首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
淹水还原条件下红壤中葡萄糖及腐殖酸对铁锰形态的影响   总被引:2,自引:0,他引:2  
通过设置不同的葡萄糖/腐殖酸配比模拟还原性土壤体系,考察长期(约74 d)淹水培养过程中铁锰元素在土壤溶液/矿物相中的分布形态演变。结果表明:在淹水培养初期,葡萄糖的添加可以促进铁锰离子的还原溶出,同时土壤中可交换态和酸可提取态铁、以及可交换态锰的含量也会随之增加;而腐殖酸的添加则会促进土壤中可氧化态铁/锰含量的升高。随着培养时间的增加,铁锰离子浓度及各个土壤提取形态的铁锰含量大多呈现降低趋势,铁锰元素逐渐转化成提取性更低的矿物形态。因此,淹水环境中铁锰还原溶出-分布形态演变受到土壤中有机物质种类和含量的显著影响,呈现出不同的金属移动性和生物有效性。  相似文献   

2.
Abstract

Eleven selected soils from Denmark and Tanzania were treated with ammonium acetate (controls), EDTA, and dithionite‐EDTA (DE) to fractionate iron and (manganese) oxides. The amounts of cobalt adsorbed were determined from a 3 μM equilibrium cobalt solution, corresponding to the cobalt level in natural soil solutions using sodium nitrate (0.2 M) to suppress non‐specific adsorption, by the extracted soils as well as by two synthetic iron oxides.

No significant correlations were found between cobalt adsorption and the contents of organic matter and extractable manganese, presumably due to their low contents in the soils investigated. Close correlations were, however, found between the amounts of cobalt adsorbed, especially fractions thereof, and the contents of iron oxides.

The amounts of cobalt adsorbed by the DE‐ex‐tracted soils, void of iron (and manganese) oxides, were attributed to the clay silicates. The remaining cobalt adsorption, i.e. the difference between cobalt adsorbed by acetate‐extracted and DE‐extracted samples, was attributed to the iron oxides. This portion of adsorbed cobalt was well described by considering soil iron oxides composed of only two fractions, an EDTA‐extractable fraction of high reactivity and a less reactive fraction corresponding to the difference between DE‐extractable iron and EDTA‐extractable iron.

The amounts of cobalt adsorbed by the soil iron oxides were well predicted from the contents and specific surface of the two iron oxide fractions in soil together with the amount of cobalt adsorbed by the synthetic iron oxides.  相似文献   

3.
Abstract

The bioavailability and toxicity of metals in soils to plants, hence to animals and human beings through the food chain, and their mobility in the ecosystems highly depends upon their forms, pathways and kinetic rates of transformation in soil. Long‐term transformation pathways, kinetics and lability of cadmium (Cd), cobalt (Co), copper (Cu), nickel (Ni), zinc (Zn), manganese (Mn), and iron (Fe) in two arid‐zone soils were studied under saturated water regime (simulating the moisture regime in the soil during the raining season and shortly after irrigation) by using operationally selective sequential dissolution techniques. Iron, Mn, Co, vanadium (V), Ni, Zn, and Cu were transformed from the non‐available form (reducible oxide fraction) and potential available form (easily reducible oxide fraction) into the available and readily available form (exchangeable and carbonate fractions), thereby increasing their mobility, availability or toxicity. However, Cd was transformed from the readily available form into the potentially available form, thus decreasing its lability. The fast transformations of all metals occurred in the first month, followed by a much slower process.  相似文献   

4.
Abstract

The accumulation of heavy metals in tea leaves is of concern because of its impact on tea quality. This study characterized long‐term changes of soil properties and heavy‐metal fractions in tea gardens and their effect on the uptake of metals from soils by the plants. Soil and tea leaf samples were collected from five plantations with a history of 2–70 years in Jinghua, Zhejiang Province, southeast China. The six chemical fractions (water‐soluble, exchangeable, carbonate‐bound, organic‐matterbound, oxide‐bound, and residual forms) of cadmium (Cd), chromium (Cr), copper (Cu), iron (Fe), nickel (Ni), manganese (Mn), lead (Pb), and zinc (Zn) in the soils were characterized. Dissolved organic‐matter accumulation in the soils and effects of low‐molecular‐weight organic acids on solubility of soil heavy metals were also tested. Long‐term tea plantation use resulted in accumulation of dissolved organic matter, decrease of soil pH, and elevation of water‐soluble and exchangeable metal fractions, thereby increasing metal contents in leaves. The influence was more significant when soil pH was less than 4.4. The results indicated that both acidification and accumulation of dissolved organic matter induced by tea plantations were also important causes of increased accumulation of the metals in the tea leaves. This was particularly true for the soils polluted with low concentration of heavy metals, because availability of the metals in these soils was mainly controlled by pH and dissolved organic matter.  相似文献   

5.
The results of fractionation and correlation studies provided evidence that cobalt in soils is associated predominantly with the soil oxide fraction, particularly the manganese oxides. Only a small proportion of the total cobalt present in soils was extracted by acetic acid, EDTA, pyrophosphate or hydroxylamine. Cobalt extracted with these reagents was considered to be derived principally from easily reducible manganese oxides, although the origin of the cobalt extracted by acetic acid in particular was not well defined. The bulk of the cobalt present in soils appeared to be occluded by more highly crystalline oxide materials or was present in the structures of primary and secondary minerals. Labile cobalt in soil was assessed by extraction with acetic acid and EDTA and by determination of isotopically exchangeable cobalt. The amounts of cobalt extracted by both EDTA and acetic acid were highly dependent on the length of extraction period and on the temperature of extraction. Neither of these reagents appeared likely to give good estimates of the quantity or intensity factors of soil cobalt supply to plants as defined by the isotopic exchange determinations.  相似文献   

6.
The effect of pH on chemical forms and plant availability of heavy metals in three polluted soils was investigated. The soils were adjusted to pH values of 7.0, 6.0, and 4.5, then sequentially extracted so that Cd, Zn, and Pb could be partitioned into five operationally defined chemical fractions: exchangeable, carbonate, Fe-Mn oxide, organic, and residual. Kidney beans were grown in the soils to investigate plant availability of the metals in relation to changes of their levels in chemical forms resulting from alteration of soil pH. Alteration of pH resulted in changes of chemical forms of the metals in the soils, and at lower pH the changes were more significant. When soil pH values were decreased from 7.0 to 4.55, levels of Cd, Zn, and Pb in exchangeable form increased, decreased in carbonates and decreased slightly in Fe-Mn oxide forms. Their levels in organic and residual forms were unchanged. Although concentration of metals in plants increased with reduction in soil pH values, dry matter yields were also restricted, so that the amount of metal uptake were almost similar. The uptake rate of the metals in the exchangeable + carbonate forms was the same for the three elements in all the cases.  相似文献   

7.
Abstract

Distribution and availability of heavy metals to plants is important when assessing the environmental quality of an area. The objectives of this study, conducted in 1992–1993, were: a) to determine the levels of the heavy metals, cadmium (Cd), chromium (Cr), copper(Cu), lead (Pb), manganese (Mn), nickel (Ni), and zinc (Zn), in the soils of the Axios Delta (a Ramsar wetland site in Northern Greece) so that the degree of pollution could be ascertained, b) to identify the various heavy metal forms present in soils using a fractionation scheme based on sequential extraction, and c) to find possible dependence on soil physicochemical properties. Total heavy metal content of the soils studied was generally higher than the levels reported in the literature for similar soils, suggesting some degree of pollution with heavy metals. The exchangeable forms of the heavy metals, however, were very low indicating that under present conditions, the availability of the heavy metals to plants is at a minimum. Most of the heavy metals occurred in forms that are considered immobile constituents of inorganic minerals or carbonate compounds. Only Cu and Zn were present in appreciable quantities as organically‐based forms that can become potentially available under certain conditions. Spatial distribution of Zn and Cu was related to the organic matter distribution, and there were indications suggesting that the immobile fraction of the heavy metals was adsorbed on to Mn‐oxides.  相似文献   

8.
受土壤类型和金属负荷量影响的重金属形态分布   总被引:22,自引:0,他引:22  
Two series of soil subsamples, by spiking copper(Cu),lead(Pb),zinc(Zn)and cadmium(Cd)in an orthogonal design,were prepared using red soil and brown soil,respectively.The results indicated that heavy metal fractions in these soil subsamples depended not only on soil types,but also on metal loading quantity as well as on interactions among metals in soil.Lead and Cu in red soil appeared mostly in weakly specifically adsorbed(WSA),Fe and Mn oxides bound(OX),and residual(RES)fractions.Zine cxisted in all fractions except organic bound one,and Cd was major in water soluble plus exchangeable(SE)one.Different from the results of red soil,Pb and Cu was present in brown soil in all fractions except organic one,but over 75% of Zn and 90% of Cd existed only in SE fraction.Meanwhile,SE fraction for any metal in red soil was lower than that in brown soil and WSA and OX fractions were higher.It is in agreernent with low cation exchange capacity and large amounts of metal oxides included in red soil.Metal fractions in soil,especially for water soluble plus exchangeable one ,were obviously influenced by other coexisting metals.The SE fraction of heavy metals increased with increasing loading amounts of metals in red soil but not obviously in brown soil,which suggest that metal availability be easily affected by their total amounts spiked in red soil.In addition,more metals in red soil were extracted with 0.20 mol L^-1 NH4Cl(pH5.40)than that with 1.0 mol L^-1 Mg(NO3)2(pH7.0),but the reverse happened in brown soil,implicating significantly different mechanisms of metal desorption from red soil and brown soil.  相似文献   

9.
不同类型贝壳粉对土壤镉赋存形态的影响差异   总被引:2,自引:0,他引:2  
通过室内培养探究不同类型贝壳粉对土壤中不同形态镉含量的影响,向培养完成的土壤中施用3种添加比例的天然扇贝壳粉与蛏子壳粉,分别在第1,5,15,30,50天测定土壤pH及镉的各赋存形态含量。结果表明,添加文石型与方解石贝壳粉对土壤pH升高均有一定程度的贡献,施用2种贝壳粉后,随贝壳粉添加比例的增多土壤pH升高。不同种类贝壳粉处理的土壤pH差异不大,在50天后2种贝壳粉不同添加比例间差异最明显。在整个培养过程中,随培养天数的增加,添加不同类型贝壳粉均能使镉污染土壤可交换态镉含量下降,碳酸盐结合态镉、铁锰氧化物结合态镉、有机结合态镉与残渣态镉含量整体逐渐升高。其中,使用文石型贝壳粉作钝化剂较方解石型效果更佳。随着贝壳粉添加比例变大,可交换态镉向镉的其他赋有形态转化的程度越大。培养50天后,添加不同种类贝壳粉处理的土壤有效态镉含量同CK相比均显著降低。当添加文石型贝壳粉的比例为5%时,生物可利用态镉占总镉比例最低。施用文石型贝壳粉能比方解石型贝壳粉更好地降低土壤有效态镉的活性。  相似文献   

10.
沈阳市郊耕地土壤交换性锰含量的空间变异性   总被引:11,自引:4,他引:11  
姜勇  张玉革  梁文举  闻大中 《土壤》2004,36(1):61-64,80
利用地统计学和地理信息系统相结合的方法研究了沈阳市郊耕地1994个样本0~20cm耕层土壤交换性锰(Mn)含量的空间变异特征,编制了交换性Mn含量的空间分布图。结果表明:土壤交换性Mn含量基本符合正态分布,变异函数的最佳理论模型为球状模型,交换性Mn含量具有中等的空间相关性,空间自相关距离为12.42km,分维数D为1.69,由随机性因子引起的空间变异占36.6%,由结构性因子引起的空间变异占63.4%。Kriging内插图显示出交换性Mn的空间异质性主要受成土母质和土壤类型等结构性因子的影响。  相似文献   

11.
Two variable charge soils were submerged after the addition of 30g/kg of organic matter to examine the differences in behavior between iron and manganese with respect to reduction and the distribution of different froms of the reduced elements.The reduction of manganese proceeded almost synchronously with the fall in redox potential,while the reduction of iron showed a remarkable lag behind the Eh change.Once formed,the distribution of water-soluble,exchangeable and precipitatied forms of ferrous iron was controlled by pH,CEC of the soil and total concentration of the element.For manganous ions,the proportions of water-soluble and exchangeable forms in total Mn^2 were larger than those for ferrous ions.The reduction of the two elements led to a mobilization of them,and such effect persisted even after drying of the soil,i.e.,the content of amorphous Fe became higher than that of the original soil.  相似文献   

12.
添加物对土壤提取液中铜、镉生物毒性的影响   总被引:14,自引:1,他引:14  
本文着重讨论添加物紫云英、CaCO3、膨润土对土壤提取液中Cu、Cd的降毒效应及其金属形态的影响.测试结果表明,添加CaCO3对降低红壤水溶态Cu、Cd和0.1mol/LHCl可提取态Cu、Cd含量及其毒性具有非凡的功能,并能使红壤中可溶态、交换态Cu、Cd明显向有机态、铁锰氧化物包被态和硫化物Cu、Cd转化.换言之,CaCO3能使红壤中有效态金属向迟效态和无效态金属转化,致使其水、酸浸提液中Cu、Cd毒性被消除.  相似文献   

13.
The sources of bioavailable metals for earthworms were investigated in a Zn-, Pb- and Cd-contaminated soil. Selective sequential extractions (SSE) of metals were performed on soil samples with different amounts of contamination and compared with the body burden concentration of metals in two earthworm species: Aporrectodea caliginosa and Lumbricus rubellus. The most labile forms (water extractable and exchangeable) of metals were poorly related with metal accumulation by the earthworms, except for Cd, whereas the moderately available forms (acid-soluble, bound to iron oxides and organic matter) were related to the pattern of metal accumulation by earthworms. This indicates that the ingestion of metals bound to soil components is likely to be a more important uptake route than the dermal uptake of dissolved ions for metals entering the body tissue of earthworms.  相似文献   

14.
Synergism and antagonism of cadmium(Cd),copper (Cu) and selenium (Se) to biological toxicities in red soil,yellow brown soil and black soil were evaluated by MICROTOX method.The relation between forms of the tested metals in soil and the synergism or antagonism between them was also studied.Results showed that owing to the difference of soil chemical properties,toxicity of these metals in soils was different.In red soil with acid reaction and low in cation exchange capacity,antagonism occurred significantly between metals when they coexisted at high concentrations,while synergism occurred only under low concentrations.It is indicated that in red soil,toxicity of metals affected by synergism or antagonism depends on concentration of the metals present.For yellow brown soil and black soil with larger cation exchange capacity and lower exchangeable aluminium(Al),no toxicity of metals was observed even if metals were added to soil in high concentrations.Synergism and antagonism between Cd,Cu and Se were controlled by the forms of metals present.The amount of water-soluble metals was the most important factor in determining synergism and antagonism. In this paper,comparisons of synergism and antagkonism between metals in soils and in water solutions were made.There occurred the synergism of metal toxicity in water solutions when the concentration of coexisting metals was high.This is just opposite to the case in soils.  相似文献   

15.
Chemical extraction, multi‐element stable isotopic dilution (ID) and multi‐surface modelling were used to investigate the lability of cadmium (Cd) and copper (Cu) in nine types of soil with different properties and contaminated or not with Cd and Cu. The chemical extraction and ID analyses both showed that Cd was more labile than Cu in all the soil types studied. From the ID results, 32.8–93.3% of total Cd and 14.7–71.8% of total Cu were isotopically exchangeable after 3 days of equilibration. A single extraction in 0.43 m HNO3 gave similar results to the 3‐day ID assay for Cu in most of the soils and for Cd in the non‐calcareous soils. However, an eight‐step selective sequential extraction (SSE) procedure gave different results from the ID assay for both metals. Predictions of the multi‐surface model for the amounts of Cd and Cu adsorbed, based on measured metal ion activities in the soil solution and the concentrations of reactive surfaces in the soil, agreed with the ID results. The model predicted that soil organic matter was the predominant sorbent for Cd and Cu in the soils and that manganese oxide was the least important sorbent. The contributions of iron oxides to sorption were predicted to be small except in soil with a high pH and little organic matter. The predicted sorption on different soil components did not match SSE measurements.  相似文献   

16.
Influence of pH and organic carbon content on the solubility of iron, lead, manganese and zinc in forest soils Several soil factors determine the solubility of heavy metals in soils. The contents of exchangeable and in consequence potentially plant available heavy metals are mainly influenced by the pH and the content of organic carbon. Samples of the Ah-horizon from the stemflow area and from soil not influenced by stemflow water were investigated in beech forests. The solubility or iron, lead, manganese and zinc is described in relation to the pH and the content of organic carbon. Exchangeable iron and lead appear in significant amounts at pH below 3.5 and 4.5, respectively, regardless to the content of organic carbon. Manganese and zinc are exchangeable at pH below 5.0 and are leached for about 90% from the Ah-horizon at pH values below 3.0. The effects of higher soluble iron and lead contents on the distribution of herbaceous plants are discussed.  相似文献   

17.
Rape (Brassica napus L.) seedling pot experiments were performed with a red soil treated with goethite which had boron (B) either adsorbed (ad-B-goethite) or occluded (oc-B-goethite). Soil acidity, different forms of manganese in the soils and different elements content of the rape seedlings were determined. It was found that the addition of boron-containing goethite to the soils resulted in increased rape growth, elevated soil pH and decreased exchangeable acidity. Compared with the control, boron-containing goethite elevated the content of exchangeable manganese (Mn) (EXC-Mn), organic matter bound Mn (OM-Mn), reducible oxide Mn (RO-Mn) and residual Mn (RES-Mn) which were difficult to use for plant. Low labile organic matter was significantly correlated with easily reducible oxide Mn (ERO-Mn) (P < 0.01) and RO-Mn (P < 0.05). Middle organic matter and soil pH was significantly (P < 0.05) correlated with RES-Mn. Stepwise regression was used to select the combination of variables that best estimates shoot and root dry weight of rape seedling. Among them, soil pH, EXC-Mn, OM-Mn, RO-Mn and RES-Mn significantly influenced the dry weight of rape seedlings. The addition of boron-containing goethite improved the uptake of iron (Fe), calcium (Ca), magnesium (Mg), and copper (Cu) element and decreased the uptake of Mn and zinc (Zn) element in rape seedling. The results suggested that boron-containing goethite could provide a better soil acidity environment for plant growth; it was also an important agent increasing a part of manganese difficult to use for plant and reducing the activity of soil manganese, which was beneficial to altering rape seedling growth.  相似文献   

18.
The addition of biochar to soils appears to be attractive for sequestering carbon and improving soil fertility. Biochar has been shown to alter carbon, nutrient and element cycling, but there is little information on the cycling of trace elements, which will be introduced increasingly into soils because of their use in modern technologies (e.g. rare earth elements) and significant concentrations in phosphate fertilizers. This study investigated, using column experiments, the effect of biochar addition on the leaching of soil‐derived trace metals from a soil contaminated with heavy metals. The biochar used in this study showed a clear potential to reduce soil‐derived trace metals, including transition metals, rare earth elements and heavy metals such as cadmium (Cd) and lead (Pb), while increasing the amounts of essential nutrients such as potassium (K) and molybdenum (Mo). Uranium was mobilized in the presence of biochar, indicating a risk of increased leaching in biochar‐amended soils. During elution under anoxic conditions manganese (Mn) and iron (Fe) oxides were reduced and a release of metals typically bound to these oxides such as Pb, cobalt (Co), zirconium (Zr) and niobium (Nb) was observed. The retention of dissolved organic matter (DOM) in the amended soil led to a retention of DOM‐associated elements such as copper (Cu), zinc (Zn) and nickel (Ni). Analysis by liquid chromatography followed by ICP‐MS indicated an association with UV‐active DOM. In previous studies conducted with inorganic metal species added to soil, an increased retention of metals has often been interpreted as being caused by cation exchange with the biochar. Our results indicate that the decreased mobility of trace elements is at least partly caused by an enhanced retention of metal‐binding DOM after biochar application.  相似文献   

19.
Secondary and trace elements may be limiting soil microbial functioning, albeit microbial demand and content remain largely unknown and methods for their in situ detection are limited. Thus, the objective of the present study was to take the first step towards the method development for the assessment of the soil microbial ionome, that is, the elemental composition of soil microbial communities. Chloroform (CHCl3) fumigation extraction was used for the detection of microbial CHCl3-labile secondary and trace element concentrations in soils. The suitability of two extractants (NH4NO3, CaCl2) for the quantification of CHCl3-labile concentrations of phosphorus, sulphur, potassium, sodium, and magnesium, as well as selenium, iron, zinc, manganese, copper, cobalt, nickel, molybdenum, vanadium, boron, silicon, barium, arsenic, and cadmium, were tested in six agricultural soils. Additionally, three soil to extractant ratios (1:5, 1:10, and 1:20) and two extraction durations, 1 or 2 h, were tested in a subset of two soils. Out of the two extractants tested, 0.01 M CaCl2 was found to be the best-suited extractant. For CaCl2, a soil-to-extractant ratio of 1:20 with an extraction time of 1 h was best for the majority of elements in the two soils tested. In a limited number of agricultural soils, we were able to show that CHCl3 fumigation extraction can successfully be applied to the elements phosphorus, sulphur, potassium, sodium, magnesium, zinc, manganese, copper, nickel, vanadium, boron, silicon, and barium to yield a CHCl3-labile element fraction. Conversion values to microbial biomass, accounting for elements contained in the cell envelope components, which are mostly not extractable, and to account for adsorption to soil colloids during extraction are yet to be determined in a larger variety of soils. To overcome some of the limitations of the fumigation extraction approach for secondary and trace elements, a pre-extraction step may provide a suitable solution.  相似文献   

20.
砂姜黑土中重金属Cu、Cd、Zn形态分布与土壤酶活性研究   总被引:2,自引:0,他引:2  
采用小麦农田取样,对土壤中的重金属运用连续提取方法,研究了皖北砂姜黑土中Cu、Cd、Zn的化学形态特征及其与四种土壤酶(过氧化氢酶、脲酶、蔗糖酶、中性磷酸酶)活性间的关系。结果表明:在砂姜黑土中,残留态Cu、Cd、Zn在总量中所占比例很高,交换态、有机态、碳酸盐结合态含量明显低于残留态。在三种元素中,Zn的化学形态变化趋势最为一致,表现为残留态>碳酸盐结合态>铁锰结合态>有机态>交换态;砂姜黑土中交换态Cu、Cd、Zn对脲酶活性有显著抑制作用,有机态Cu、Cd、Zn对过氧化氢酶表现为一定程度的促进作用。因此,在砂姜黑土壤中,把交换态Cu、Cd、Zn和脲酶以及中性磷酸酶的活性共同作为评价土壤Cu、Cd、Zn污染程度的主要生化指标是可行的。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号