排放量的计算方法,对我国池塘养殖增氧设备的二氧化碳排放量进行估算,计算和比较了增氧设备的合理利用带来的二氧化碳减排量,在此基础上对增氧设备的二氧化碳排放强度进行计算和分析。结果表明:2012年我国增氧设备的二氧化碳排放总量约为10 461.83万t,占当年二氧化碳排放总量的1.17%;利用射流式增氧机取代叶轮式增氧机,二氧化碳排放量可以减少2 323.92万t,占增氧设备排放总量的22.21%;相比单独使用叶轮式增氧机,将耕水机与叶轮式增氧机结合使用,二氧化碳排放量可减少2 061.17万t,占增氧设备排放总量的19.70%;池塘养殖增氧设备的二氧化碳排放强度为1.57 kg/美元,是美国二氧化碳排放强度的4.62倍。  相似文献   

10.
一株发酵床接种用枯草芽孢杆菌的分离鉴定   总被引:2,自引:2,他引:0  
从发酵床养殖垫料堆体中分离筛选到一株细菌,再次接种锯末、稻壳与鸭粪的混合物,与空白对照组相比,堆积时间缩短3天,单位发酵垫料对粪污的处理能力增加,垫料在使用28~49天间,氨气排放降低30%~50%。经16S rDNA序列比较,该菌为枯草芽孢杆菌。  相似文献   

11.
抵消机制背景下企业森林碳汇需求价格模拟   总被引:1,自引:1,他引:0       下载免费PDF全文
  目的  从森林碳汇需求角度,测算与分析企业减排成本、森林碳汇需求价格及政策影响因素,以期更全面了解森林碳汇的市场需求潜力,推进森林碳汇市场的发展。  方法  以北京、上海、湖北、广东4个碳交易试点省(市)为案例区,选择火电、化工、钢铁3个碳排放密集型代表行业,通过方向性距离函数方法计算89家2 759个样本减排单位的碳边际减排成本,进而采用罗宾斯坦恩博弈模型测算森林碳汇的需求价格,运用云模型测度不同行业和地区企业的森林碳汇需求价格并模拟政策变化对价格的影响。  结果  样本结果显示:火电、钢铁、化工行业的森林碳汇需求价格均值分别为631、556和575元·t?1,上海市、北京市、广东省和湖北省企业的均值分别为305、456、877和715元·t?1;云模型模拟分析结果表明:随着政府允许碳汇抵消比例的提高和碳汇补贴额度的增加,各行业和各省(市)企业对森林碳汇的需求价格上升,随着碳税征收率的提高,需求价格呈现下降趋势。  结论  不同地区不同行业的二氧化碳边际减排成本存在较大差异且逐年上升,森林碳汇是未来的减排趋势;目前火电行业企业已经正式启动全国碳排放权交易市场,云模型模拟结果显示:化工行业比其他2个行业更易受政策影响,因此合理的允许抵消比例与补贴政策组合下,火电、化工行业将会是未来森林碳汇的重大需求者。森林碳汇市场的发展潜力是巨大的。图4表5参28  相似文献   

12.
中国能源消费碳排放时空动态变化   总被引:1,自引:0,他引:1       下载免费PDF全文
运用碳排放计算方法对1995-2015年中国能源消费碳排放进行核算,同时引入碳排放压力指数分析碳排放压力时空动态变化特征.结果表明:近21年来,中国能源消费碳排放总量由38.57亿t增至125.16亿t,人均碳排放由3.23 t增至9.15 t,碳排放强度由6.7 t/万元下降至2.62 t/万元,碳排放压力指数由0.13波动增至0.40,从较低等级(Ⅰ_b)上升至中下等级(Ⅱ_a);空间分布上,各省碳排放压力具有显著差异, 2015年沪、津、鲁、苏、晋、京、辽、宁、冀、浙、豫为很高等级(Ⅲ_b),粤、蒙、陕、皖为较高等级(Ⅲ_a),闽、琼、渝、鄂为中上等级(Ⅱ_b),贵、新、吉、湘、赣为中下等级(Ⅱ_a),桂、黑、甘、川、青、云为较低等级(Ⅰ_b).  相似文献   

13.
基于1991—2011年的数据,采用多项式和趋势移动平均预测模型预测了2012—2020年我国的GDP和CO2排放量,并经过一定修正,预测2020年我国的单位GDP的碳排放量为1.68 t/万元,比2005年减排45%,达到我国提出的到2020年单位GDP的碳排放比2005年减排40%45%的目标.  相似文献   

14.
提出并分别阐述二氧化碳排放权的排放额度需求、交易需求和投资需求3种概念,分析了使用价值、使用数量、生产技术水平等3个内生变量对企业碳排放权需求的影响;并论述了利益集团影响力、替代能源、交易价格和碳税等4个外生变量对企业碳排放权需求的作用机制,以及政府进行宏观碳排放权配置时应考虑这些变量的影响。  相似文献   

15.
本研究依据2001-2010年农作物产量、耕地面积及农业投入等数据,对德州市农田生态系统碳汇进行估算并分析变化情况,并探讨农田生态系统碳源汇的影响因素;结果显示德州市2001-2010年农田生态系统的碳吸收总量呈增加的趋势;小麦、玉米作为主要的粮食作物,吸收量明显高于其他农作物;2001-2010年德州市碳排放呈现先增后减的变化;不同县市由于农业发展方向和发展特色的差异,造成碳排放也不相同;五种途径碳排放过程中,化肥施用过程中碳排放所占的比例较大且呈减少的趋势;2001-2010年德州市碳吸收量远远大于碳排放量,德州市农田生态系统具有很强的碳汇功能。碳源汇影响因素分析表明,德州市农田生态系统碳吸收量与小麦、玉米、棉花的产量有正相关;农用化学品投入和燃料动力使用以及耕作灌溉管理均显著正相关。  相似文献   

16.
广东省农田生态系统碳足迹时空差异分析   总被引:1,自引:0,他引:1  
以广东省为例,通过1992要2011 年化肥、农药、农膜使用量、灌溉面积、农业机械总动力、农作物产量等 统计数据,估算了区域农田生态系统碳吸收、碳排放及碳足迹的时空特征。结果表明院近20 年来,广东省农作物碳吸 收总量总体处于下降趋势,从1992 年的4 017.02 万t 减少到2011 年的2 925.42 万t,减幅达到27.17%,年均递减 1.66%。而碳排放基本上呈现逐渐增加的趋势,排放总量从1992 年的224.05 万t 增加到2011 年的261.69 万t,增幅 为16.80%。广东省农田生态系统碳足迹呈现波动增加的趋势,2011 年比1992 年增长了89.76%,年平均增长率为 3.43%,碳足迹占同期生产性土地面积比例逐渐增大,2011 年达到8.95%。广东省农田生态系统表现为碳生态盈余, 且生态盈余占同期生产性土地面积比例逐步减小。各地区之间的碳足迹区域差异也较大。  相似文献   

17.
福建省农田生态系统碳源/汇时空变化及其影响因素分析   总被引:1,自引:0,他引:1  
准确估算农田生态系统的碳排放和碳吸收对制定合理的农业减排措施具有重要意义.基于1991-2010年福建省农作物产量、耕地面积、农业投入等农业活动水平数据,对福建省农田生态系统的碳源汇进行估算,并分析碳源汇的时空变化特征及其影响因素.结果表明,1991-2010年福建省农田生态系统碳吸收总量总体呈下降趋势,从1991年的1161.14×104t减少到2010年的672.13×10^4t,减幅为42.11%,年平均递减5.89%;碳排放总量呈增加的趋势,从1991年的114.05×10^4t增加到2010年的195.10×10^4t,增幅达71.07%,年均递增2.87%;碳汇量总体呈降低趋势,从1991年的1047.09×10^4t降低到2010 年的477.03×10^4t,减幅为54.44%,年均递减8.36%;福建省农田生态系统单位耕地面积碳吸收呈下降的趋势,而单位耕地面积碳排放基本保持不变.2010年南平市的碳吸收量和碳汇量最大,漳州市的碳排放量最大,而厦门市的碳吸收量、碳排放量和碳汇量均最小.碳源汇影响因素相关性分析表明,碳吸收与水稻、小麦、甘蔗产量呈极显著正相关;碳排放与钾肥、复合肥、农药、农机动力、柴油使用均有极显著的正相关性.研究结果能够为福建省低碳农业发展提供科学参考.  相似文献   

18.
为预测碳达峰时间和峰值,综合分析减排潜力,本研究使用生命周期评价法对2004—2018年棉花生产碳排放进行核算,基于STIRPAT模型进行模拟,结合Kaya恒等式确定模型变量为技术效率、生产规模、进口数量、农业经济和城镇化率,通过岭回归确定系数将2019—2035年碳排放情景分为高减排度情景(HERS)、中等减排度情景(MERS)、基准情景(BS)3类进行变量设定和预测。结果表明:2004—2018年中国棉花生产碳排放及其增长率呈缓慢上升趋势,2018年碳排放达到最高值(24.34万t),新疆的碳排放值最大(2018年占比86.8%)并呈明显增加的趋势,肥料生产与施用、灌溉用电、农膜是生产过程中的主要碳排放构成因素。用于模拟中国棉花生产碳排放的STIRPAT模型性能良好(R2=0.866,adjusted R2=0.792,P=0.001),自变量均对因变量有显著影响(P<0.01),生产规模、城镇化率和技术效率是主要宏观影响因素。结果显示2019—2035年HERS、MERS、BS下中国棉花生产碳达峰时间分别是2021、2025、20...  相似文献   

19.
对武安市农田生态系统碳吸收量和排放量进行估算,并对其主要影响因素进行分析,以寻求减少农田生态系统碳排放的有效途径,进而促进农业的可持续发展。结果表明,武安市农田生态系统碳排放量整体呈相对稳定状态,其中化肥生产使用是主要的碳排放源;农田生态系统碳吸收量总体呈先降低后升高趋势,年际间波动明显,主要原因是农业投入的变化与种植结构的调整。相关性分析表明,碳吸收量与农作物产量、主要农作物类型、有效灌溉面积、农业机械的使用均存在正相关关系;碳排放量与化肥的生产使用、农业机械使用、有效灌溉面积以及农作物播种面积均呈正相关关系。基于以上分析,提出了调整农作物种植结构,改善化肥条件,调整耕作模式和灌溉制度以及秸秆等废弃物处置方式的建议,以达到促进温室气体减排和低碳农业发展的目的。  相似文献   

20.
为推动畜牧业甲烷减排进程以及实现畜牧业绿色可持续发展提供数据支撑和科学依据,利用FAO数据库1961-2019年的长时序统计数据,分析了全球畜牧业甲烷排放量的变化趋势,结果发现:(1)1961-2019年,全世界各地区畜牧业甲烷估计排放量存在显著差异,并且总体呈不断上升趋势。(2)全球反刍动物甲烷排放量由1961年的6 804.79万t增加至2019年的10 352.91万t,分别占畜牧业甲烷排放总量的96.98%、97.51%;在不同品种反刍动物中,甲烷排放量前3位分别是肉牛、奶牛、水牛,其排放量分别由1961年的3 498.87万、1 861.56万、520.98万t增加至2019年的5 666.16万、1 996.04万、1 208.33万t。(3)印度、中国、巴基斯坦等国作为畜牧生产大国,牛、羊等反刍动物产量均排名世界前10位,其甲烷排放量也在不断增长,且增量多增速较快。在此基础上本研究提出了控制畜牧业甲烷排放的策略:在政策层面,建立畜牧业甲烷排放的统计数据与规范测算标准,对畜牧业温室气体排放征税或使其参与碳市场,建立奖励机制激励农户降低农场甲烷排放,加强生产者和消费者的气候变...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号