首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 109 毫秒
1.
作物的磷素需求和投入的差异导致土壤磷素积累对环境的影响不同。通过分析京郊平谷区果树、蔬菜和粮食作物的磷素投入数量和农田土壤有效磷含量,比较研究不同作物体系中土壤磷素积累对环境的影响。结果表明,粮田、菜地和果园平均年际磷投入量分别为76、575kgP2O5·hm-2和693kgP2O5·hm-2,其中菜地和果园的磷素投入以有机肥为主,年际磷盈余分别达到498kgP2O5·hm-2和468kgP2O5·hm-2,远大于粮田的磷素盈余(38kgP2O5·hm-2)。这种状况造成粮田、菜地和果园土壤Olsen-P含量差异很大,分别为18.4(n=260)、44.3(n=108)mg·kg-1和40.4mg·kg-1(n=548)。分析钙质土壤Olsen-P与CaCl2浸提P的相关性发现,钙质土壤存在着Olsen-P与CaCl2-P突变拐点即磷的淋溶拐点,在拐点之后土壤CaCl2-P随土壤Olsen-P的增加而显著增加,且土壤磷淋溶拐点明显受土壤类型及质地的影响。按质地分类,砂壤、轻壤和重壤拐点分别是23.1、40.1mg·kg-1和51.5mg·kg-1,土壤质地由轻至重拐点Olsen-P值随之逐渐增加。根据质地模拟...  相似文献   

2.
种植年限对设施菜田土壤剖面磷素累积特征的影响   总被引:11,自引:2,他引:9  
以山东寿光集约化设施菜田为研究对象,分析了不同种植年限设施菜田土壤磷素投入和土壤磷素累积的差异,比较不同种植年限土壤剖面中无机磷、有机磷、Olsen-P和CaCl2-P含量的变化特征。结果表明:磷素过量积累是设施菜田的显著特征,主要由于有机肥以粪肥投入为主,复合肥中P素比例偏高,收获作物带走量仅占磷素投入的7.2%;随着种植年限增加,P素累积现象明显,过量的磷素盈余导致了土壤剖面中不同形态磷含量的上升,其中以无机磷尤其明显;用来表征土壤有效磷指标的Olsen-P与CaCl2-P有显著的相关性,研究区域中当土壤(Olsen-P)达到80.7mg·kg-1时,土壤CaCl2-P开始显著升高,增大了设施菜田磷素淋溶风险。  相似文献   

3.
福州市蔬菜地土壤磷淋失的“阈值”研究   总被引:2,自引:0,他引:2  
以福州郊区蔬菜地土壤为研究对象,通过室内模拟试验,研究6种不同土壤测试磷(Olsen-P、CaCI2-P、H2O-P、NaOH-P,Bray-P、有机磷)含量与磷素淋失之间的关系,探讨土壤磷素淋失风险评估的指标.结果表明,CaCI2-p、有机磷与淋洗液溶解总磷(DTP)的当次释放量及其累积量具有极显著的相关关系,可作为评价蔬菜地土壤磷淋失风险的指标,以DTP 0.05 nmg·L-1作为引起水体富营养化的临界值,获得本试验区域蔬菜地土壤磷素淋失的CaCl2-P、有机磷阀值分别为14.1 mg·kg-1和205.8 mg·kg-1;以Hesketh2000年提出的“突变点”方法预测土壤磷素淋失风险,得出本试验区域蔬菜地土壤磷发生淋溶的Olsen-P“突变点”为96.6 mg · kg-1·.  相似文献   

4.
阿克苏地区春玉米磷阈值研究   总被引:3,自引:0,他引:3  
[目的]研究阿克苏地区春玉米施用磷肥安全阈值,为提高新疆南疆玉米生产率和磷肥利用率,降低环境风险提供理论基础.[方法]以玉米SC704为供试品种进行田间试验,研究施磷量(4个磷素水平:0、140、280、560 kg/hm2 P2O5)对玉米产量和土壤有效磷含量的影响.[结果]施磷量与玉米产量效应可以用二次曲线+平台模拟;当施磷量达141.8 kg/hm2时,可达到平台产量11 448.9 kg/hm2;二次曲线模型中当施磷量为219.5 kg/hm2时,玉米可达最高产量12 051.5 kg/hm2.施磷量与Olsen-P的关系可用Y=0.047 5 X+8.67拟合,R2=0.9099;施磷量与CaCl2-P的关系可用y=0.000 8X +0.112 3拟合,R2=0.843 5.磷素淋溶“突变点”为Olsen-P 26.2 mg/kg,要达到突变点所需要的施磷量为330.9 kg/hm2.[结论]当施磷量低于330.9kg/hm2时,不会导致该土壤CaCl2-P猛增.在实际生产中,土壤Olsen-P达到14.4 mg/kg可获得玉米高产,其对应的施磷量为130.2 kg/hm2.  相似文献   

5.
    采用化学测试方法研究杭州市郊25个典型菜园土壤的磷素状况以及农学和环境磷素测试值间的相互关系,以建立磷素淋失的评价指标结果表明,菜园土壤全磷(TP)和土壤测试磷如水溶性磷(CaCl2-P)、速效磷(Olsen-P)、Mehlich Ⅲ提取的磷(PM3)均存在较大的变幅,分别为07~29 gkg-1、048~1964 mgkg-1、1065~15160 mgkg-1和5053~90495 mgkg-1,72%的土壤超过菜园土磷素丰缺的有效磷临界值(Olsen-P=60 mg·kg-1)草酸浸提的土壤磷饱和度(DPSox)和Mehlich Ⅲ浸提的土壤磷饱和度(DPSM3)分别在691%~4915%和582%~5256%之间,与TP、Olsen-P、PM3之间存在极显著的正相关,DPSox与DPSM3间存在极显著正相关通过分段线性模型分析水溶性磷与Olsen-P、DPSox和DPSm3的关系,均存在一个明显的突变点(土壤磷素淋失的临界值),该值分别为Olsen-P=7619 mg·kg-1,DPSox=26%,DPSM3=22%,供试土壤中超过上述Olsen-P或者DPS临界值的占60%以上,存在磷素淋溶的风险土壤磷素淋失的Olsen-P临界值高于农学磷素丰缺的临界值,因此,合理施用磷肥和有机肥使土壤磷水平低于上述磷素淋失临界值,不仅可以满足作物的磷素营养需要,而且可以避免磷淋溶进入水体  相似文献   

6.
濆江流域不同土地利用方式下土壤磷积累特征及流失风险   总被引:2,自引:0,他引:2  
采用实地采样调查、室内分析与数理统计法研究了濆江小流域耕地、果园、茶园、人工林地、自然林地、饲草地和荒草地7种土地利用方式下表层土壤磷素的积累及吸附特征。结果表明,人工林地、饲草地与耕地土壤全磷>1.0 g·kg-1,呈现积累趋势;饲草地和耕地的Olsen-P≥40.0 mg·kg-1,超过磷素流失临界值;人工林地、饲草地和耕地土壤Ca Cl2-P>4.5 mg·kg-1,也超过磷素流失临界值。茶园土壤吸附固定磷能力极强,耕地、果园地、林地(尤其是人工林地)与草地土壤的吸附固定磷能力较弱。人工林地、耕地与饲草地土壤磷素流失风险较高,宜采用补偿性施磷或维持性磷肥法;果园、荒草地、自然林地的风险较低,茶园土壤磷素几乎无流失风险。  相似文献   

7.
农田土壤磷素(P)累积使得农田土壤P淋溶风险增加,了解农田土壤P淋溶阈值并解析其主控因素对于合理控制农田土壤P保证农业生产同时减轻水体环境风险具有重要作用。选取我国分布较广的18个省共14种典型农田土壤,通过室内模拟试验测定了P淋溶阈值并探讨了土壤P淋溶阈值与土壤理化性质的关系,明确了影响P淋溶阈值的主控因素。结果表明:我国农田土壤P淋溶阈值差异很大,土壤有效磷(Olsen-P)含量为14.9~106.2 mg/kg。农田土壤P淋溶阈值随土壤pH值、交换性钙含量、无机碳含量、沙粒含量的增加而减小,随土壤阳离子交换量(CEC)、有机碳、活性铁铝含量、交换性镁含量、黏粒含量、土壤有效磷含量的增加而增大。利用土壤pH值、CEC、交换性镁含量、初始土壤有效磷含量等土壤性质参数能较好地预测不同类型农田土壤的P淋溶阈值。在一定程度上,土壤pH值可作为评估农田土壤P淋溶风险大小的有效指标。考虑到我国农田土壤pH值的分布状况,结合土壤背景值,北方农田土壤P淋溶风险大于南方农田土壤,更应加强土壤磷的管理。  相似文献   

8.
施用粪肥对农田土壤磷素累积和饱和度增加速率的影响   总被引:4,自引:1,他引:3  
针对施用粪肥导致的我国集约化种养区域农田土壤磷素高量累积和高环境风险问题,利用长期定位试验定量分析了施用粪肥对农田土壤磷素累积和磷饱和度(DPS,degree of P saturation)增加速率(每年1 kg P·hm~(-2)磷素盈余所导致的土壤磷素含量或DPS变化量)的影响。结果表明:连续22年过量磷素投入明显提高了土壤磷素含量和DPS,0~20 cm土层土壤磷素累积、DPS增加与磷素盈余均存在明显的线性相关性。与单施化肥相比,施用粪肥对土壤全磷的累积速率影响不大,但是明显提高了土壤Olsen-P累积和DPS增加速率。施用粪肥下,每年1 kg P·hm~(-2)的磷盈余所导致的0~20 cm土层土壤Olsen-P、CaCl_2-P累积和DPS增加量分别为0.071 mg P·kg~(-1)(r=0.608,P=0.029)、0.003 mg P·kg~(-1)(r=0.528,P=0.066)和0.036%(r=0.863,P=0.002),分别为不施粪肥的3.3、6.0倍和1.2倍。土壤DPS变化与磷含量变化之间也存在明显的线性关系,0~20 cm土层土壤每年全磷、Olsen-P和CaCl_2-P含量增加1mg P·kg~(-1)所导致的土壤DPS增加值分别为0.13%、0.42%和7.78%。20~40 cm土层土壤磷素累积、DPS增加与磷素盈余之间的线性相关性均较差,但与0~20 cm土层相比,施用粪肥和不施粪肥之间累积速率的差异性有增大的趋势,说明施用粪肥促进了磷素向下层土壤的移动。施用粪肥加速了土壤有效磷累积和DPS增加,进而提高了土壤中磷素损失风险,合理施用粪肥是控制集约化种养区域农田磷面源污染的关键。  相似文献   

9.
[目的]研究滇池流域集约化农田土壤氮磷养分的空间异质性。[方法]通过对滇池流域19个点位不同土壤剖面养分和土壤物理特性的分析,研究了不同质地土壤养分的空间异质性,分析了滇池流域土壤养分含量的水平垂直空间分布、养分运移流失规律和影响因子与养分含量间的相互关系。[结果]滇池流域土壤质地以壤质黏土为主,这决定土壤养分易随地表径流或渗漏流失。其中,NO3--N的流失潜力是渗漏方式;NH4+-N和Olsen-P的流失潜力是径流和渗漏2种方式。滇池流域土壤NH4+-N、NO3--N和Olsen-P含量高,耕层(0~20 cm)土壤含量分别为124.11、342.42、109.93 mg/kg,养分含量盈余;总体而言,随着土层深度增加均呈逐渐降低的趋势。0~20cm耕层土壤NH4+-N含量显著高于深层土壤,而深层土壤显著高于亚表层;NO3--N在0~40 cm土壤剖面中存在2个浓度累积峰,40~60、60~80、80~100 cm土壤剖面NO3--N含量极低,接近痕量;0~40 cm土层土壤Olsen-P含量显著高于40~60、60~80、80~100 cm土层,耕层(0~20 cm)土壤Olsen-P含量高达109.93 mg/kg,已超过土壤磷素淋溶的"突变点",磷素渗漏流失的风险大。滇池流域不同点位各土层间NH4+-N、NO3--N和Olsen-P含量差异极显著;土壤pH值、容重、孔隙度、含水量和土壤质地等指标在不同点位间没有明显的变化规律。[结论]该研究可为解释滇池流域不同点位氮磷的流失规律提供理论依据。  相似文献   

10.
长沙市郊不同种植年限菜地土壤磷状况及淋失风险分析   总被引:12,自引:1,他引:12  
目的提出长沙市郊蔬菜土壤磷淋失临界值,对不同种植年限对土壤淋失风险的影响进行评价。方法选择长沙市郊3种不同种植年限蔬菜土壤为研究对象,采用化学测试方法分析菜地土壤有效磷含量与磷素淋失风险之间的关系。结果Olsen-P与CaCl2-P和土壤溶液中磷浓度之间存在极显著的正相关,并且随着Olsen-P浓度的增加,CaCl2-P和土壤溶液中磷也随之增加并存在一个明显的突变点。通过分析Olsen-P含量与CaCl2-P含量和土壤溶液中磷含量之间的关系,确定80mg·kg-1为长沙市郊菜地土壤磷淋失的临界值。利用GIS和指示克立格法得到长沙市郊蔬菜土壤超过临界值的磷淋失概率并划分为4个淋失风险等级,结果表明,超过30年的老蔬菜基地(陈家渡)和15年左右种植年限的蔬菜基地(黄兴镇)均存在高强度磷淋失风险,磷淋失风险系数分别为3和2.93。1-2年新开辟蔬菜基地(宁乡)磷淋失风险最低,淋失风险系数为0.06,基本不存在磷淋失的风险。结论长沙市郊菜地土壤磷淋失风险严重,种植年限越长,淋失风险越大。  相似文献   

11.
预测土壤中磷的长期淋洗性需要了解土壤特性和不同形态磷的行为.本研究用模拟试验评估了不同磷负荷砂质土壤中不同形态磷的移动性.分别从浙江省衢州市和温州市采集具不同磷含量的蔬菜地土壤,每一地点分别采集2个深度的土壤(0~10 cm和10~30 cm),表层土壤(0~10 cm)通过添加不同量的磷酸盐、CaCO和无定形氧化铁,形成研究需要的不同磷含量和不同磷形态的系列土壤样品;淋洗柱长30 cm,由10 cm经培养处理的表层(0~10 cm)土壤和未经培养处理的亚表层土壤(10~30cm)构成,每一淋洗土柱连续经历12个循环的0.002 mol?L-1CaCl2溶液淋洗,收集的淋洗液用于分析钼酸反应总磷(TRP)、可溶态钼酸反应磷(DRP)和颗粒态钼酸反应磷(RPP);试验结束后鉴定土壤中水溶态磷、MehlichⅢ-P和磷的化学形态变化.结果表明:添加无定形氧化铁和碳酸钙可显著改变砂土中磷的形态,降低土壤磷的有效性;无定形态氧化铁在降低土壤磷有效性方面的作用大于碳酸钙;淋洗液中磷的形态主要为DRP,颗粒态磷占总磷的比例为1.2%~39.8%;TRP和DRP的损失与培养处理后表土中磷含量存在显著的相关.相关分析和淋洗试验后土壤中磷形态变化结果都表明:表土柱中淋移的磷主要来源于水溶性磷(H2O-P)和NaHCO3-P,与NaOH-P、HCl-P和残余磷的相关不明显;从表土淋失的磷有27.1%~54.2%被淋出土体,其余下移至10~30 cm土层中.研究结果还表明,添加无定形氧化铁可增加土柱中颗粒态磷的迁移.  相似文献   

12.
长期过量施肥可导致蔬菜地土壤养分大量累积、养分利用效率下降和环境污染风险增加。以浙北平原不同种植年限蔬菜地土壤为研究对象,采用化学测试方法研究了菜地土壤氮和磷的积累及其淋失潜力的变化。结果表明,随着种植年限的增加,蔬菜地土壤全磷、有效磷(Olsen P)和NO3-N呈明显的积累;蔬菜种植年限为2、2~5、6~10、11~20、20~30和30a的表土全P平均分别为0.66、0.75、1.07、1.49、2.40和2.12g·kg-1,有效P平均分别为13.2、37.8、42.2、70.2、137.9和101.7mg·kg-1,NO3-N平均分别为9.15、13.58、50.18、46.48、73.28和74.20mg·kg-1,同时土壤N和P垂直下移渐趋明显。土壤水溶性磷含量随土壤有效磷(OlsenP)积累的变化存在一个明显的突变点,相对应的土壤OlsenP临界值约为60mg·kg-1。随着种植年限增长,蔬菜地地表径流中氮和磷浓度呈明显增加,利用年限为20~30a的蔬菜地径流中可溶性P和NO3-N浓度分别约为利用年限2a蔬菜地的13.12和9.48倍。研究认为,长期超量施肥已导致这一地区蔬菜地土壤养分的过度积累,在蔬菜生产中应重视和提倡平衡施肥,控制土壤氮磷的积累。  相似文献   

13.
The aim of the study was to develop an index to assess the environmental risk of P loss potential in vegetable soils with chronic difference of plantation in the suburbs of Changsha, Hunan Province, China. Chemical methodology was used to study soil phosphorus status and the relationships between available P in soil and potential soil leaching P. The results showed that there was a significant linear relationship between Olsen P and CaC12-P or P concentration in soil solution. Olsen P increased sharply when either CaCI2-P or P concentration in soil solution reached a certain level. It was confirmed that 80 mg kg-t of Olsen P was the critical value of soil P leaching in the vegetable soils. P leaching probability over the critical was assessed by GIS and indicator Kriging and four secondary risks of phosphorus leaching loss were defined. In the area with vegetable cropping for over 30 yr (Chenjiadu) and 10-15 planting years (Huangxingzhen), the indices of phosphorus leaching loss risk were 3 and 2.93, respectively. These two areas belonged to strong secondary of risk of phosphate leaching loss. In the new vegetable planting field less than 2 yr (Ningxiang), the index was 0.06, which had almost no risk of phosphorus leaching. In vegetable soils in the suburban region of Changsha, the phosphorus leaching peotential is high and the phosphorus leaching loss is related to chronic length of vegetable cropping.  相似文献   

14.
四川紫色土坡耕地磷素渗漏迁移初探   总被引:2,自引:1,他引:1  
通过对川中丘陵区冬小麦-夏玉米轮作条件下,玉米季不同施肥试验田渗漏水的观测与分析,研究了紫色土坡耕地在天然降雨时渗漏水的产流规律及土壤磷素的淋溶迁移特征。结果表明,渗漏水量与降雨量呈明显的指数关系,与雨强大小没有直接关系。暴雨下渗漏水中的DTP及PO34--P含量变化过程呈现明显的二次波峰规律。不同的施肥条件显著影响渗漏水的DTP含量,NP处理最高,DTP含量达到了0.047mg·L-1。PO43--P是DTP的主要组成形态,占了DTP的62%~85%。不同施肥处理渗漏水的DTP迁移总量为4.0~7.5g·hm-2。  相似文献   

15.
临安山核桃林地土壤磷素状况及其淋失风险分析   总被引:1,自引:0,他引:1  
以天目山地区临安市岛石镇下塔村和湍口镇湍口村发育于石灰岩的山核桃林地土壤为研究对象,采集林地表层(0~20 cm)土壤样品,用于评估长期施肥对山核桃林地土壤磷素状况的影响及其潜在的淋失风险。土壤分析表明:土壤Olsen\|P存在较大的空间变异,含量低的近于0 mg·kg-1,而最高的含量达 893 mg·kg-1。土壤CaCl2\|P与Olsen\|P相关分析显示,岛石镇和湍口镇土壤Olsen\|P的临界值分别为193和293 mg·kg-1。据此,岛石和湍口两地土壤发生磷淋失的林地分别占调查林地的30%和45%。表明研究区已经有相当数量的山核桃林地因土壤磷素积累而存在淋失风险,需要引起重视。  相似文献   

16.
吴一群  李延 《安徽农学通报》2011,17(23):103-106
通过室外土柱模拟淋洗试验研究表明,随着施磷量的增加,蔬菜地土壤全磷、无机磷含量提高,磷肥施用不仅造成表层土壤磷素含量积累,还会造成底层土壤磷素积累。与单施无机磷肥相比较,有机无机磷肥配施不仅显著提高表层土壤有机磷含量,而且增加底层土壤中有机磷的含量,促进磷的向下迁移。随着施磷量的增加,各土层土壤Olsen-P、CaCl2-P含量均逐渐增大,说明施用磷肥增加了土壤中磷素淋失的潜力。与单施无机磷肥相比较,有机无机磷肥配施造成底层土壤中Olsen-P、CaCl2-P含量的增加,提高了土壤中磷素淋失的潜力。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号