共查询到17条相似文献,搜索用时 15 毫秒
1.
Branch mortality and potential litterfall from Douglas-fir trees in stands of varying density 总被引:5,自引:0,他引:5
Douglas A. Maguire 《Forest Ecology and Management》1994,70(1-3):41-53
Forest floor characteristics influence nutrient cycling and energy flow properties of forest ecosystems, and determine quality of habitat for many forest plants and animals. Differential crown recession and crown development among stands of differing density suggest that an opportunity may exist to control the input of fine woody litter into the system by manipulating stand density. The objective was to measure the rate of branch mortality among stands of differing density and to estimate the range in total per hectare necromass inputs. Although litter traps are reliable for estimating per hectare rates of litterfall, branch mortality dating on sectioned stems uniquely allows assessment of several other litterfall components: (1) individual tree contributions to total litterfall; (2) the amount of branch material released by mortality, regardless of whether the branches are shed to the forest floor; (3) the distribution of basal diameters characterizing the litterfall from a given tree and stand. Twenty-four trees were felled and sectioned on permanent plots that were part of a silvicultural study of stand density regimes in Douglas-fir (Pseudotsuga menziesii (Mirbel) Franco.). Whorl branches were dissected out of bole sections to determine the dates of mortality, and a branch biomass equation was applied to estimate potential rate of litterfall. Periodic annual rates were expressed in four ways: (1) number of branches per tree; (2) mass of branches per tree; (3) mass of branches per unit of crown projection area; (4) mass of branches per hectare. For the growth periods investigated, larger trees and trees growing on denser plots tended to release a greater necromass through branch mortality. Average branch basal diameter generally decreased with increasing stand density. Annual branch mortality ranged from 33 to 430 g m−2 crown projection area for individual trees, and from 236 to 1035 kg ha−1 for individual plots. These rates approached the low end of the range of previously published fine litterfall rates for Douglas-fir. Rates on these plots were relatively low owing to the temporary delay in crown recession imposed by artificial thinning. A conceptual model of branch litter dynamics is presented to depict consistencies with crown development among stands managed under different density regimes. 相似文献
2.
3.
Long-term effects of nitrogen fertilization on the productivity of subsequent stands of Douglas-fir in the Pacific Northwest 总被引:1,自引:0,他引:1
The carryover effects of N fertilization on five coastal Pacific Northwest Douglas-fir (Pseudotsuga menziesii [Mirb.] Franco) plantations were studied. “Carryover” is defined as the long-term impact of N fertilizer added to a previous stand on the growth of a subsequent stand. Average height and diameter at 1.3 m above-ground (DBH) of 7–9-year-old Douglas-fir trees and biomass and N-content of understory vegetation were assessed on paired control (untreated) and urea-N-fertilized plots that had received cumulative additions of 810–1120 kg N ha−1 to a previous stand. Overall productivity was significantly greater in the fertilized stands compared to the controls. In 2006, the last growth measurement year, mean seedling height was 15% greater (p = 0.06) and mean DBH was 29% greater (p = 0.04) on previously fertilized plots compared to control plots. Understory vegetation biomass of fertilized plots was 73% greater (p = 0.005), and N-content was 97% greater (p = 0.004) compared to control plots. These results show that past N fertilization markedly increased seedling growth in these plantations as well as biomass and N-content of understory vegetation in a subsequent rotation. These findings suggest that N fertilization could potentially increase site productivity of young Douglas-fir stands found on low quality sites in the Pacific Northwest 15–22 years after application by a carryover effect. These plantations have not yet reached the age where marketable materials can be harvested from them, and the growth of trees should be monitored over a longer time period before potential impacts on older stands, if any, can be determined. 相似文献
4.
Stephan Getzin Kerstin Wiegand Jens Schumacher François A. Gougeon 《Forest Ecology and Management》2008
The detection and quantification of competition at the stand level is important in forest management because competition reduces growth and increases the risk of mortality. This is of interest for timber production where efficient tools of forest inventory are increasingly demanded. Especially modern planning of thinning based on aerial or satellite images requires a deeper and spatially explicit understanding of the growth dynamics of tree crowns relative to the dynamics of stems. 相似文献
5.
Robin Duchesneau Isabelle Lesage Christian Messier Hubert Morin 《Forest Ecology and Management》2001,140(2-3):215-225
This paper characterizes the growth and crown morphology of young balsam fir saplings naturally regenerated under a gradient of understory light environments and intraspecific competition densities for two size classes (50–100 cm and 100–200 cm). Most growth and crown morphological parameters investigated were strongly related to the natural light gradient investigated (3–83% full sunlight), but the relationship tended to plateau at around 25% full sunlight. The relationships were generally better for the larger size class. Intraspecific competition did not significantly affect growth and crown morphology of saplings receiving less than 25% full sunlight, but it affected relative height growth, relative radial growth and the apical dominance ratio for those receiving more than 25% full sunlight (R2=0.506; p<0.001; R2=0.403; p<0.002; R2=0.348; p<0.001, respectively). These results suggest that live crown ratio, apical dominance ratio and the number of internodal branches can provide, alone or in combination, useful indicators of vigour for understory fir. Such a study provides the basic data inputs required for the development of empirically-derived mechanistic models that can predict understory tree growth and survival. 相似文献
6.
Ponderosa pine (Pinus ponderosa Dougl.) grown in mixture with whiteleaf manzanita (Arctostaphylos viscida Parry) and Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco var. menziesii) grown in mixture with Pacific madrone (Arbutus menziesii Pursh) in southwestern Oregon showed an increase in growth with removal of competing woody cover. Both conifer species had roughly one-third the volume at plantation ages 26–27 when grown with uncontrolled competition compared to where woody competition was completely controlled at age 2. Intermediate levels of competitors usually led to intermediate levels of growth, but this was more evident with Douglas-fir than pine. When competition was reduced or removed, height/age relationships for Douglas-fir at plantation ages 23 and 27 reflected medium site quality rather than low quality as estimated from adjacent stands, indicating that these sites are potentially more productive than perceived with uncontrolled dense woody cover. These studies support the concept that competition management may allow some poor sites of ponderosa pine or Douglas-fir to be managed on the basis of a higher site potential. 相似文献
7.
Overstory mortality, understory tree recruitment, and vegetation development were assessed in trembling aspen (Populus tremuloides Michx.) stands following two recent episodes of forest tent caterpillar defoliation (Malacosoma disstria Hbn.) in northeastern Ontario. The results suggest that poplar (aspen and balsam poplar (Populus balsamifera L.)) mortality increased with consecutive years of insect defoliation occurring from the mid-1980s to mid-2000s and the proportion of poplars in the overstory, but decreased with improved pre-defoliation tree vigour (DBH increment). The first outbreak, which lasted from the mid-1980s to early 1990s, was more severe in terms of insect defoliation and contributed more to poplar mortality and decline. The decline began in the late 1990s and peaked in early 2000s. Poplar regeneration and understory shrubs responded rapidly to foliage loss to insect defoliation and mortality of overstory poplars. The regenerated poplars were able to maintain their growth under developing shrubs and residual overstory canopy and numbers were sufficient to compensate for the poplar trees lost to insect infestation. The defoliation-induced overstory decline will accelerate the transition of aspen stands to conifer dominance through enhanced conifer recruitment and growth, and reduced hardwood overstory in aspen-dominated stands, while hardwood dominance will persist in pure aspen stands. From a timber supply perspective, the decline caused by forest tent caterpillar defoliation could delay the availability of aspen stands for harvesting by 40–50 years. 相似文献
8.
H.M.P.J.B. van Rheenen Rene G.A. Boot Marinus J.A. Werger Miguel Ulloa Ulloa 《Forest Ecology and Management》2004,200(1-3):39-48
For sustainable forest management, it is important to know the response of timber species to the change in environment caused by logging. We performed a 2-year study on germination, survival and growth of four timber species, Cedrela odorata, Swietenia macrophylla, Hymenaea courbaril, and Cariniana micrantha, and one non-commercial species Tachigali vasquezii. We sowed seeds of these species in five microenvironments: log landing, gap-crown and gap-trunk, skidder trail and understory, in a tropical lowland moist rain forest in northern Bolivia. We related seed and seedling performance to light availability, soil compaction, and plant competition. Germination did not differ significantly between microenvironments but survival of germinated seeds for most species was significantly higher (P < 0.05) in the log landing (46–100%) than in the understory (0–7%). After 2 years, the tallest plants were always found in the log landing (119–190 cm) and the smallest in the understory (12–26 cm) caused by a higher relative height growth rate (RHGR) in the log landing (0.003–0.004 cm cm−1 per day) compared to the understory (0.000–0.001 cm cm−1 per day). During the first year RHGR was positively related to canopy openness for all species and negatively to the number of overtopping competitors for three species. During the second year also water infiltration explained observed variation to RHGR. These results show that abandoned log landings and logging gaps are suitable environments for the regeneration of timber species studied. This finding suggests that the removal of competitors in log landings and logging gaps combined with leaving seed trees near these microenvironments or sowing seeds, will improve regeneration of timber species in tropical forests. 相似文献
9.
To clarify the mechanism by which overstory trees shade understory saplings, we investigated the relationships among light conditions of the saplings (measured as indirect site factor; ISF and direct site factor; DSF), the calculated competition effects of overstory trees on the saplings (W), and relative height growth rate of the saplings (RHGR). We calculated several W values in order to find a W value which can express the light conditions as appropriately as possible, and the results indicated that W explained only 21.9%–24.7% of the total variance of light conditions in the cases where W gave the best fit. In this study, W was calculated based on the basal areas of overstory trees. However, it is known that canopy structure also affects the light regimes in the forest understory, and this might yield the possible errors even within W representing the shading effects most adequately. Therefore, although W significantly represents the shading effect from overstory trees, a great proportion of the variance remained without being explained by W. RHGR was negatively correlated with W, and the W value which had the most adequate explanation of the shading effect also showed the best negative correlation with RHGR. This provides the evidence that the competitive effect of overstory trees on sapling growth is mediated by the shading effect, indicating that competition for light clearly exists within this forest. Such competition for light may closely relate to the well-known phenomenon of gap regeneration in subalpine forests in central Japan. 相似文献
10.
Individual-tree diameter growth model for sugar maple trees in uneven-aged northern hardwood stands under selection system 总被引:1,自引:0,他引:1
An individual-tree diameter model was developed for sugar maple (Acer saccharum Marsh.) in northern hardwood stands managed under selection system. We fitted long-term remeasurement data to a linear mixed model to account for the temporal autocorrelation of the remeasurements. The model was evaluated using independent data from two physiographic regions and representing a range of tree diameter classes, residual basal areas and years since cut. We compared our model to several individual-tree models based on data from stands with varied management histories. Several competition indices were also tested for an improvement in model fitting and prediction. Our model had lower bias and prediction error when compared to two previous models, as it better accounted for the increased diameter growth that occurred in trees from appropriately managed stands. The addition of a tree-specific competition index failed to improve model fit and predictive ability over stand-level basal area. 相似文献
11.
A basal area increment model for individual trees growing in even- and uneven-aged forest stands in Austria 总被引:10,自引:0,他引:10
Because of the gradual shift from pure even-aged forest management in central Europe, existing yield tables are becoming increasingly unreliable for forest management decisions. Individual tree-based stand growth modeling can make accurate stand growth predictions for the full range of conditions between pure even-aged and mixed-species uneven-aged stands. The central model in such a simulator is basal area increment for individual trees. Spatial information is not needed, and age and site index are intentionally not used to gain generality for all possible stand conditions. A basal area increment model is developed for all the main forest species in Austria: spruce (Picea abies), fir (Abies alba), larch (Larix decidua), Scots pine (Pinus sylvestris), black pine (Pinus nigra), stone pine (Pinus cembra), beech (Fagus silvatica), oak (Quercus robur, Quercus petraea and Quercus cerris), and for all other broadleaf species combined. The Austrian National Forest Inventory provided 5-year basal area increment from 44 761 remeasured trees growing on 5416 forested plots in the 1980s. This large sample is representative of forest conditions and forest management practices throughout Austria and therefore provides an excellent data base for the development of an increment model. The resulting increment model explained from 20 to 63% of the variation for all nine species and from 33 to 63% of the variation if the minor species Pinus cembra is excluded. These results compared quite closely with those of Wykoff for mixed conifer stands in the Northern Rocky Mountains. In the Austrian model, size variables (breast height diameter and crown length) accounted for 14–47% of the variation in basal area increment, depending on tree species. The best competition measure was the basal area of larger trees, which provides a tree-specific measure of competition without requiring spatial information; crown competition factor provided only minor improvement. Competition variables accounted for 9% of the variation on average, and up to 15% for some species. Topographic factors (elevation, slope, aspect) explained up to 3% of the variation, as did soil factors. Remaining site factors; such as vegetation type and growth district accounted for a maximum of 3% of the variation in increment. In total, site factors explained from 2 to 6% of the variation. Even though site factors account for a small percentage of the variation, they are not only significant, but serve to localize a particular prediction. These species-specific interrelationships between basal area increment and the various size, competition, and site varibles correspond quite well with ecological expectations and silvicultural understanding of these species in Austria. Because the sample base is so strong, the resulting growth models can be recommended not only for all of Austria but for surrounding regions with similar growth conditions. 相似文献
12.
13.
J. J. Corral Rivas J. G. Álvarez. González Oscar Aguirre F. J. Hernández 《European Journal of Forest Research》2005,124(2):133-142
In this paper, we evaluated how well-selected distance-dependent and distance-independent competition indices explain individual tree basal area growth of trees, growing in mature and even-aged stands of Pinus cooperi Blanco. A total of 18 competition measures were analyzed of which six do not need tree location (distance-independent) and 12 that utilize tree location (distance-dependent). The competition situation of a stand and/or an individual tree was studied using 11 different competitor selection methods. The mean square error reduction relative to no-competition was used to judge the performance of each competition index. It was found that the best distance-independent competition indices performed as well as the best distance-dependent competition indices. It was concluded that the BALMOD-index would be a good competition index to be incorporated into further individual tree basal area growth models for the study area.
相似文献
J. J. Corral RivasEmail: Phone: +49-551-393554Fax: +49-551-399787 |
14.
Tomasz Gradowski Derek Sidders Tim Keddy Victor J. Lieffers Simon M. Landhusser 《Forest Ecology and Management》2008,255(11):3744-3749
Survival and growth of planted white spruce was assessed under partial harvest treatments and different site preparation techniques in mixedwood forests of two compositions prior to logging: deciduous dominated (d-dom) – primarily comprised of mature trembling aspen (Populus tremuloides Michx.) and coniferous dominated (c-dom) – primarily comprised of mature white spruce (Picea glauca (Moench) Voss). Levels of overstory retention were 0% (clearcut), 50% and 75% of original basal area, and site preparation techniques were inverted mounding, high speed mixing, scalping and control (no treatment). The survival and growth of white spruce were assessed seven years after planting. The experiment was established as a part of the Ecosystem Management Emulating Natural Disturbance (EMEND) experiment located in northern Alberta, Canada. In the c-dom, the 50% and 75% retention of overstory resulted in reduced growth and survival of white spruce seedlings compared to clearcuts. In contrast, in the d-dom, the seedlings performed best in sites that had 50% of the overstory retained. For the c-dom, the mounding and mixing treatments yielded the best growth of spruce seedlings, while scalping yielded the worst. In the d-dom, spruce growth was highest in sites with the mixing treatment. In the d-dom, growth and survival of the planted spruce was greater than in the c-dom. The natural regeneration of deciduous trees was suppressed by the retention of canopy regardless of original composition. 相似文献
15.
We examined the effects of competition from red alder (Alnus rubra Bong.) and paper birch (Betula papyrifera Marsh.) on the growth of western redcedar (Thuja plicata Donn), western hemlock (Tsuga heterophylla Sarg.), and Douglas-fir (Pseudotsuga menziesii Franco) at a site near Maple Ridge, British Columbia, Canada. At this site, the three coniferous species and two broadleaf species had been planted in 1999 as part of a long-term experiment examining effects of broadleaf density on conifer growth. Red alder and paper birch were planted alone and as a 50:50 mixture at four densities (0, 277, 556, and 1150 stems ha−1). 相似文献
16.
An annual individual tree survival and growth model was developed for pure even-aged stands of maritime pine in Portugal, using a large data set containing irregularly time-spaced measurements and considering thinning effects. The model is distance-independent and is based on a function for diameter growth, a function for height growth and a survival function. Two approaches are compared for modeling annual tree growth. The first approach directly estimates a future diameter or height using well-known growth functions formulated in difference form. The second approach estimates diameter or height using a function in differential form estimating the increment over a year period. In both approaches, the function parameters were related to tree and stand variables reflecting the competition status of the tree as well as of a thinning response factor. Variable growth and survival rates were assumed in the modeling approaches. An iterative method was used to continuously update tree and stand attributes using a cut-off to convert the survival probability for a living or a dead tree. The individual tree diameter growth model and the survival probability model were fitted simultaneously using seemingly unrelated regression (SUR). Parameters of the height function were obtained separately as the number of observations for height was much lower than the number of observations for diameter, which may affect the statistical inference and the estimation of contemporaneous cross-equation error correlation inherent to the system of equations. PRESS residuals were used to evaluate the predictive performance of the diameter and the height growth functions. Additional statistics based in the log likelihood function and also in the survival probability were computed to evaluate the survival function. The second modeling approach, which integrates components of growth expansion and decline, performed slightly better than the first approach. A variable accounting for the thinning response that was tested proved to be significant for predicting diameter growth, even if the model already included competition-related explanatory variables, namely the basal area of trees larger than the subject tree. However, this thinning response factor was not significant for predicting height growth. 相似文献
17.
The effect of herbaceous vegetation on growth and survival was assessed in planted eucalyptus saplings grown under four levels
of weed cover. Seedlings of Eucalyptus globulus subsp. maidenii were planted with 0 (W0), 25 (W25), 50 (W50) and 100% (W100) weed cover. Weed species composition and aboveground biomass
was determined. Soil water content was evaluated by the gravimetric method. Seedling leaf area, diameter and height were evaluated
at planting and during the 3 months following establishment. Tree height, diameter and stem volume was estimated at 12, 24
and 36 months. First year tree survival was recorded. The ratio of cumulative stem growth under W100: cumulative stem growth
under W0 was used to measure competitive performance. Regression analysis was used to determine competition thresholds. Weeds
seriously threaten the growth of E. globulus subsp. maidenii. Early negative effects of competition on growth were evident as from the second month after establishment, and both seedlings
and 1-year-old saplings were more affected than 2- and 3-year-old ones. A “minimum-response threshold” was determined near
500 kg/ha (corresponding to W25 cover). No clear effect was found between sapling survival and weed biomass. 相似文献