首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 46 毫秒
1.
近年来,随着计算机性能和技术的发展,计算流体力学在设施农业中得到了广泛的应用。为此,基于CFD数值方法 ,在Venlo型温室自然通风条件下,对不同作物高度的室内气流和温度分布进行了数值模拟。结果表明:不同作物高度对温室自然通风气流速度变化影响显著;室外风速1.5m/s时,温室高度1.2m处室内气流速度低于0.2m/s;作物高度对温室内沿跨度方向温度阶梯变化影响较大,作物高度越高,温度阶梯变化越明显。最后,根据仿真得到不同作物高度自然通风温室1.2m高水平面的平均温度,得出作物高度对自然通风温度的影响规律。  相似文献   

2.
风速对温室内气流分布影响的CFD模拟及预测   总被引:3,自引:0,他引:3  
基于CFD数值模拟技术,采用标准湍流模型和DO辐射模型对室外风速为0.9m·s-1时Venlo型玻璃温室内气流分布模式进行了3-D稳态求解,并对模拟结果进行了试验验证,结果表明:模拟值与实测值吻合良好,平均相对误差为13.4%,CFD数值模型有效.采用该模型对室外风速为1.5m·s-1和2m·s-1时室内气流场进行了预测,并得出了3种风速下温室的通风率与室外风速之间呈线性关系,R2=0.9846.风速是影响温室通风率的关键因素.风速低时,室内气流分布模式受室外环境影响较轻微,作物区气流分布比较均匀一致;随着风速的增高,室内气流流速增大并伴有涡流出现,温室高度方向梯度明显.  相似文献   

3.
采用Ansys公司的FLUENT软件,建立温室的三维模型,研究了自然通风条件下平行于温室走向和垂直于温室走向两个风向,两种不同风速下温室内部及温室之间风流场的分布特点。模拟结果表明:当风速较小(1.6m/s)时,温室内风向复杂,出现低速涡旋,当风速较高(5.2m/s)时,温室内风向基本按原方向前进,风速逐渐减弱;当温室外风速为1.6m/s时,温室内大部分区域的风速在0.2m/s左右,当温室外风速为5.2m/s时,温室内大部分区域的风速在1.0m/s左右;连栋温室群中各部位温室的通风情况相差较大,前栋温室内风速明显高于后栋。该研究结果可作为温室生产与设计的参考依据。  相似文献   

4.
环流风机布置对温室内流场影响的CFD模拟   总被引:1,自引:0,他引:1  
为了解大肩高连栋玻璃温室夏季机械通风时室内流场分布,提高机械通风的降温效果,建立了6m肩高温室机械通风工况下的CFD模型,并对模拟结果进行了试验验证,结果表明:模拟值和试验值的最大相对误差为6. 70%,平均相对误差为2. 87%,显示CFD数值模型有效。在CFD模型基础上,进一步对不同环流风机布置下机械通风的降温效果进行了分析,结果表明:使用环流风机可提高机械通风的降温范围,在湿帘风机方向上实现气流的"接力",温室作物冠层南北温度差减小0. 5℃,32℃以下区域增加了20%;在环流风机安装方向上,不同横向截面上反向布置时室内冷热空气混合更好,室内温度分布更加均匀。  相似文献   

5.
为了观察中国北方地区多间日光温室每个屋子的温湿度分布和夜间散热过程,利用Penmane-Monteith法土壤水分蒸发理论和计算流体动力学(CFD)方法进行环境温湿度模拟分析。试验时,在温室内布置了温湿度传感器、热通量传感器和土壤温度(水分)传感器,并进行了多点测试。测试分析得出:多间日光温室的室内最高温度为37℃,夜间温度为5℃,凌晨最低温度为2℃左右。利用Penmane-Monteith蒸发公式算出温室土壤的蒸发速率得出白天和夜间的蒸发率分别为6.07×10-5kg/m2·s和2.28×10-6kg/m2·s。通过模拟发现:室外平均风速0.5m/s时,室内最大流速能达0.33m/s(出现在屋子Ⅱ)。最终研究得出:该类型温室需要加强保温措施才能满足中国北方地区温室生产要求。  相似文献   

6.
本文考虑温室环境的时空变异特性,通过构建温室建筑计算流体力学(CFD)模型,结合带精英策略的非支配遗传算法(NSGA-Ⅱ),建立C++-Fluent联合优化框架,实现温室环境因子的多目标、高效率优化。CFD温室模型在江苏省镇江市的一处温室进行实地验证;迭代优化算法由C++实现并通过超级计算机提高计算效率;优化目标包括作物区域温度场、二氧化碳浓度分布以及控制温室风机能耗。研究结果表明,CFD温度场和速度场与监测点实验值吻合度高,平均相对误差分别为4.9%和7.05%;为获得某场景下作物生长温度场、二氧化碳浓度分布的最优值且维持温室风机的低能耗,温室湿帘入口温度为[296.6K,302K],风机出口风速为[2.9m/s,5.5m/s]。此时作物区域的温度场、二氧化碳浓度分布及风机能耗均在最优范围,有助于提高作物产量,降低温室能耗;超级计算机Linux系统下开发的优化方案计算效率比个人计算机大幅提高,计算时长缩短约88.09%。本文所提策略充分考虑温室环境的时空变化特性,对温室内多环境因子实现多目标、高效率优化。  相似文献   

7.
针对我国南方地区夏季高温高湿的气候条件,对采用天窗、外遮阳、内喷雾降温措施的试验Venlo温室内温度状况进行了模拟研究。以室外气候参数为边界条件,考虑作物和环境的相互作用,内喷雾系统和室内环境的质热交换以源项的形式加入到控制方程中,采用CFD(computational fluid dynamics)中的稳态方法求解控制方程,模拟Venlo型温室不同调控措施及组合下的温室内温度分布特点,分析各种调控措施的调控效果。模拟结果表明:采用加入源项的方法模拟内喷雾系统和室内空气的质热交换,其模拟值和实测值均方根误差RMSB为0.514 4℃,最大绝对误差为0.75℃,平均相对误差为1.3%,说明所建立的CFD模型有效。3种降温措施下,以外遮阳+自然通风的降温贡献率最大(80.6%),能耗最高的喷雾系统降温贡献率仅为34.8%,较高的环境湿度影响了喷雾系统的降温效率。CFD夏季降温模型的建立为温室作物系统的环境控制策略的制定提供了科学依据。  相似文献   

8.
悬挂式常温烟雾机气流场与雾滴沉积三维模拟与试验   总被引:2,自引:0,他引:2  
基于CFD三维模拟技术,建立了常温烟雾机在密闭温室内作业的气流速度场模型及雾滴沉积分布模型,分析了常温烟雾机的气流速度场及雾滴沉积分布特性,并进行试验验证。模拟结果表明,常温烟雾机有效风送距离与风送速度呈正比,在喷雾高度为1.5 m时常温烟雾机风送距离最短;风送速度为5 m/s和25 m/s时雾滴质量流率较大,风送速度为20 m/s以上、喷雾高度在2.0 m以上时,雾滴沉积均匀性较好。模拟与试验结果对比说明,在风机作用区域内,所建立气流速度场数值模型模拟相对误差为10%~35%,雾滴沉积分布模型模拟相对误差为15%~35%,可较准确预测常温烟雾机气流速度场与雾滴沉积分布。  相似文献   

9.
栽有作物的圆拱型连栋温室强制通风气流场模拟   总被引:2,自引:0,他引:2  
为了研究连栋塑料温室在强制通风情况下内部风速场,采用流体力学分析软件Fluent软件建立圆拱型连栋塑料温室强制通风模型加以分析。温室内栽种作物以番茄为例,研究了作物高度为0.5、1、1.5、1.8m条件下温室内部的气流分布情况。数值模拟结果表明:作物对强制通风情况下温室内流场有较大影响,作物区域空气流速变化平缓,作物上部风速迅速增加;由于作物明显阻碍气流运动,不同作物高度的温室内气流分布存在较大差别。  相似文献   

10.
内遮阳网对连栋温室内自然通风流场影响的稳态模拟   总被引:3,自引:2,他引:3  
以Navier—Stokes方程为模型基础,运用CFX软件对华东地区三连栋塑料温室在配置内遮阳网后室内自然通风气流场进行三维稳态模拟,外界风向取平行于温室的屋脊方向。模拟结果显示,在设置内遮阳网后,两侧栋内气流流速明显降低,尤其是顶窗开向对面侧侧栋内,气流平均速度只有外界风速的1/6左右,不及无遮阳网时的一半;在遮阳网覆盖下温室中间栋气流流态变化不大,流场略偏向顶窗开向侧方向。顶窗开向对面侧气流流动的均匀性有所改善,但平均流速下降,环流不太明显,静止区域小,尤其是下部区域。在顶窗开向侧侧栋内,气流虽仍集中在温室中上部区域,但均匀性有所提高;侧窗和山墙门进风对温室内气流场流态的影响作用较大,而顶窗使得遮阳网上部的气流流动得到明显加强。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号