首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
There is a growing recognition for the need to develop sensitive indicators of soil quality that reflect the effects of land management on soil and assist land users in promoting sustainability of agro-ecosystems. Three soil enzymes (dehydrogenase, phosphatase and invertase) microbial biomass as biological variables and soil organic matter content (SOM) were investigated relative to fertilization and soil fertility (estimated by crop yield) at a long-term fertilization trial (Keszthely, Hungary). 0-34.7-69.4-104.1t farmyard manure (FYM) ha m 1 5 yr m 1 and the corresponding amount of mineral fertilizers (NPK) were applied in two different crop rotation systems. There were four straw and/or stalk incorporating treatments in the second crop rotation 'B'. Enzyme activities, microbial biomass and the amount of SOM were generally higher in the fertilized soils than in the unfertilized soils. The type of amendments (mineral, FYM or mixed) had significant effects only on the amount of SOM. The correlations among the biological variables and the crop yield were generally low (r < 0.250. The differences in field management resulted only in the invertase activity.  相似文献   

2.
The effect of fertilizers and amendments on organic matter dynamics in an acid Alfisol was studied in a long-term field experiment initiated during 1972 at experimental farm of Department of Soil Science, CSK HPKV, Palampur (India). Continuous application of chemical fertilizers either alone or in combination with farmyard manure (FYM) or lime for 42 years significantly influenced water-soluble organic carbon (WS-OC), water-soluble carbohydrate (WS-CHO), soil microbial biomass carbon, soil microbial biomass nitrogen, soil microbial biomass phosphorus, soil microbial biomass sulfur, humic acid (HA), and fulvic acid (FA). Continuous cropping without fertilization resulted in depletion to the order of 17, 21, 24, 23, 22, 26, 12, and 18% in WS-OC, WS-CHO, microbial biomass carbon, microbial biomass nitrogen, microbial biomass phosphorus, microbial biomass sulfur, HA, and FA, respectively. Different fractions of soil organic matter were found to be positively and significantly correlated with grain and straw/stover yield of wheat and maize crops.  相似文献   

3.
One of the challenges in organic farming systems is to match nitrogen (N) mineralization from organic fertilizers and crop demand for N. The mineralization rate of organic N is mainly determined by the chemical composition of the organic matter being decomposed and the activity of the soil microflora. It has been shown that long-term organic fertilization can affect soil microbial biomass (MB), the microbial community structure, and the activity of enzymes involved in the decomposition of organic matter, but whether this has an impact on short-term N mineralization from recently applied organic substances is not yet clear. Here, we sampled soils from a long-term field experiment, which had either not been fertilized, or fertilized with 30 or 60 t ha−1 year−1 of farmyard manure (FYM) since 1989. These soil samples were used in a 10-week pot experiment with or without addition of FYM before starting (recent fertilization). At the start and end of this experiment, soil MB, microbial basal respiration, total plant N, and mineral soil N content were measured, and a simplified N balance was calculated. Although the different treatments used in the long-term experiment induced significant differences in soil MB, as well as total soil C and N contents, the total N mineralization from FYM was not significantly affected by soil fertilization history. The amount of N released from FYM and not immobilized by soil microflora was about twice as high in the soil that had been fertilized with 60 t ha−1 year−1 of FYM as compared with the non-fertilized soil (p < 0.05).  相似文献   

4.
The effect of long-term (45 years) mineral and organic fertilization on soil organic matter (SOM) quantity (organic C and N content) and quality (hot-water-soluble C content, microbial biomass C content, hydrophobic organic components of SOM, soil enzyme activities) was determined in a field experiment established in Trutnov (North Bohemia, sandy loam, Eutric Cambisol). Six treatments were chosen for investigation: unfertilized control, mineral fertilization (NPK), straw N, farmyard manure (FYM) and straw and FYM completed with mineral NPK. Soil samples were taken from the arable layer (0–20 cm) in spring over the period of 2004–2010. The positive effect of FYM on the total organic C and N content, hot-water-soluble C content and hydrophobic organic components of SOM was more than 50% higher than that of straw and mineral N fertilization. Application of straw N increased microbial biomass C content in soil and generated invertase activity above the level of FYM. Hot-water-soluble C content, hydrophobic organic components of SOM and urease activity were positively correlated with total organic C and N content (R = 0.58–0.98; p < 0.05). Addition of mineral NPK to both the straw and FYM emphasized the effect of organic fertilization in most of monitored characteristics.  相似文献   

5.
Summary We studied the build-up and turnover of microbial biomass following the addition of farmyard manure to an unmanured soil and to soils from a long-term experiment in which different levels of farmyard manure had been applied for the last 23 years. The application of farmyard manure at 15–90 t ha-1 to previously unmanured soil increased the microbial biomass during the first 3 months of incubation but a gradual decline occurred with further incubation for up to 12 months. Microbial biomass C was positively correlated with soil organic C and ranged from 1.8% to 2.2% of organic C after 12 months of farmyard manure applications. Biomass turnover increased with the application of farmyard manure, ranging from 0.81 to 0.87 year-1 with various levels of manure. Amendment of soils from the long-term manure experiment with various levels of farmyard manure led to a build-up and decline in biomass C as seen in the unmanured soils, but biomass C was higher in all treatments compared to the corresponding unmanured soil treatments. Biomass turnover was greater compared to the unmanured soil treatments and it decreased with increasing levels of farmyard manure. The average soil respiratory activity increased with increasing levels of farmyard manure, but respiratory activity per unit of biomass C decreased with increasing levels of manure. Enzyme activities were greater in long-term manured soils compared to unmanured soils amended with various levels of manure. There was a significant correlation between biomass C and enzyme activities.  相似文献   

6.
《Applied soil ecology》2007,35(2):412-422
Earthworms are key agents in organic matter decomposition, as they remove surface plant litter material and mix it with mineral soil. Plant litter material is comminuted in the gizzard of anecic earthworms and this is enhanced if sand particles are available. We hypothesize that this comminution of soil and litter will result in changes in the distribution of soil organic matter and soil microorganisms in the different particle-size fractions. We investigated soil organic matter content, xylanase- and microbial activity and community structure in bulk soil and particle size fractions of Lumbricus terrestris L. casts and in soil with and without the addition of beech litter.Earthworm gut passage did not affect the particle-size distribution but the content of soil organic matter was decreased in the fine sand fraction in treatments without litter (−6.80%) and increased in treatments with litter (+33.23%). The soil organic matter content of the clay fraction tended to be higher in earthworm casts. Xylanase activity was at a maximum in the fine sand fraction, lower in the coarse sand fraction and at a similar minimum in the silt- and clay-sized fraction. In the coarse sand fraction of the cast and litter treatments xylanase activity was increased by 39.1% and 124.8%, respectively. In the silt-sized fraction of casts the addition of litter increased xylanase activity (+58.6%) whereas, in casts without litter it was decreased (−36.25%). In the particle size fractions of casts, the content of bacterial PLFAs was decreased in the fine sand fraction and tended to be decreased in the clay fraction compared to the respective fractions in soil. In the silt fraction the fungal-to-bacterial PLFA ratio was higher in casts than in soil.We conclude that earthworms stabilize soil organic matter in cast aggregates predominantly by increasing the soil organic matter content in the clay fraction where it becomes protected against microbial attack. Organic matter in the coarse and fine sand fractions is decomposed primarily by fungi; xylanase is very active in these sand fractions and incorporation of litter into these fractions by the earthworms increased fungal biomass. Comminution of litter during passage through the earthworm gut increased the biomass and activity of fungi also in the silt fraction. The use of PLFA profiles in combination with other quantitative microbial methods improves the understanding of stabilizing and mobilizing processes in earthworm casts.  相似文献   

7.
Endogeic earthworms play an important role in mobilisation and stabilisation of carbon and nitrogen in forest and arable soils. Soil organic matter is the major food resource for endogeic earthworms, but little is known about the size and origin of the organic matter pool on which the earthworms actually live. We measured changes in body mass of juvenile endogeic earthworms, Octolasion tyrtaeum (Savigny), in soils with different C and N contents resulting from different fertiliser treatments. The soil was taken from a long-term experiment (Statischer Düngungsversuch, Bad Lauchstädt, Germany). The treatments included (1) non-fertilised soil, (2) NPK fertilised soil, (3) farmyard manure fertilised soil and (4) NPK + farmyard manure fertilised soil. The soil was incubated in microcosms with and without one juvenile O. tyrtaeum for 80 days.Earthworm biomass decreased in non-fertilised soil by 48.6%, in NPK soil by 9.4%, but increased in farmyard manure soil by 19.7% and 42.8% (soil with additional NPK application). In farmyard manure treatments the biomass of bigger individuals decreased, but in smaller individuals it increased. In NPK fertilised soil without farmyard manure only small O. tyrtaeum increased in body mass, whereas in the non-fertilised soil all individuals decreased in body mass. Generally, soil respiration correlated positively with soil carbon content. Earthworms significantly increased soil respiration and nitrogen leaching and this was most pronounced in farmyard manure treatments. Microbial activity was generally higher in farmyard manure soil indicating that farmyard manure increases labile organic matter pools in soil. Also, biomass of earthworms and microorganisms was increased in farmyard manure soil. The presence of earthworms reduced microbial biomass, suggesting that earthworms feed on microorganisms or/and that earthworms and soil microorganisms competed for similar organic matter pools in soil. The results demonstrate that NPK fertilisation only is insufficient to sustain O. tyrtaeum, whereas long-term fertilisation with farmyard manure enables survival of endogeic species due to an increased pool of utilisable soil organic matter in arable soil.  相似文献   

8.
We studied the effects of applications of traditionally composted farmyard manure (FYM) and two types of biodynamically composted FYM over 9 years on soil chemical properties, microbial biomass and respiration, dehydrogenase and saccharase activities, decomposition rates and root production under grass-clover, activity and biomass of earthworms under wheat, and yields in a grass-clover, potatoes, winter wheat, field beans, spring wheat, winter rye crop rotation. The experiment was conducted near Bonn, on a Fluvisol using a randomised complete block design (n=6). Our results showed that plots which received either prepared or non-prepared FYM (30 Mg ha–1 year–1) had significantly increased soil pH, P and K concentrations, microbial biomass, dehydrogenase activity, decomposition (cotton strips), earthworm cast production and altered earthworm community composition than plots without FYM application. Application of FYM did not affect the soil C/N ratio, root length density, saccharase activity, microbial basal respiration, metabolic quotient and crop yields. The biodynamic preparation of FYM with fermented residues of six plant species (6 g Mg–1 FYM) significantly decreased soil microbial basal respiration and metabolic quotient compared to non-prepared FYM or FYM prepared with only Achillea. The biodynamic preparation did not affect soil microbial biomass, dehydrogenase activity and decomposition during 62 days. However, after 100 days, decomposition was significantly faster in plots which received completely prepared FYM than in plots which received no FYM, FYM without preparations or FYM with the Achillea preparation. Furthermore, the application of completely prepared FYM led to significantly higher biomass and abundance of endogeic or anecic earthworms than in plots where non-prepared FYM was applied.  相似文献   

9.
Agricultural management practices are known to influence soil organic C. While changes in total organic C (TOC) are relatively less discernible over short to medium-term, some extractable pools of TOC are considered early indicators of changes in TOC. Therefore, to devise nutrient management practices that can lead to C sequestration, it is important to study their effect on soil organic C pools that may respond rapidly to management. We studied the impact of balanced (NPK) and imbalanced (N, NP, NK and PK) application of fertilizer nutrients without and with farmyard manure (FYM) on total and labile pools of organic C viz. water soluble (WEOC), potassium permanganate oxidizable (KMnO4-C), microbial biomass (MBC) and fractions of decreasing oxidizability after 5-cycles of rice-wheat cropping. Integrated use of NPK and FYM significantly increased TOC and extractable C pools in both surface (0–7.5 cm) and sub-surface (7.5–15 cm) soil. Majority of TOC (72%) was stabilized in less labile and recalcitrant fractions; the magnitude being higher under balanced (NPK+FYM) than imbalanced nutrient management (N+FYM). The results showed that balanced fertilizer application conjointly with FYM besides enlarging TOC pool favorably impacts soil organic matter composition under rice-wheat system.  相似文献   

10.
《Applied soil ecology》2007,35(3):610-621
Green manuring practices can influence soil microbial community composition and function and there is a need to investigate the influence compared with other types of organic amendment. This study reports long-term effects of green manure amendments on soil microbial properties, based on a field experiment started in 1956. In the experiment, various organic amendments, including green manure, have been applied at a rate of 4 t C ha−1 every second year. Phospholipid fatty acid analysis (PLFA) indicated that the biomass of bacteria, fungi and total microbial biomass, but not arbuscular mycorrhizal (AM) fungi, generally increased due to green manuring compared with soils receiving no organic amendments. Some differences in abundance of different microbial groups were also found compared with other organic amendments (farmyard manure and sawdust) such as a higher fungal biomass and consequently a higher fungal/bacterial ratio compared with amendment with farmyard manure. The microbial community composition (PLFA profile) in the green manure treatment differed from the other treatments, but there was no effect on microbial substrate-utilization potential, determined using the Biolog EcoPlate. Protease and arylsulphatase activities in the green manure treatment were comparable to a mineral fertilized treatment receiving no additional C, whereas acid phosphatase activity increased. It can be concluded that green manuring had a beneficial impact on soil microbial properties, but differed in some aspects to other organic amendments which might be attributed to differences in quality of the amendments.  相似文献   

11.
A long‐term fertilization experiment with monoculture corn (Zea mays L.) was established in 1980 on a clay‐loam soil (Black Soil in Chinese Soil Classification and Typic Halpudoll in USDA Soil Taxonomy) at Gongzhuling, Jilin Province, China. The experiment aimed to study the sustainability of grain‐corn production on this soil type with eight different nitrogen (N)‐, phosphorus (P)‐, and potassium (K)–mineral fertilizer combinations and three levels (0, 30, and 60 Mg ha–1 y–1) of farmyard manure (FYM). On average, FYM additions produced higher grain yields (7.78 and 8.03 Mg ha–1) compared to the FYM0 (no farmyard application) treatments (5.67 Mg ha–1). The application of N fertilizer (solely or in various combinations with P and K) in the FYM0 treatment resulted in substantial grain‐yield increases compared to the FYM0 control treatment (3.56 Mg ha–1). However, the use of NP or NK did not yield in any significant additional effect on the corn yield compared to the use of N alone. The treatments involving P, K, and PK fertilizers resulted in an average 24% increase in yield over the FYM0 control. Over all FYM treatments, the effect of fertilization on corn yield was NPK > NP = NK = N > PK = P > K = control. Farmyard‐manure additions for 25 y increased soil organic‐matter (SOM) content by 3.8 g kg–1 (13.6%) in the FYM1 treatments and by 7.8 g kg–1 (27.8%) in the FYM2 treatments, compared to a 3.2 g kg–1 decrease (11.4%) in the FYM0 treatments. Overall, the results suggest that mineral fertilizers can maintain high yields, but a combination of mineral fertilizers plus farmyard manure are needed to enhance soil organic‐matter levels in this soil type.  相似文献   

12.
 Soil organic matter level, mineralizable C and N, microbial biomass C and dehydrogenase, urease and alkaline phosphatase activities were studied in soils from a field experiment under a pearl millet-wheat cropping sequence receiving inorganic fertilizers and a combination of inorganic fertilizers and organic amendments for the last 11 years. The amounts of soil organic matter and mineralizable C and N increased with the application of inorganic fertilizers. However, there were greater increases of these parameters when farmyard manure, wheat straw or Sesbania bispinosa green manure was applied along with inorganic fertilizers. Microbial biomass C increased from 147 mg kg–1 soil in unfertilized soil to 423 mg kg–1 soil in soil amended with wheat straw and inorganic fertilizers. The urease and alkaline phosphatase activities of soils increased significantly with a combination of inorganic fertilizers and organic amendments. The results indicate that soil organic matter level and soil microbial activities, vital for the nutrient turnover and long-term productivity of the soil, are enhanced by use of organic amendments along with inorganic fertilizers. Received: 6 May 1998  相似文献   

13.
Amino sugars, as a microbial residue biomarker, are highly involved in microbial-mediated soil organic matter formation. However, accumulation of microbial biomass and responses of bacterial and fungal residues to the management practices are different and poorly characterized in rice soils. The objectives of this study were to evaluate the effects of mineral fertiliser (MIN), farmyard manure (FYM) and groundnut oil cake (GOC) on crop yield and co-accumulation of microbial residues and microbial biomass under rice-monoculture (RRR) and rice–legume–rice (RLR) systems. In the organic fertiliser treatments and RLR, rice grain yield and stocks of soil and microbial nutrients were significantly higher than those of the MIN treatment and RRR, respectively. The increased presence of saprotrophic fungi in the organic fertiliser treatments and RRR was indicated by significantly increased ergosterol/Cmic ratio and extractable sulphur. In both crop rotation systems, the long-term application of FYM and GOC led to increased bacterial residues as indicated by greater accumulation of muramic acid. In contrast, the higher fungal C/bacterial C ratio and lower ergosterol/Cmic ratio in the MIN treatment, is likely caused by a shift within the fungal community structure towards ergosterol-free arbuscular mycorrhizal fungi (AMF). The organic fertiliser treatments contributed 22 % more microbial residual C to soil organic C compared to the MIN treatment. Our results suggest that the negative relationship between the ratios ergosterol/Cmic and fungal C/bacterial C encourages studying responses of both saprotrophic fungi and AMF when assessing management effects on the soil microbial community.  相似文献   

14.
Fatty acids, the most abundant class of soil lipids, indicate pedogenetic processes and soil management. However, their quantitative distribution in organo‐mineral particle‐size fractions is unknown. The concentrations of n‐C10:0 to n‐C34:0 fatty acids both in whole soil samples and in the organo‐mineral particle‐size fractions of the Ap horizon of a Chernozem were determined (i) to evaluate the effects of long‐term fertilization and (ii) to investigate their influence on the aggregation of organo‐mineral primary particles. Quantification by gas chromatography/mass spectrometry (GC/MS) showed that long‐term fertilization with nitrogen, phosphorus and potassium (NPK) and farmyard manure (FYM) led to larger concentrations (25.8 µg g?1) of fatty acids than in the unfertilized sample (22.0 µg g?1). For particle‐size fractions of the unfertilized soil, the fatty acid concentrations increased from the coarse silt to the clay fractions (except for fine silt). Fertilization with NPK and FYM resulted in absolute enrichments of n‐C21:0 to n‐C34:0 fatty acids with a maximum at n‐C28:0 in clay (×2.2), medium silt (×2.0), coarse silt (×1.8) and sand (×2.9) compared with the unfertilized treatment (the factors of enrichment are given in parentheses). New evidence for the aggregate stabilizing function of n‐C21:0 to n‐C34:0 fatty acids was shown by the characteristic pattern in size‐fractionated, disaggregated and aggregated samples. Highly significant correlations of fatty acid concentrations with organic C concentrations and specific surface areas are interpreted as indicators of (i) trapping of fatty acids in organic matter macromolecules and (ii) direct bonding to mineral surfaces. This interpretation was supported by the thermal volatilization and determination of fatty acids by pyrolysis‐field ionization mass spectrometry (Py‐FIMS).  相似文献   

15.
Summary The influence of more than 100 years of fertilization with farmyard manure on soil organic matter in comparison to unfertilized soil was studied in particle-size fractions using elemental (C and N) analyses and pyrolysis-field ionization mass spectrometry. Distinct differences in C and N concentrations and distribution and in the quality of organic matter between the size fractions and the fertilization treatments were observed. Clay-associated C and N were relatively higher in the unfertilized treatment, whereas the application of farmyard manure preferentially increased soil organic matter associated with the fine and medium silt fractions. Pyrolysis-field ionization mass spectrometry of soil fractions <20 m showed increasing values for lignin monomers and dimers and fatty acids with larger equivalent diameters, whereas the proportion of N compounds, mono- and polysaccharides and phenolics decreased in the larger size fractions. Sand fractions were particularly rich in lignin fragments, mono- and polysaccharides, and alkanes/alkenes. These relationships seemed to be independent of management practices. In the same size fractions of the different treatments, however, a higher relative abundance of N-compounds, mono- and polysaccharides, phenolics, lignin monomers, and alkanes/alkenes was observed in the unfertilized variant. Lignin dimers and fatty acids were more abundant in the farmyard manure treatment. Both trends together imply that soil enrichment in organic matter due to the application of farmyard manure largely reflects an increase in lignin building blocks and partly reflects an increase in lipids such as fatty acids in the silt fractions. Therefore these constituents are of particular importance in assessing the positive effects of farmyard manure on soil fertility.  相似文献   

16.
This paper investigated the flow of carbon into different groups of soil microorganisms isolated from different particle size fractions. Two agricultural sites of contrasting organic matter input were compared. Both soils had been submitted to vegetation change from C3 (Rye/Wheat) to C4 (Maize) plants, 25 and 45 years ago. Soil carbon was separated into one fast-degrading particulate organic matter fraction (POM) and one slow-degrading organo-mineral fraction (OMF). The structure of the soil microbial community were investigated using phospholipid fatty acids (PLFA), and turnover of single PLFAs was calculated from the changes in their 13C content. Soil enzyme activities involved in the degradation of carbohydrates was determined using fluorogenic MUF (methyl-umbelliferryl phosphate) substrates.We found that fresh organic matter input drives soil organic matter dynamic. Higher annual input of fresh organic matter resulted in a higher amount of fungal biomass in the POM-fraction and shorter mean residence times. Fungal activity therefore seems essential for the decomposition and incorporation of organic matter input into the soil. As a consequence, limited litter input changed especially the fungal community favoring arbuscular mycorrhizal fungi. Altogether, supply and availability of fresh plant carbon changed the distribution of microbial biomass, the microbial community structure and enzyme activities and resulted in different priming of soil organic matter.Most interestingly we found that only at low input the OMF fraction had significantly higher calculated MRT for Gram-positive and Gram-negative bacteria suggesting high recycling of soil carbon or the use of other carbon sources. But on average all microbial groups had nearly similar carbon uptake rates in all fractions and both soils, which contrasted the turnover times of bulk carbon. Hereby the microbial carbon turnover was always faster than the soil organic carbon turnover and higher carbon input reduced the carbon storage efficiency from 51% in the low input to 20%. These findings suggest that microbial community preferentially assimilated fresh carbon sources but also used recycled existing soil carbon. However, the priming rate was drastically reduced under carbon limitation. In consequence at high carbon availability more carbon was respired to activate the existing soil carbon (priming) whereas at low carbon availability new soil carbon was formed at higher efficiencies.  相似文献   

17.
The aim of the study was to determine microbial populations and microbial biomass carbon in the rhizosphere soil of soybean cultivated under different organic treatments: plant compost (PC), vermicompost (VER), farmyard manure (FYM), and integrated plant compost (IPC). The serial dilution plate method was employed to enumerate the rhizosphere soil fungi and bacteria. Results showed that microbial populations and biomass carbon were affected by the application of organic amendments. Fungal population was the greatest in the VER plot for two crop cycles, whereas bacterial population was the greatest in the VER in the first crop cycle and FYM for the second crop cycle. Tukey's test at P ≤ 0.05 showed that change in microbial biomass carbon in the sites studied over time was significant, with the greatest in FYM. In our study, addition of organic amendments affected the soil physicochemical properties, which in return affected the rhizosphere microbial characteristics.  相似文献   

18.
Organic amendments could be used as alternative to inorganic P fertilisers, but a clear understanding of the relationship among type of P amendment, microbial activity and changes in soil P fractions is required to optimise their use. Two P-deficient soils were amended with farmyard manure (FYM), poultry litter (PL) and biogenic waste compost (BWC) at 10 g?dw?kg?1 soil and incubated for 72 days. Soil samples were collected at days 0, 14, 28, 56 and 72 and analysed for microbial biomass C, N and P, 0.5 M NaHCO3 extractable P and activity of dehydrogenase and alkaline phosphomonoesterase. Soil P fractions were sequentially extracted in soil samples collected at days 0 and 72. All three amendments increased cumulative CO2 release, microbial biomass C, N and P and activity of dehydrogenase and alkaline phosphomonoesterase compared to unamended soils. The increase in microbial biomass C and N was highest with PL, whereas the greatest increase in microbial biomass P was induced with FYM. All three biomass indices showed the same temporal pattern, with the highest values on day 14 and the lowest on day 72. All amendments increased 0.5 M NaHCO3 extractable P concentrations with the smallest increase with BWC and the greatest with FYM, although more P was added with PL than with FYM. Available P concentrations decreased over time in the amended soils. Organic amendments increased the concentration of the labile P pools (resin and NaHCO3-P) and of NaOH-P, but had little effect on the concentrations of acid-soluble P pools and residual P except for increasing the concentration of organic P in the concentrated HCl pool. Resin P and NaHCO3-Pi pools decreased over time whereas NaOH-Pi and all organic P pools increased. It is concluded that organic amendments can provide P to plants and can stimulate the build-up of organic P forms in soils which may provide a long-term slow-release P source for plants and soil organisms.  相似文献   

19.
 Changes in some soil biochemical properties were investigated following repeated applications of aerobically digested sewage sludge (SS) under field conditions over 12 years, and compared with those of an adjacent soil cultivated and amended with 5 t ha–1 year–1 (dry weight) farmyard manure (FYM) for at least 40 years, as well as with those of an adjacent uncultivated soil, in order to ascertain changes in soil quality. A short-term aerobic incubation was used to determine the potential of the samples to mineralize the organic C supplied. Results indicated that cultivation caused a reduction in total, humified and potentially mineralizable organic C, total N, light-fraction (LF) C, total and water-soluble carbohydrates, phenolic compounds, cation-exchange capacity (CEC), microbial biomass C, specific respiration, hydrolytic and urease activities, and an increase in the heavy metal content. Total and water-soluble carbohydrates and phenolic compounds expressed as a percentage of total organic C (TOC) were similar in the differently managed plots. Of the two amendments, FYM treatments showed higher amounts of TOC and N, LF-C, total and water-soluble carbohydrates, phenolic substances, CEC, specific respiration of biomass, hydrolytic and urease activities, similar amounts and characteristics of humified organic matter and lower concentrations of Cu, Zn and Cr. Both FYM and SS were inadequate treatments for the restoration of soil organic matter lost as a consequence of cultivation. Received: 20 October 1998  相似文献   

20.
合成条件对氧气氧化合成水钠锰矿的影响   总被引:3,自引:0,他引:3  
A pot experiment was conducted to determine the dynamics of soil microbial biomass in a rainfed soil under wheat cultivation at the University of Arid Agriculture, Rawalpindi, Pakistan. The treatments applied were: 1) a control (CK), 2) NPK (0.44-0.26-0.18 g pot^-1), 3) farmyard manure (FYM, 110 g pot^-1), 4)poultry manure (PM, 110 g pot^-1), 5) FYM (110 g pot^-1) NPK (0.44-0.26-0.18 g pot^-1), 6) poultry manure (PM, 110 g pot^-1) NPK (0.44-0.26-0.18 g pot^-1), 7) FYM (110 g pot^-1) NPK(S) (0.44-0.26-0.18 g pot^-1 one half of the NPK at sowing and the other half one month after sowing), and 8) PM (110 g pot^-1) NPK(S) (0.44-0.26-0.18 g pot^-1, one half of the NPK applied at sowing and the other half one month after sowing). The experiment was laid out using a completely randomized design with three replications. Microbial biomass C, N and P contents increased continuously from the beginning of the experiment up to the three-leaf stage. A slight decline was observed at the tillering stage in all treatments except with the organic manures NPK(S) treatments. After tillering there was an increase in all treatments to the recorded maximum point at the full heading stage in all treatments except with the organic manures NPK(S) treatments. In the FYM NPK(S) and PM NPK(S) treatments; however, there was a continuous increase in microbial biomass up to the heading stage. At the harvesting stage a sharp decline was noted in all treatments. The C:N ratio of microbial biomass in tested soil ranged from 7.8 to 11.3, while C:P ratio of microbial biomass in the tested soil ranged from 22.6 to 35.1 throughout all growth stages of the wheat crop.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号