首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
太湖底泥多环芳烃分布及来源解析   总被引:3,自引:1,他引:3  
对29个太湖底泥样品中16种多环芳烃(PAHs)含量进行了调查,对其空间分布及来源进行了分析。结果表明,16种PAHs中15种被普遍检出(苊烯在大部分底泥中未检出),ΣPAHs浓度范围为255.1~1059.4 ng·g-1,平均580.5 ng·g-1;苯并(b)荧蒽浓度水平最高,平均浓度均超过80 ng·g-1,是太湖底泥中含量较高的污染物。空间分析表明,湖边采集的底泥中PAHs浓度较高,湖心底泥中PAHs浓度较低。利用低环/高环比值法、等级聚类法、PCA-MLR模型解析法分析了污染源类型及贡献,结果表明,太湖底泥中PAHs的主要来源是汽油、柴油燃烧源以及煤、木材燃烧源,其中汽油、柴油燃烧源的分担率为53%,煤、木材燃烧源的分担率为46%。利用苯并(a)芘当量浓度(Ba PE)对PAHs毒性进行评估,结果表明Ba PE浓度为(50.37±19.70)ng·g-1。  相似文献   

2.
黄岩区表层土壤中多环芳烃含量分布及源解析   总被引:1,自引:0,他引:1  
分析黄岩区83个表层土壤中16种多环芳烃的含量,并对土壤中多环芳烃进行源解析。结果显示,黄岩区表层土壤中,16种多环芳烃除苊烯外,其余多环芳烃均被检出,检出率最高的是荧蒽,其次是萘和芘。黄岩区表层土壤中多环芳烃以中高环(4环及以上)为主。按照样品采集地点分析,多环芳烃总量最高的是江口,其次是城区,以及院桥、澄江和新前等近郊区。农村地区多环芳烃含量较低。冶炼厂或化工厂等工厂的煤炭燃烧、稻草等秸秆的露天焚烧,以及生活用煤燃烧可能是多环芳烃污染的主要来源,石油等液体化石燃料的燃烧也是黄岩土壤多环芳烃的来源之一。  相似文献   

3.
通过对农田土壤多环芳烃(Polycyclic aromatic hydrocarbons,PAHs)的分布特征、污染程度及成因解析,深入了解工业活动引发的土壤污染问题,实现工业园区周边农田土壤的污染预警和科学合理利用。在黄河三角洲石油开采区和西南铅锌冶炼区附近的农田分别采集89个和148个土壤样品,采用气相色谱-质谱仪(GC-MS)分析美国环境保护署(Environmental protection agency,EPA)优控的土壤中PAHs组成与含量,运用主成分分析(Principal component analysis,PCA)和正定矩阵因子法(Positive matrix factorization,PMF)模型比较两个区域农田土壤中PAHs的来源。结果表明,石油开采区农田土壤中16种PAHs总含量(以干质量计)平均值为149.8 μg·kg-1(含量范围31.5~1 399 μg·kg-1),铅锌冶炼区农田土壤PAHs总含量平均值为267.6 μg·kg-1(含量范围8.99~2 231 μg·kg-1),两个地区主要以4~6环PAHs为主。聚类分析、PCA和PMF 3种源解析方法对两个区域的PAHs来源进行比较,石油开采区农田土壤中PAHs主要来源及其贡献率分别为燃煤9.1%、生物质燃烧和石油源60.7%、化石燃烧24.1%以及柴油燃烧6.2%,铅锌冶炼区分别为生物质燃烧和石油源31.6%、汽油及重油的燃烧28.3%、煤燃烧40.1%。铅锌冶炼区周边农田土壤PAHs污染程度相对较高。  相似文献   

4.
5.
中国农业土壤多环芳烃污染现状及来源研究   总被引:4,自引:0,他引:4  
随着我国人口的增加以及城市化、工业化的快速发展,农业土壤中多环芳烃(PAHs)的污染也日趋严重。本研究对有关中国农业土壤多环芳烃污染的90篇研究成果进行整理,得到29个省(自治区、直辖市、特别行政区)的多环芳烃采样点数和平均浓度,在此基础上运用统计学方法分析了我国农业土壤中多环芳烃的污染特征,并对污染来源进行了解析。结果表明:(1)我国农业土壤已普遍受到多环芳烃污染,且污染处于中等水平。在空间分布上各区域含量存在较大差异,华北地区污染较重,西南地区污染最小。(2)我国农业土壤中PAHs以中高环组分为主,污染源主要来自燃烧源,包括燃煤和生物质燃烧。本研究可为中国农业土壤多环芳烃污染防治和环境风险评价提供参考依据。  相似文献   

6.
北京地区表土中多环芳烃的源解析   总被引:4,自引:0,他引:4  
采用网格法均匀布点采集了北京地区161个表土样品,测定了其中15种多环芳烃(PAHs)的浓度.利用因子分析一多元线性回归法解析出北京地区表土中PAHs的3种来源,并定量计算了3种源的贡献量.结果表明,北京地区表土中PAHs的特征污染源为煤炭燃烧/交通排放、焦炉及石油,3种源基于多元线性回归法的贡献率分别为48%、28%和24%,对15种PAHs总量的贡献量均值分别为16.36、4.63和3.70μg·kg-1.燃煤/交通源表现为市中心源强高于郊区,焦炉源在大部分区县中存在单一高值点,石油源在市中心及五环外环带呈点状分布.据此推断,北京地区PAHs的源贡献与北京地区能源结构和功能区划有关,能源结构和功能区划的改善是控制北京地区表土中多环芳烃的有效途径.  相似文献   

7.
为了解阿哈水库沉积物中多环芳烃(PAHs)的污染情况,采用加速溶剂萃取-高效液相色谱法对阿哈水库表层沉积物中 PAHs 进行检测分析,并运用效应区间低、中值法对其进行生态风险评价。结果表明,在美国环境保护署(EPA)优控的16种 PAHs 中,阿哈水库表层沉积物中共检出15种,总含量介于107·6~142·1 ng/g,平均值为119·9 ng/g,以3环芳烃为主,主要来源于石油类污染。阿哈水库沉积物中 PAHs 对生态环境的影响处于较低风险水平,仅苊含量介于生态风险效应区间低值(ERL)和中值(ERM)之间,存在潜在生态风险。  相似文献   

8.
基于PMF和Pb同位素的农田土壤中重金属分布及来源解析   总被引:2,自引:3,他引:2  
为阐明九龙江中下游沿岸农田土壤中重金属分布特征、污染现状及来源,测定了该区域土壤中Cr、Ni、Cu、Zn、As、Cd、Pb的含量及Pb同位素比值。结果显示研究区域过去20年土壤中重金属含量呈现上升趋势,其中Cd增长幅度最大;空间上,除Cd外,不同功能区组间重金属差异显著,反映出研究区域受到了人为活动的显著影响,高Cd浓度现象可能是农业污染造成的一种普遍的共有现象;潜在危害指数评价法显示该区域大部分站点属于中等生态风险区域,主要贡献因子为Cd;主成分分析法(PCA)和正定矩阵因子分析法(PMF)分析结果均显示土壤重金属主要来自5种污染源,PMF法得出这些污染源的贡献率大小依次为工业源(26.3%)交通源(23.2%)自然源(22.0%)农业源(16.2%)其他混合源(12.0%);三端源混合模型结合Pb同位素示踪法得到交通源、燃煤和工业源对九龙江土壤中重金属Pb的贡献率分别为57%、34%和9%。三种源解析方法所得结果吻合,三者均能较好地解析土壤中重金属,可以构成互补的多元源解析体系。  相似文献   

9.
骆马湖表层沉积物中多环芳烃的分布及风险评价   总被引:1,自引:0,他引:1  
郑曦  姚俊华  蒋欢  韩宝平 《安徽农业科学》2010,38(20):10858-10861
采用高效液相色谱法(HPLC)定量检出骆马湖表层沉积物中16种优控多环芳烃(PAHs)的总量范围在189.13~725.94ng/g,平均值为443.02ng/g,属低-中等污染水平;沉积物中的PAHs主要来源于煤炭、木材及石油的不完全燃烧。利用沉积物质量基准法(SQGs)、沉积物质量标准法分别对骆马湖沉积物中PAHs的风险评价表明,严重的PAHs生态风险在骆马湖沉积物中不存在,负面生物毒性效应会偶尔发生,风险主要来源于低环的PAHs,以芴和二氢苊为主。  相似文献   

10.
微山湖表层沉积物中多环芳烃的分布及风险评价   总被引:1,自引:0,他引:1  
采用现场采样及室内高效液相色谱分析测试的方法,探讨了微山湖表层沉积物中多环芳烃(PAHs)的分布,并进行了风险评价.结果表明,微山湖表层沉积物中16种优控PAHs的总量范围在324.93~1576.65 ng·-1(干重)之间,平均值为699.01 ng·g-1,属中等污染水平,沉积物中的多环芳烃主要来源于煤炭、木材及石油的不完全燃烧.利用沉积物质量基准法(SQGs)、沉积物质量标准法分别对微山湖沉积物中多环芳烃的风险评价表明,严重的多环芳烃生态风险在微山湖沉积物中不存在,负面生物毒性效应则会偶尔发生,风险主要来源于低环的多环芳烃,以芴(Flu)和苊(Ace)为主.  相似文献   

11.
太湖流域典型湖泊表层沉积物中多环芳烃污染特征   总被引:6,自引:2,他引:4  
持久性有机污染物引起的水质安全性问题日益受到广泛的关注,为了全面了解太湖流域湖泊沉积物中多环芳烃的污染特征,在太湖流域选择典型湖泊天口湖和太湖梅梁湾分别采集7个表层沉积物(0~2 cm)样品,利用GC/MS分析了样品中16种优控多环芳烃(PAHs).结果表明,天目湖表层沉积物中16种优控PAHs总量介于287.50~713.93 ng·g-1(干质量),太湖梅梁湾表层沉积物中PAHs总量介于1 690.72~5 033.70 ng·g-1(干质量),空间分布特征受周边区域内点源污染和河流输入污染物影响.天目湖表层沉积物TOC浓度与PAHs总量相关性比太湖梅梁湾显著.利用特征化合物指数对PAHs的来源进行判别,天目湖表层沉积物中PAHs主要来源是木材、煤燃烧,而太湖梅梁湾表层沉积物中PAHs主要来自石油、木材和煤燃烧混合来源.基于沉积物中多环芳烃的环境质量标准,太湖梅梁湾表层沉积物中PAHs生态风险远高于天目湖,但总体生态风险较低.  相似文献   

12.
不同栽培环境下豇豆体内多环芳烃源解析及风险评估   总被引:2,自引:1,他引:1  
为了探讨不同污染特征环境下栽培的蔬菜体内多环芳烃(PAHs)来源及风险,以豇豆[Vigna unguiculata(Linn.)Walp]为材料,检测大棚(试验基地PAHs污染残留区)和大田(距离机动车通道100 m内)栽培的豇豆体内PAHs含量,采用同分异构体比值法分析了其体内PAHs来源,并用生态效应低中值法和苯并(a)芘毒性等效当量法评估了豇豆体内PAHs污染的生态风险,以人群日均暴露量估算了其潜在人体健康风险。结果表明:在16种优控的PAHs中,大棚豇豆体内含有13种,大田豇豆体内含有6种;大棚豇豆体内的PAHs总含量为253.94μg·kg-1,以2~4环为主,其中3环占总含量的64.47%。大田豇豆体内PAHs总含量为80.60μg·kg-1,芴和菲占总含量的69.69%。大棚和大田豇豆体内的二苯并(a,h)蒽毒性当量分别为43.32μg·kg-1和10.85μg·kg-1,其对总的毒性当量贡献率分别为89.38%和88.57%;大棚和大田豇豆的人群健康风险系数分别为2.07×10-6和6.5×10-7。研究表明:大棚豇豆体内PAHs主要源于人为处理残留的PAHs;大田豇豆体内PAHs主要来源于汽油和生物质燃烧污染。大棚豇豆存在一定的生态风险和健康风险,大田豇豆尚不存在PAHs的生态风险和健康风险,但需重视苯并(k)荧蒽、二苯并(a,h)蒽和茚并(1,2,3-c,d)芘等物质的富集作用。  相似文献   

13.
丁文文  韦萍 《安徽农业科学》2007,35(34):11197-11198
利用GC-MS法对云龙湖表层沉积物中15种PAHs进行分析测定,所测样品中PAHs总浓度为5.42~19.062 ng/g,与其他地区比较,云龙湖沉积物中PAHs含量相对较低。PAHs的污染源主要是人为源。  相似文献   

14.
陈平 《浙江农业科学》2020,61(7):1380-1383
针对上海市城区42个道路绿化带土壤样品中16种优先控制的多环芳烃(PAHs)的含量, 选用特征比值法和正定矩阵因子模型法(PMF)分析PAHs的来源组成。特征比值法结果表明, 绿化带土壤中的PAHs主要来源于热解源。通过PMF进一步分析, 得到PAHs的5个主要来源组成及其相应的贡献率, 分别为煤燃烧源16.5%、车辆排放源31.4%、石油源12.1%、生物质燃烧源24.5%、商业杂酚油源15.5%。说明上海市城区绿化带土壤中PAHs最主要的来源是车辆尾气排放。  相似文献   

15.
环太湖河流沉积物中PAHs的空间分布、毒性及源解析   总被引:2,自引:1,他引:2  
对环太湖41条河流表层沉积物中16种美国环保署优先控制的PAHs含量进行了检测,并分析了其空间分布、毒性和来源。结果表明:沉积物中PAHs浓度范围为382.5~2 268.7 ng·g-1,平均值为1 056.6 ng·g-1,其中TEQBa P的浓度为36.3~224.0 ng·g-1,平均值为98.8 ng·g-1;PAHs浓度的高值区出现在太湖西北部河流,其中龙游河(TR8)最高,漕桥河(TR10)次之。利用分子比值法和正定矩阵模型(PMF)对PAHs的来源进行定性和定量分析可知,汽油、柴油燃烧对环太湖河道表层沉积物中PAHs贡献最大(44.6%),其次为煤炭燃烧(39.1%)和生物质燃烧(16.3%);使用PMF-TEQ(正定矩阵模型和毒性当量)定量计算3种源对PAHs毒性(TEQBa P)的贡献,结果表明化石燃料燃烧的贡献最大。  相似文献   

16.
北京燕山河沉积物中多环芳烃分布规律及来源分析   总被引:7,自引:0,他引:7  
采用GC/MS法分析了北京燕山河沉积物中多环芳烃的含量及其来源。结果显示:在这些沉积物样中,18种多环芳烃的含量分布范围在0.3476~4.4781mg/kg之间,平均为2.6675mg/kg,主要特征是在近排污口处含量最大,远离排污口的源头含量较低。除了SA采样点沉积物中多环芳烃含量相对较低外,其余采样点多环芳烃分布均匀且含量较高,显著高于长江南京段、辽河及台湾高平等河流含量。对多环芳烃特征组分的比值(荧蒽/芘(F/Py)、苯并(a)蒽/(苯并(a)蒽 ■)(BaA/(BaA Cy))及甲基菲与菲的比值分析表明:该河流表层沉积物的多环芳烃主要来源于原油污染。  相似文献   

17.
为研究茅洲河沉积物中多环芳烃的来源与生态风险,于2016年8月采集茅洲河柱状沉积物9根,使用GC-MS分析了16种多环芳烃(PAHs)。结果表明,沉积物中ΣPAHs范围为:453.7~998.1 ng·g-1,平均含量为708.3 ng·g-1,呈入海口与上游浓度较高、中下游浓度相对较低的分布特征。0~0.5 m层、0.5~1.0 m层和1.0~1.5 m层16种多环芳烃浓度分别为(855.4±81.3)、(739.7±70.3)ng·g-1和(570.3±54.2)ng·g-1。多环芳烃环数呈4环5环6环3环2环变化趋势。茅洲河0~0.5 m沉积物中多环芳烃主要来自于草、木和煤等燃烧源的不完全燃烧,0.5~1.0 m层主要来源于不完全燃烧和混合来源,1.0~1.5 m层主要来源于混合源,其次为燃烧源,且出现了石油源。研究区内沉积物中苯并(b)荧蒽(BbF)、苯并(k)荧蒽(BkF)、茚并(1,2,3~cd)芘(IcdP)和苯并(g,h,i)芘(BghiP)在各点位均有检出,因而可能会对生物产生毒害作用,其余组分在各采样点的含量均低于有效应区间低值(ERL),对生物几乎无毒副作用或毒副作用不明显,生物有害效应概率10%。  相似文献   

18.
城市大气颗粒物中多环芳烃的源解析研究   总被引:1,自引:0,他引:1  
魏强  房春生  杨萌尧  王菊  孙柏峰 《安徽农业科学》2012,40(9):5404-5405,5412
[目的]研究吉林市大气颗粒物(TSP)样品中多环芳烃(PAHs)分布状况。[方法]对吉林市4个采样点2005年大气颗粒物中PAHs进行分析,分析检出的16种PAHs的浓度特征与污染状况,并采用因子分析与多元线性回归方法对大气颗粒物样品中PAHs进行源解析。[结果]区域内16种PAHs浓度最小值为0.006 6 ng/m3,最大值为137.480 2 ng/m3,样品∑PAHs浓度范围为14.239 4~445.436 5 ng/m3,平均浓度为118.775 6 ng/m3,非采暖期样品平均∑PAHs大于采暖期;主要污染物来源为汽油及天然气燃烧与燃煤源,贡献率分别为77.85%、18.42%,其他源贡献率为3.73%。[结论]该研究可为确定污染物来源、制定吉林市大气污染物防治规划提供理论依据。  相似文献   

19.
为研究上海市金山区罗氏沼虾养殖环境中多环芳烃(polycyclic aromatic hydrocarbons,PAHs)的污染水平、来源和评估其食用健康风险,采用高效液相色谱(HPLC)检测环境中16种优控多环芳烃,结果表明:养殖区内,大气干、湿沉降中多环芳烃总含量及沉降通量分别为5.52~9.45 μg/g、47.99~100.42 ng/L和3.75~6.42 μg/(m2·d)、83.32~174.36 ng/(m2·d),干沉降中以高环为主,湿沉降中以低环为主;水体中多环芳烃总含量为342.76~1 520.83 ng/L,以低环为主,对比国内其他养殖区,研究区水体多环芳烃污染处于中等水平;土壤与沉积物中多环芳烃含量分别为1 000.45~2 138.46 ng/g和1 763.70~3 656.97 ng/g,高环多环芳烃含量远高于低环,相比于其他养殖区处于较高水平;浮游动物与浮游植物中多环芳烃总含量分别为46.18~134.63 μg/g和26.13~145.39 μg/g,均以4环多环芳烃为主;罗氏沼虾在幼虾期、成长期、育成期体内多环芳烃平均总含量分别为63.09 ng/g、111.89 ng/g、148.77 ng/g,存在生物富集现象,虾肉中3、4环多环芳烃含量相对较高,相比于其他养殖区水产品,研究区罗氏沼虾体内多环芳烃处于较低水平。采用比值法和主成分分析法进行污染来源分析,结果表明:养殖区大气沉降为多污染源并存,其中湿沉降中污染源主要为石油源;干沉降中污染源主要为煤炭、木材的燃烧源;水体主要污染源为石油源;土壤中主要为煤炭燃烧源;沉积物中污染源与土壤中类似,以煤炭燃烧和化石燃料不完全燃烧为主。食用风险评价结果表明:罗氏沼虾终身致癌风险为1.89×10-8~1.37×10-6,在可接受范围内,正常食用不会对人类健康产生危害。  相似文献   

20.
辽河流域表层土壤多环芳烃污染现状初步研究   总被引:16,自引:0,他引:16  
土壤是环境中多环芳烃(PAHs)的储库和中转站,本文调查了辽河流域表层土壤(0~20 cm)中PAHs的含量水平及其空间分布规律.结果表明,辽河流域土壤已经受到一定程度的PAHs污染,其表土16种PAHs总量为285~8 347 μg·kg-1,平均含量为2 292 μg·kg-1,沈阳和抚顺市区是土壤PAHs含量超标最严重的区域.在此基础上,参照荷兰环境标准,对区域表层土中10种PAHs的污染现状进行了评价.结果显示,10种被评价的PAHs组分都存在超标点,其中,菲(Phe)和荧蒽(Fla)的超标最为普遍,超标率为100%;其次是(艹屈)(Chy)、蒽(An)和萘(Nap).辽河流域表土的PAHs污染来源主要是燃烧源和交通源.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号